1
|
Goutal S, Tran T, Leroy C, Benhamouda N, Leterrier S, Saba W, Lafont B, Tartour É, Roelens M, Tournier N. Brain Glucose Metabolism as a Readout of the Central Nervous System Impact of Cigarette Smoke Exposure and Withdrawal and the Effects of NFL-101, as an Immune-Based Drug Candidate for Smoking Cessation Therapy. ACS Chem Neurosci 2024; 15:2520-2531. [PMID: 38875216 DOI: 10.1021/acschemneuro.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Neuroimaging biomarkers are needed to investigate the impact of smoking withdrawal on brain function. NFL-101 is a denicotinized aqueous extract of tobacco leaves currently investigated as an immune-based smoking cessation therapy in humans. However, the immune response to NFL-101 and its ability to induce significant changes in brain function remain to be demonstrated. Brain glucose metabolism was investigated using [18F]fluoro-deoxy-glucose ([18F]FDG) PET imaging in a mouse model of cigarette smoke exposure (CSE, 4-week whole-body inhalation, twice daily). Compared with control animals, the relative uptake of [18F]FDG in CSE mice was decreased in the thalamus and brain stem (p < 0.001, n = 14 per group) and increased in the hippocampus, cortex, cerebellum, and olfactory bulb (p < 0.001). NFL-101 induced a humoral immune response (specific IgGs) in mice and activated human natural-killer lymphocytes in vitro. In CSE mice, but not in control mice, single-dose NFL-101 significantly increased [18F]FDG uptake in the thalamus (p < 0.01), thus restoring normal brain glucose metabolism after 2-day withdrawal in this nicotinic receptor-rich region. In tobacco research, [18F]FDG PET imaging provides a quantitative method to evaluate changes in the brain function associated with the withdrawal phase. This method also showed the CNS effects of NFL-101, with translational perspectives for future clinical evaluation in smokers.
Collapse
Affiliation(s)
- Sébastien Goutal
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Thi Tran
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Claire Leroy
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Nadine Benhamouda
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Sarah Leterrier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Wadad Saba
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | | | - Éric Tartour
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Marie Roelens
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Nicolas Tournier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| |
Collapse
|
2
|
Eadaim A, Hahm ET, Justice ED, Tsunoda S. Cholinergic Synaptic Homeostasis Is Tuned by an NFAT-Mediated α7 nAChR-K v4/Shal Coupled Regulatory System. Cell Rep 2021; 32:108119. [PMID: 32905767 PMCID: PMC7521586 DOI: 10.1016/j.celrep.2020.108119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) involves compensatory mechanisms employed by neurons and circuits to preserve signaling when confronted with global changes in activity that may occur during physiological and pathological conditions. Cholinergic neurons, which are especially affected in some pathologies, have recently been shown to exhibit HSP mediated by nicotinic acetylcholine receptors (nAChRs). In Drosophila central neurons, pharmacological blockade of activity induces a homeostatic response mediated by the Drosophila α7 (Dα7) nAChR, which is tuned by a subsequent increase in expression of the voltage-dependent Kv4/Shal channel. Here, we show that an in vivo reduction of cholinergic signaling induces HSP mediated by Dα7 nAChRs, and this upregulation of Dα7 itself is sufficient to trigger transcriptional activation, mediated by nuclear factor of activated T cells (NFAT), of the Kv4/Shal gene, revealing a receptor-ion channel system coupled for homeostatic tuning in cholinergic neurons. Eadaim et al. show that in vivo reduction of cholinergic signaling in Drosophila neurons induces synaptic homeostasis mediated by Dα7 nAChRs. This upregulation of Dα7 induces Kv4/Shal gene expression mediated by nuclear factor of activated T cells (NFAT), revealing a receptor-ion channel system coupled for homeostatic tuning in cholinergic neurons.
Collapse
Affiliation(s)
- Abdunaser Eadaim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth D Justice
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
4
|
Gil SM, Metherate R. Enhanced Sensory-Cognitive Processing by Activation of Nicotinic Acetylcholine Receptors. Nicotine Tob Res 2019; 21:377-382. [PMID: 30137439 DOI: 10.1093/ntr/nty134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) enhances sensory-cognitive function in human subjects and animal models, yet the neural mechanisms are not fully understood. This review summarizes recent studies on nicotinic regulation of neural processing in the cerebral cortex that point to potential mechanisms underlying enhanced cognitive function. Studies from our laboratory focus on nicotinic regulation of auditory cortex and implications for auditory-cognitive processing, but relevant emerging insights from multiple brain regions are discussed. Although the major contributions of the predominant nAChRs containing α7 (homomeric receptors) or α4 and β2 (heteromeric) subunits are well recognized, recent results point to additional, potentially critical contributions from α2 subunits that are relatively sparse in cortex. Ongoing studies aim to elucidate the specific contributions to cognitive and cortical function of diverse nAChRs. IMPLICATIONS This review highlights the therapeutic potential of activating nAChRs in the cerebral cortex to enhance cognitive function. Future work also must determine the contributions of relatively rare but important nAChR subtypes, potentially to develop more selective treatments for cognitive deficits.
