1
|
Garcia-Sanchez J, Lin D, Liu WW. Mechanosensitive ion channels in glaucoma pathophysiology. Vision Res 2024; 223:108473. [PMID: 39180975 PMCID: PMC11398070 DOI: 10.1016/j.visres.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Collapse
Affiliation(s)
- Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Danting Lin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Li HY, Huang M, Luo QY, Hong X, Ramakrishna S, So KF. Lycium barbarum (Wolfberry) Increases Retinal Ganglion Cell Survival and Affects both Microglia/Macrophage Polarization and Autophagy after Rat Partial Optic Nerve Transection. Cell Transplant 2019; 28:607-618. [PMID: 30838886 PMCID: PMC7103598 DOI: 10.1177/0963689719835181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rat partial optic nerve transection (PONT) model has been used for studying secondary
degeneration of retinal ganglion cells (RGCs) in recent years. In this study, we carried
out PONT of the temporal side of rat optic nerves, whereas PONT was carried out of the
superior side in the previous publication. We found that this surgery is better and easier
than the previous method and can produce a repeatable and reliable model. We detected
significant changes in the polarization of microglia/macrophages and the level of
autophagy in optic nerves after PONT. We also used this model to detect the effects of the
polysaccharides extracted from Lycium barbarum (LBP) on the survival of
RGCs and the changes in the polarization of microglia/macrophages and the level of
autophagy after PONT. We find that LBP can delay secondary degeneration of RGCs after
temporal injury of optic nerves, promote the M2 polarization of microglia/macrophages, and
down-regulate the level of autophagy after PONT. In conclusion, we find that the
polarization of microglia/macrophages and the autophagy level change after PONT; LBP
treatment delays secondary degeneration of RGCs; and the polarization of
microglia/macrophages and the level of autophagy are also altered after LBP treatment.
Collapse
Affiliation(s)
- Hong-Ying Li
- 1 Department of Anatomy, Medical School, Jinan University, Guangzhou, China.,2 Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration, Jinan University, Guangzhou, China.,3 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Mi Huang
- 2 Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration, Jinan University, Guangzhou, China.,3 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Qiu-Yan Luo
- 1 Department of Anatomy, Medical School, Jinan University, Guangzhou, China
| | - Xi Hong
- 1 Department of Anatomy, Medical School, Jinan University, Guangzhou, China.,2 Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration, Jinan University, Guangzhou, China.,3 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Seeram Ramakrishna
- 2 Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- 2 Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration, Jinan University, Guangzhou, China.,3 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,4 Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China.,5 State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma. Doc Ophthalmol 2019; 138:125-135. [PMID: 30756213 DOI: 10.1007/s10633-019-09676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Glaucoma is a common chronic neurodegenerative disease, which could lead to visual loss. In this study, we aimed to investigate whether fisetin, a natural flavone with anti-inflammatory and antioxidant properties, is able to alleviate glaucoma. METHODS We employed a DBA/2J mouse model which was treated with or without fisetin. Pattern electroretinogram (P-ERG), visual evoked potentials (VEPs) and intraocular pressure (IOP) were evaluated. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) were used to measure the expression levels of TNF-α, IL-1β and IL-6. Western blotting was performed to assess the activation of nuclear factor kappa-B (NF-κB). RESULTS We found that DBA/2J mice treated with fisetin (10-30 mg/kg) showed improved P-ERG and VEP amplitudes and reduced IOP compared to untreated DBA/2J mice. In addition, there were more survived retinal ganglion cells (RGCs) and less activated microglia in fisetin-treated DBA/2J mice than those in untreated mice. Furthermore, secreted protein levels and mRNA levels of TNF-α, IL-1β and IL-6 were significantly repressed by fisetin. The phosphorylated p65 level in the nucleus was dramatically reduced in fisetin-treated mice compared to it in untreated mice. Our results demonstrate that fisetin may exert its function through regulating cytokine productions and inhibiting NF-κB activation in the retina. CONCLUSION In conclusion, fisetin is able to promote the visual functions of DBA/2J mice by inhibiting NF-κB activation.