Collapse
Affiliation(s)
- Susan M Gil
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA
| | - Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA
| |
Collapse
|
5
|
Chen YH, Kuo TT, Yi-Kung Huang E, Chou YC, Chiang YH, Hoffer BJ, Miller J. Effect of traumatic brain injury on nicotine-induced modulation of dopamine release in the striatum and nucleus accumbens shell. Oncotarget 2018. [PMID: 29515787 PMCID: PMC5839368 DOI: 10.18632/oncotarget.24245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Traumatic brain injury is associated with substantial alterations in reward processing, but underlying mechanisms are controversial. Objective A better understanding of alterations in dopamine (DA) release patterns from the dorsal striatum and nucleus accumbens shell (NAc) may provide insights into posttraumatic reward pathology. Materials and Methods The patterns of DA release with or without exposure to nicotine in brain slices with striatum and NAc, isolated from Sprague-Dawley rats with 6 psi fluid percussion (FPI) or sham injury were analysis by using fast-scan cyclic voltammetry. Tonic and phasic DA releases were assessed using single pulse and 10 pulses at 25 Hz, respectively. DA release relative to stimulation intensity, frequency, number of pulses, and paired-pulse facilitation was evaluated to determine release probability and response to bursting. Results There was a profound suppression in tonic DA release after nicotine desensitization after FPI, and the input/output curve for the DA release based on stimulation intensity was shifted to the right. FPI was associated with a significant decrease in frequency-dependent DA release augmentation, DA release induced by high frequency stimulation trains, and DA release in response to paired-pulse facilitation. The effect of nicotine desensitization was similar in FPI and sham-injured animals, although significantly smaller after FPI. Nicotine desensitization–induced differences between phasic and tonic release concentrations that contrasted with the reward-related signals then became less prominent in NAc after FPI. Conclusions TBI blunts DA release from mesolimbic reward centers, and more intense stimuli are required to produce context-dependent DA release sufficient to have a physiological effect. Implications The nicotine desensitization-related suppression in tonic DA release was profound with right-ward shift of the input/output curve for DA release after FPI. FPI was associated with a significant decrease in frequency-dependent DA release augmentation, DA release induced by high frequency stimulation trains, and DA release in response to paired-pulse facilitation. Nicotine desensitization–induced differences between phasic and tonic release concentrations that contrasted with the reward-related signals then became less prominent in NAc after FPI. TBI thus blunts DA release from mesolimbic reward centers, and more intense stimuli are required to produce context-dependent DA release sufficient to have a physiological effect.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Tung-Tai Kuo
- Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yung-Hsiao Chiang
- Graduate Program on Neuroregeneration, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Barry J Hoffer
- Graduate Program on Neuroregeneration, Taipei Medical University, Taipei, Taiwan, R.O.C.,Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jonathon Miller
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Abreu-Villaça Y, Manhães AC, Krahe TE, Filgueiras CC, Ribeiro-Carvalho A. Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochem Pharmacol 2017; 144:1-17. [DOI: 10.1016/j.bcp.2017.06.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
|
7
|
Dupont P, Benyamina A, Aubin HJ. Sécurité d’emploi de la nicotine au long cours : le débat n’est pas clos. Rev Mal Respir 2016; 33:892-898. [DOI: 10.1016/j.rmr.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/07/2015] [Indexed: 02/02/2023]
|
8
|
Abreu-Villaça Y, Correa-Santos M, Dutra-Tavares AC, Paes-Branco D, Nunes-Freitas A, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. A ten fold reduction of nicotine yield in tobacco smoke does not spare the central cholinergic system in adolescent mice. Int J Dev Neurosci 2016; 52:93-103. [PMID: 27287270 DOI: 10.1016/j.ijdevneu.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022] Open
Abstract
The tobacco industry has gradually decreased nicotine content in cigarette smoke but the impact of this reduction on health is still controversial. Since the central cholinergic system is the primary site of action of nicotine, here, we investigated the effects of exposure of adolescent mice to tobacco smoke containing either high or low levels of nicotine on the central cholinergic system and the effects associated with cessation of exposure. From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74mg nicotine/cigarette) or 4A1 (LowNic group: 0.14mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. Cholinergic biomarkers were assessed in the cerebral cortex and midbrain by the end of exposure (PN45), at short- (PN50) and long-term (PN75) deprivation. In the cortex, nicotinic cholinergic receptor upregulation was observed with either type of cigarette. In the midbrain, upregulation was detected only in HighNic mice and remained significant in females at short-term deprivation. The high-affinity choline transporter was reduced in the cortex: of HighNic mice by the end of exposure; of both HighNic and LowNic females at short-term deprivation; of LowNic mice at long-term deprivation. These decrements were separable from effects on choline acetyltransferase and acetylcholinesterase activities, suggesting cholinergic synaptic impairment. Here, we demonstrated central cholinergic alterations in an animal model of tobacco smoke exposure during adolescence. This system was sensitive even to tobacco smoke with very low nicotine content.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | - Monique Correa-Santos