Collapse
|
4
|
Mesentier-Louro LA, Rosso P, Carito V, Mendez-Otero R, Santiago MF, Rama P, Lambiase A, Tirassa P. Nerve Growth Factor Role on Retinal Ganglion Cell Survival and Axon Regrowth: Effects of Ocular Administration in Experimental Model of Optic Nerve Injury. Mol Neurobiol 2019; 56:1056-1069. [PMID: 29869196 DOI: 10.1007/s12035-018-1154-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
Retinal ganglion cell (RGC) degeneration occurs within 2 weeks following optic nerve crush (ONC) as a consequence of reduced retro-transport of growth factors including nerve growth factor (NGF). The hypothesis that intravitreal (ivt) and eye drop (ed) administration of recombinant human NGF (rhNGF) might counteract ONC in adult rats is explored in this study. We found that both ivt- and ed-rhNGF reduced RGC loss and stimulated axonal regrowth. Chiefly, survival and regenerative effects of rhNGF were associated with a reduction of cells co-expressing Nogo-A/p75NTR at crush site borders, which contribute to glia scar formation following nerve injury, and induce further degeneration. We also found that ocular application of rhNGF reduced p75NTR and proNGF and enhanced phosphorylation of TrkA and its intracellular signals at retina level. Nogo-R and Rock2 expression was also normalized by ed-rhNGF treatment in both ONC and contralateral retina. Our findings that ocular applied NGF reaches and exerts biological actions on posterior segment of the eye give a further insight into the neurotrophin diffusion/transport through eye structures and/or their trafficking in optic nerve. In addition, the use of a highly purified NGF form in injury condition in which proNGF/p75NTR binding is favored indicates that increased availability of mature NGF restores the balance between TrkA and p75NGF, thus resulting in RGC survival and axonal growth. In conclusion, ocular applied NGF is confirmed as a good experimental paradigm to study mechanisms of neurodegeneration and regeneration, disclose biomarkers, and time windows for efficacy treatment following cell or nerve injury.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Eye Repair Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pamela Rosso
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Rama
- Eye Repair Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Lambiase
- Section of Ophthalmology, Department of Sense Organs, University Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy.
| |
Collapse
|
5
|
Faust A, Kandakatla A, van der Merwe Y, Ren T, Huleihel L, Hussey G, Naranjo JD, Johnson S, Badylak S, Steketee M. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J Biomater Appl 2017; 31:1277-1295. [PMID: 28447547 DOI: 10.1177/0885328217698062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.
Collapse
Affiliation(s)
- Anne Faust
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Apoorva Kandakatla
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Yolandi van der Merwe
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,3 Swanson School of Engineering, Department of Bioengineering University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanchen Ren
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Luai Huleihel
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Hussey
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Diego Naranjo
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Johnson
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Steketee
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,5 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Hu ZL, Li N, Wei X, Tang L, Wang TH, Chen XM. Neuroprotective effects of BDNF and GDNF in intravitreally transplanted mesenchymal stem cells after optic nerve crush in mice. Int J Ophthalmol 2017; 10:35-42. [PMID: 28149774 DOI: 10.18240/ijo.2017.01.06] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/04/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To assess the neuro-protective effect of bone marrow mesenchymal stem cells (BMSCs) on retinal ganglion cells (RGCs) following optic nerve crush in mice. METHODS C56BL/6J mice were treated with intravitreal injection of PBS, BMSCs, BDNF-interference BMSCs (BIM), and GDNF-interference BMSCs (GIM) following optic nerve crush, respectively. The number of surviving RGCs was determined by whole-mount retinas and frozen sections, while certain mRNA or protein was detected by q-PCR or ELISA, respectively. RESULTS The density (cell number/mm2) of RGCs was 410.77±56.70 in the retina 21d after optic nerve crush without any treatment, compared to 1351.39±195.97 in the normal control (P<0.05). RGCs in BMSCs treated eyes was 625.07±89.64/mm2, significantly higher than that of no or PBS treatment (P<0.05). While RGCs was even less in the retina with intravitreal injection of BIM (354.07+39.77) and GIM (326.67+33.37) than that without treatment (P<0.05). BMSCs injection improved the internal BDNF expression in retinas. CONCLUSION Optic nerve crush caused rust loss of RGCs and intravitreally transplanted BMSCs at some extent protected RGCs from death. The effect of BMSCs and level of BDNF in retinas are both related to BDNF and GDNF expression in BMSCs.