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Ana C Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Andre Nunes-Freitas
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470-Patronato, São Gonçalo, RJ 24435-005, Brazil
| |
Collapse
|
9
|
Examination of the effects of varenicline, bupropion, lorcaserin, or naltrexone on responding for conditioned reinforcement in nicotine-exposed rats. Behav Pharmacol 2015; 25:775-83. [PMID: 25230208 DOI: 10.1097/fbp.0000000000000092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Smoking tobacco remains one of the leading causes of preventable deaths in North America. Nicotine reinforces smoking behavior, in part, by enhancing the reinforcing properties of reward-related stimuli, or conditioned stimuli (CSs), associated with tobacco intake. To investigate how pharmaceutical interventions may affect this property of nicotine, we examined the effect of four US Food and Drug Administration (FDA) approved drugs on the ability of nicotine to enhance operant responding for a CS as a conditioned reinforcer. Thirsty rats were exposed to 13 Pavlovian sessions where a CS was paired with water delivery. Nicotine (0.4 mg/kg) injections were administered before each Pavlovian session. Then, in separate groups of rats, the effects of varenicline (1 mg/kg), bupropion (10 and 30 mg/kg), lorcaserin (0.6 mg/kg), and naltrexone (2 mg/kg), and their interaction with nicotine on responding for conditioned reinforcement were examined. Varenicline and lorcaserin each reduced nicotine-enhanced responding for conditioned reinforcement, whereas naltrexone had a modest effect of reducing response enhancements by nicotine. In contrast, bupropion enhanced the effect of nicotine on this measure. The results of these studies may inform how pharmaceutical interventions can affect smoking cessation attempts and relapse through diverse mechanisms, either substituting for, or interacting with, the reinforcement-enhancing properties of nicotine.
Collapse
|
10
|
Hussmann GP, DeDominicis KE, Turner JR, Yasuda RP, Klehm J, Forcelli PA, Xiao Y, Richardson JR, Sahibzada N, Wolfe BB, Lindstrom J, Blendy JA, Kellar KJ. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain. J Neurochem 2014; 129:721-31. [PMID: 24422997 PMCID: PMC3999245 DOI: 10.1111/jnc.12653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
Abstract
Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking.
Collapse
Affiliation(s)
- G. Patrick Hussmann
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Kristen E. DeDominicis
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jill R. Turner
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert P. Yasuda
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jacquelyn Klehm
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Janell R. Richardson
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Barry B. Wolfe
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julie A. Blendy
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth J. Kellar
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
11
|
Physiological effects of cigarette smoking in the limbic system revealed by 3 tesla magnetic resonance spectroscopy. J Neural Transm (Vienna) 2014; 121:1211-9. [PMID: 24643301 DOI: 10.1007/s00702-014-1190-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/02/2014] [Indexed: 01/07/2023]
Abstract
Several studies and recent models of effects of nicotine, the main addictive and psychoactive component in tobacco, point to action of the drug on the limbic system during maintenance of addiction, either direct or indirect via projections from the ventral tegmental area. The objective of this study was to demonstrate physiological effects of cigarette smoking on the hippocampus and the grey matter of the dorsal anterior cingulate cortex in the human brain with regard to addiction and withdrawal. This aim was achieved by group comparisons of results of magnetic resonance spectroscopy between non-smokers, smokers and smokers during withdrawal. 12 smokers and 12 non-smokers were measured with single voxel proton magnetic resonance spectroscopy for total N-acetyl aspartate, glutamate and glutamine, choline-containing compounds, myo-inositol and total creatine in the right and the left hippocampus and in the right and the left dorsal anterior cingulate cortex. Smokers were examined twice, first during regular cigarette smoking and second on the third day of nicotine withdrawal. The ratios to total creatine were used for better reliability. In our study, Glx/tCr was significantly increased and tCho/tCr was significantly decreased in the left cingulate cortex in smokers compared to non-smokers (p = 0.01, both). Six out of seven smokers showed normalization of the Glx/tCr in the left cingulate cortex during withdrawal. Although these results are preliminary due to the small sample size, our results confirm the assumption that cigarette smoking interferes directly or indirectly with the glutamate circuit in the dorsal anterior cingulate cortex.