Collapse
Affiliation(s)
- Zong-Li Hu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Quigley HA. Understanding Glaucomatous Optic Neuropathy: The Synergy Between Clinical Observation and Investigation. Annu Rev Vis Sci 2016; 2:235-254. [PMID: 28532352 DOI: 10.1146/annurev-vision-111815-114417] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glaucoma is a complex disorder of aging defined by the death of retinal ganglion cells and remodeling of connective tissues at the optic nerve head. Intraocular pressure-induced axonal injury at the optic nerve head leads to apoptosis. Loss of retinal ganglion cells follows a slowly progressive sequence. Clinical features of the disease have suggested and corroborated pathological events. The death of retinal ganglion cells causes secondary loss of neurons in the brain, but only as a by-product of injury to the retinal ganglion cells. Although therapy to lower intraocular pressure is moderately effective, new treatments are being developed to alter the remodeling of ocular connective tissue, to interrupt the injury signal from axon to soma, and to upregulate a variety of survival mechanisms.
Collapse
Affiliation(s)
- Harry A Quigley
- Glaucoma Center of Excellence, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287;
| |
Collapse
|
8
|
Barnstable CJ, Reddy R, Li H, Horvath TL. Mitochondrial Uncoupling Protein 2 (UCP2) Regulates Retinal Ganglion Cell Number and Survival. J Mol Neurosci 2016; 58:461-9. [PMID: 26846222 PMCID: PMC4833669 DOI: 10.1007/s12031-016-0728-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
Abstract
In the brain, mitochondrial uncoupling protein 2 (UCP2) has emerged as a stress signal associated with neuronal survival. In the retina, UCP2 is expressed primarily by retinal ganglion cells. Here, we investigated the functional relevance of UCP2 in the mouse retina. Increased expression of UCP2 significantly reduced apoptosis during the critical developmental period resulting in elevated numbers of retinal ganglion cells in the adult. Elevated UCP2 levels also protected against excitotoxic cell death induced by intraocular injection of either NMDA or kainic acid. In monolayer cultures of retinal cells, elevated UCP2 levels increased cell survival and rendered the cells independent of the survival-promoting effects of the neurotrophic factors BDNF and CNTF. Taken together, these data implicate UCP2 as an important regulator of retinal neuron survival both during development and in adult animals.
Collapse
Affiliation(s)
- Colin J Barnstable
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neural and Behavioral Science, Penn State University College of Medicine, H109, 500 University Drive, Hershey, PA, 17033, USA.
| | - Rajini Reddy
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Hong Li
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neural and Behavioral Science, Penn State University College of Medicine, H109, 500 University Drive, Hershey, PA, 17033, USA
| | - Tamas L Horvath
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
9
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
10
|
Aksar AT, Yuksel N, Gok M, Cekmen M, Caglar Y. Neuroprotective effect of edaravone in experimental glaucoma model in rats: a immunofluorescence and biochemical analysis. Int J Ophthalmol 2015; 8:239-44. [PMID: 25938034 DOI: 10.3980/j.issn.2222-3959.2015.02.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/02/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To evaluate the neuroprotective activity of systemically administered edaravone in early and late stage of experimental glaucoma in rats. METHODS In this study, 60 Wistar albino rats were used. Experimental glaucoma model was created by injecting hyaluronic acid to the anterior chamber once a week for 6wk in 46 of 60 subjects. Fourteen subjects without any medication were included as control group. Edaravone administered intraperitoneally 3 mg/kg/d to the 15 of 30 subjects starting at the onset of glaucoma induction and also administered intraperitoneally 3 mg/kg/d to the other 15 subjects starting at three weeks after the onset of glaucoma induction. The other 16 subjects who underwent glaucoma induction was administered any therapy. Retinal ganglion cells (RGCs) have been marked with dextran tetramethylrhodamine (DTMR) retrograde at the end of the sixth week and after 48h, subjects were sacrificed by the method of cardiac perfusion. Alive RGC density was assessed in the whole-mount retina. Whole-mount retinal tissues homogenized and nitric oxide (NO), malondialdehyde (MDA) and total antioxidant capacity (TAC) values were measured biochemically. RESULTS RGCs counted with Image-Pro Plus program, in the treatment group were found to be statistically significantly protected, compared to the glaucoma group (Bonferroni, P<0.05). The neuroprotective activity of edaravone was found to be more influential by administration at the start of the glaucoma process. Statistically significant lower NO levels were determined in the glaucoma group comparing treatment groups (Bonferroni, P<0.05). MDA levels were found to be highest in untreated glaucoma group, TAC levels were found to be lower in the glaucoma induction groups than the control group (Bonferroni, P<0.05). CONCLUSION Systemic administration of Edaravone in experimental glaucoma showed potent neuroprotective activity. The role of oxidative stress causing RGC damage in glaucoma was supported by this study results.