Collapse
|
12
|
Guy EG, Fletcher PJ. Nicotine-induced enhancement of responding for conditioned reinforcement in rats: role of prior nicotine exposure and α4β2 nicotinic receptors. Psychopharmacology (Berl) 2013; 225:429-40. [PMID: 22885874 DOI: 10.1007/s00213-012-2832-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/26/2012] [Indexed: 11/24/2022]
Abstract
RATIONALE Stimuli associated with nicotine can become motivationally significant and may play a role in tobacco dependence. Previous work indicates that nicotine enhances responding for a conditioned reinforcer (CR). OBJECTIVES These studies examined the effects of prior exposure to nicotine on responding for a CR, persistence of this response, and the role of α4β2 or α7 nicotinic receptor subtypes. METHODS Water deprived rats were given 13 Pavlovian conditioning sessions where a light/tone conditioned stimulus (CS) was paired with the delivery of water. Then, rats were presented with two levers: one delivered the CS (now a CR), the other was inactive. Experiments examined the effect of nicotine administered prior to Pavlovian conditioning sessions on approach behavior during CS presentations, operant responding for CR in the presence and absence of nicotine, and the persistence of responding for CR. The effects of nicotinic acetylcholine receptor (nAChR) antagonism with mecamylamine and α4β2 or α7 nAChR antagonism with dihydro-beta-erythroidine (DHβE) or methyllycaconitine (MLA) on nicotine-enhanced responding for CR were examined. RESULTS Nicotine enhanced approach behavior during CS presentations and potentiated operant responding for CR, an effect sensitized as a result of nicotine exposure during conditioning. Responding for CR and its potentiation by nicotine was stable over multiple tests. Enhanced responding for the CR induced by nicotine was blocked by mecamylamine and DHβE, but not MLA. CONCLUSIONS Nicotine enhances Pavlovian discriminated approach and shows sensitized nicotine-induced enhancements in responding for CR, an effect depending on α4β2 nAChRs.
Collapse
|
13
|
Shameem M, Patel AB. Glutamatergic and GABAergic metabolism in mouse brain under chronic nicotine exposure: implications for addiction. PLoS One 2012; 7:e41824. [PMID: 22848621 PMCID: PMC3405019 DOI: 10.1371/journal.pone.0041824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose The effects of nicotine on cerebral metabolism and its influence on smoking behavior is poorly understood. An understanding of the chronic effects of nicotine on excitatory and inhibitory metabolic demand, and corresponding neurotransmission may provide clues for designing strategies for the optimal smoking cessation intervention. The objective of the current study was to investigate neuronal and astroglial metabolism in mice exposed to nicotine (0.5 and 2.0 mg/kg, sc) three times in a day for 4 weeks. Experimental Approach/Principal Findings Metabolic measurements were carried out by co-infusing [U-13C6]glucose and [2-13C]acetate, and monitoring 13C labeling of amino acids in brain tissue extract using 1H-[13C] and 13C-[1H]-NMR spectroscopy. Concentration of 13C-labeled glutamate-C4 was increased significantly from glucose and acetate with chronic nicotine treatment indicating an increase in glucose oxidation by glutamatergic neurons in all brain regions and glutamate-glutamine neurotransmitter cycle in cortical and subcortical regions. However, chronic nicotine treatment led to increased labeling of GABA-C2 from glucose only in the cortical region. Further, increased labeling of glutamine-C4 from [2-13C]acetate is suggestive of increased astroglial activity in subcortical and cerebellum regions of brain with chronic nicotine treatment. Conclusions and Significance Chronic nicotine exposure enhanced excitatory activity in the majority of brain regions while inhibitory and astroglial functions were enhanced only in selected brain regions.
Collapse
Affiliation(s)
- Mohammad Shameem
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Anant Bahadur Patel
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
- * E-mail:
| |
Collapse
|
14
|
Neuronal networks of nicotine addiction. Int J Biochem Cell Biol 2010; 42:1931-5. [PMID: 20833261 DOI: 10.1016/j.biocel.2010.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022]
Abstract
Nicotine is the main psychoactive substance present in tobacco, targeting neuronal nicotinic acetylcholine receptors. The main effects of nicotine associated with smoking are nicotinic receptor activation, desensitization, and upregulation, with the subsequent modulation of the mesocorticolimbic dopaminergic system. However, there is a lack of a comprehensive explanation of their roles that effectively makes clear how nicotine dependence might be established on those grounds. Receptor upregulation is an unusual effect for a drug of abuse, because theoretically this implies less need for drug consumption. Receptor upregulation and receptor desensitization are commonly viewed as opposite, homeostatic mechanisms. We here review the available information on smoking addiction, especially under a recently presented model of nicotine dependence. In this model both receptor upregulation and receptor desensitization are responsible for establishing a biochemical mechanism of nicotine dependence, which have an important role in starting and maintaining tobacco addiction.
Collapse
|