Collapse
Affiliation(s)
- Arzu Toruk Aksar
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| | - Nursen Yuksel
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| | - Mustafa Gok
- Department of Ophthalmology, Ministry of Health-Ordu University Research and Training Hospital, Ordu 52000, Turkey
| | - Mustafa Cekmen
- Department of Biochemistry, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| | - Yusuf Caglar
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| |
Collapse
|
11
|
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 2015; 17:543-59. [PMID: 25618560 DOI: 10.1016/j.jcyt.2014.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. METHODS An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). RESULTS The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). CONCLUSIONS After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Esra Emre
- Department of Ophthalmology, Çerkezköy State Hospital, Tekirdağ, Turkey.
| | - Nurşen Yüksel
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Dilara Pirhan
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Cansu Subaşi
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| | - Gülay Erman
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| |
Collapse
|
12
|
Challenges in the development of glaucoma neuroprotection therapy. Cell Tissue Res 2013; 353:253-60. [DOI: 10.1007/s00441-013-1584-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
13
|
Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013; 353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
|
14
|
The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31:152-81. [DOI: 10.1016/j.preteyeres.2011.11.002] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
|
15
|
Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond) 2011; 26:355-69. [PMID: 22173078 DOI: 10.1038/eye.2011.309] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease.
Collapse
|
16
|
Joe AW, Gregory-Evans K. Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res 2011; 35:941-52. [PMID: 20958182 DOI: 10.3109/02713683.2010.516466] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are remarkable in stem cell biology. Not only do they have significant tissue regeneration potential, but more recently their paracrine effects (either innate or through genetic augmentation) have become increasingly recognized as useful therapeutic approaches. In particular, clinical roles for MSC therapy in neuroprotection and immune suppression are likely to emerge. These therapeutic effects will be particularly advantageous in work on neurological tissues, because MSC-based molecular therapy could overcome some of the difficulties of long-term drug delivery to tissues, such as the eye, which are relatively inaccessible to systemic delivery (for example due to the blood retina barrier). MSC therapy is, therefore, poised for significant impact in ocular molecular therapeutics, particularly for chronic diseases, such as retinal degeneration, glaucoma, and uveitis. Other molecular and tissue regeneration effects of MSCs are also likely to have impact in the management of ocular surface disease and oculoplastics.
Collapse
Affiliation(s)
- Aaron W Joe
- Department of Ophthalmology and Visual Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 2009; 51:2051-9. [PMID: 19933193 DOI: 10.1167/iovs.09-4509] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose. Retrograde neurotrophic factor transport blockade has been implicated in the pathophysiology of glaucoma. Stem cell transplantation appears to ameliorate some neurodegenerative conditions in the brain and spinal cord, in part by neurotrophic factor secretion. The present study was conducted to determine whether local or systemic bone marrow-derived mesenchymal stem cell (MSC) transplantation can confer neuroprotection in a rat model of laser-induced ocular hypertensive glaucoma. Methods. MSCs were isolated from the bone marrow of adult wild-type and transgenic rats that ubiquitously express green fluorescent protein. MSCs were transplanted intravitreally 1 week before, or intravenously on the day of, ocular hypertension induction by laser photocoagulation of the trabecular meshwork. Ocular MSC localization and integration were determined by immunohistochemistry. Optic nerve damage was quantified by counting axons within optic nerve cross-sections 4 weeks after laser treatment. Results. After intravitreal transplantation, MSCs survived for at least 5 weeks. Cells were found mainly in the vitreous cavity, though a small proportion of discrete cells migrated into the host retina. Intravitreal MSC transplantation resulted in a statistically significant increase in overall RGC axon survival and a significant decrease in the rate of RGC axon loss normalized to cumulative intraocular pressure exposure. After intravenous transplantation, MSCs did not migrate to the injured eye. Intravenous transplantation had no effect on optic nerve damage. Conclusions. Local, but not systemic, transplantation of MSCs was neuroprotective in a rat glaucoma model. Autologous intravitreal transplantation of MSCs should be investigated further as a potential neuroprotective therapy for glaucoma.
Collapse
Affiliation(s)
- Thomas V Johnson
- Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstätter JH, Michels-Rautenstrauss K, Weisschuh N, Gramer E, Ramdas WD, van Koolwijk LM, Klaver CC, Vingerling JR, Weber BH, Kruse FE, Rautenstrauss B, Barde YA, Reis A. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet 2009; 85:447-56. [PMID: 19765683 DOI: 10.1016/j.ajhg.2009.08.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/20/2009] [Accepted: 08/28/2009] [Indexed: 12/25/2022] Open
Abstract
Glaucoma, a main cause of blindness in the developed world, is characterized by progressive degeneration of retinal ganglion cells (RGCs), resulting in irreversible loss of vision. Although members of the neurotrophin gene family in various species are known to support the survival of numerous neuronal populations, including RGCs, it is less clear whether they are also required for survival and maintenance of adult neurons in humans. Here, we report seven different heterozygous mutations in the Neurotrophin-4 (NTF4) gene accounting for about 1.7% of primary open-angle glaucoma patients of European origin. Molecular modeling predicted a decreased affinity of neurotrophin 4 protein (NT-4) mutants with its specific tyrosine kinase receptor B (TrkB). Expression of recombinant NT-4 carrying the most frequent mutation was demonstrated to lead to decreased activation of TrkB. These findings suggest a pathway in the pathophysiology of glaucoma through loss of neurotrophic function and may eventually open the possibility of using ligands activating TrkB to prevent the progression of the disease.
Collapse
|
19
|
Barnstable CJ. Mitochondria and the regulation of free radical damage in the eye. J Ocul Biol Dis Infor 2009; 2:145-148. [PMID: 20046847 PMCID: PMC2798985 DOI: 10.1007/s12177-009-9036-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/03/2009] [Indexed: 01/15/2023] Open
Abstract
Neuronal cell death can be determined by the overall level of reactive oxygen species (ROS) resulting from the combination of extrinsic sources and intrinsic production as a byproduct of oxidative phosphorylation. Key controllers of the intrinsic production of ROS are the mitochondrial uncoupling proteins (UCPs). By allowing a controlled leak of protons across the inner mitochondrial membrane activation of these proteins can decrease ROS and promote cell survival. In both primate models of Parkinson's disease and mouse models of seizures, increased activity of UCP2 significantly increased neuronal cells survival. In the retina UCP2 is expressed in many neurons and glial cells, but was not detected in rod photoreceptors. Retinal ganglion cell survival following excitotoxic damage was much greater in animals overexpressing UCP2. Traditional Chinese medicines, such as an extract of Cistanche tubulosa, may provide benefit by altering mitochondrial metabolism.
Collapse
Affiliation(s)
- Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
20
|
Abstract
A hallmark of glaucomatous optic nerve damage is retinal ganglion cell (RGC) death. RGCs, like other central nervous system neurons, have a limited capacity to survive or regenerate an axon after injury. Strategies that prevent or slow down RGC degeneration, in combination with intraocular pressure management, may be beneficial to preserve vision in glaucoma. Recent progress in neurobiological research has led to a better understanding of the molecular pathways that regulate the survival of injured RGCs. Here we discuss a variety of experimental strategies including intraocular delivery of neuroprotective molecules, viral-mediated gene transfer, cell implants and stem cell therapies, which share the ultimate goal of promoting RGC survival after optic nerve damage. The challenge now is to assess how this wealth of knowledge can be translated into viable therapies for the treatment of glaucoma and other optic neuropathies.
Collapse
|
21
|
Cooper NGF, Laabich A, Fan W, Wang X. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2008; 173:521-40. [PMID: 18929132 DOI: 10.1016/s0079-6123(08)01136-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.
Collapse
Affiliation(s)
- N G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|