1
|
Ortiz C, Tahiri H, Yang C, Gilbert C, Fortin C, Hardy P. The microRNA Let-7f Induces Senescence and Exacerbates Oxidative Stress in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:646. [PMID: 38929085 PMCID: PMC11200580 DOI: 10.3390/antiox13060646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to investigate the role of microRNA let-7f in the dysfunction and degeneration of retinal pigment epithelium (RPE) cells through the induction of senescence and oxidative stress. Furthermore, we explore whether let-7f inhibition can protect these cells against sodium iodate (SI)-induced oxidative stress. Oxidative stress and let-7f expression are reciprocally regulated in retinal pigment epithelial cells. Overexpression of let-7f in ARPE-19 cells induced oxidative stress as demonstrated by increased reactive oxygen species (ROS) production as well as senescence. Inhibition of let-7f successfully protected RPE cells from the detrimental effects induced by SI. In addition, let-7f overexpression induced RPE cellular dysfunction by diminishing their migratory capabilities and reducing the phagocytosis of porcine photoreceptor outer segments (POS). Results were further confirmed in vivo by intravitreal injections of SI and let-7f antagomir in C57BL/6 mice. Our results provide strong evidence that let-7f is implicated in the dysfunction of RPE cells through the induction of senescence and oxidative injury. These findings may help to uncover novel and relevant processes in the pathogenesis of dry AMD.
Collapse
Affiliation(s)
- Christina Ortiz
- Departments of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Houda Tahiri
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Claudia Gilbert
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Carl Fortin
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Pierre Hardy
- Departments of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Li C, Zhou L, Sun H, Yang MM. Age-Related Macular Degeneration: A Disease of Cellular Senescence and Dysregulated Immune Homeostasis. Clin Interv Aging 2024; 19:939-951. [PMID: 38807637 PMCID: PMC11130992 DOI: 10.2147/cia.s463297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative ocular disease primarily affecting central vision in the elderly. Its pathogenesis is complex, involving cellular senescence and immune homeostasis dysregulation. This review investigates the interaction between these two critical biological processes in AMD pathogenesis and their impact on disease progression. Initially, cellular senescence is analyzed, with particular emphasis on retinal damage induced by senescent retinal pigment epithelial cells. Subsequently, the occurrence of immune homeostasis dysregulation within the retina and its mechanistic role in AMD areis explored. Furthermore, the paper also discusses in detail the interplay between cellular senescence and immune responses, forming a vicious cycle that exacerbates retinal damage and may influence treatment outcomes. In summary, a deeper understanding of the interrelation between cellular senescence and immune dysregulation is vital for the developing innovative therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Cunzi Li
- The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, 518020, People’s Republic of China
| | - Lan Zhou
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Hongyan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
| | - Ming Ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
| |
Collapse
|
3
|
Song Y, Liao Y, Liu T, Chen Y, Wang F, Zhou Z, Zhang W, Li J. Microglial repopulation restricts ocular inflammation and choroidal neovascularization in mice. Front Immunol 2024; 15:1366841. [PMID: 38711521 PMCID: PMC11070532 DOI: 10.3389/fimmu.2024.1366841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-β-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yuefeng Liao
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tong Liu
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yanxian Chen
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Experimental Ophthalmology, School of Optometry, The Hong Kong Polytechnic University, HongKong, Hong Kong SAR, China
| | - Fei Wang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zixia Zhou
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weili Zhang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zhou M, Zhao Y, Weber SR, Gates C, Carruthers NJ, Chen H, Liu X, Wang H, Ford M, Swulius MT, Barber AJ, Grillo SL, Sundstrom JM. Extracellular vesicles from retinal pigment epithelial cells expressing R345W-Fibulin-3 induce epithelial-mesenchymal transition in recipient cells. J Extracell Vesicles 2023; 12:e12373. [PMID: 37855063 PMCID: PMC10585439 DOI: 10.1002/jev2.12373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
We have shown previously that expression of R345W-Fibulin-3 induces epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells. The purpose of the current study was to determine if extracellular vesicles (EVs) derived from RPE cells expressing R345W-Fibulin-3 mutation are sufficient to induce EMT in recipient cells. ARPE-19 cells were infected with luciferase-tagged wild-type (WT)- Fibulin-3 or luciferase-tagged R345W-Fibulin-3 (R345W) using lentiviruses. EVs were isolated from the media by ultracentrifugation or density gradient ultracentrifugation. Transmission electron microscopy and cryogenic electron microscopy were performed to study the morphology of the EVs. The size distribution of EVs were determined by nanoparticle tracking analysis (NTA). EV cargo was analysed using LC-MS/MS based proteomics. EV-associated transforming growth factor beta 1 (TGFβ1) protein was measured by enzyme-linked immunosorbent assay. The capacity of EVs to stimulate RPE migration was evaluated by treating recipient cells with WT- or R345W-EVs. The role of EV-bound TGFβ was determined by pre-incubation of EVs with a pan-TGFβ blocking antibody or IgG control. EM imaging revealed spherical vesicles with two subpopulations of EVs: a group with diameters around 30 nm and a group with diameters over 100 nm, confirmed by NTA analysis. Pathway analysis revealed that members of the sonic hedgehog pathway were less abundant in R345W- EVs, while EMT drivers were enriched. Additionally, R345W-EVs had higher concentrations of TGFβ1 compared to control. Critically, treatment with R345W-EVs was sufficient to increase EMT marker expression, as well as cell migration in recipient cells. This EV-increased cell migration was significantly inhibited by pre-incubation of EVs with pan-TGFβ-neutralising antibody. In conclusion, the expression of R345W-Fibulin-3 alters the size and cargo of EVs, which are sufficient to enhance the rate of cell migration in a TGFβ dependent manner. These results suggest that EV-bound TGFβ plays a critical role in the induction of EMT in RPE cells.
Collapse
Affiliation(s)
- Mi Zhou
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Yuanjun Zhao
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Sarah R. Weber
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core FacilitiesUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Nicholas J. Carruthers
- Bioinformatics Core, Biomedical Research Core FacilitiesUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Han Chen
- Microscopy Imaging Core FacilityPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Xiaoming Liu
- Department of Pediatrics, Division of Hematology and OncologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Hong‐Gang Wang
- Department of Pediatrics, Division of Hematology and OncologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | | | - Matthew T. Swulius
- Department of Biochemistry and Molecular BiologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Alistair J. Barber
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Stephanie L. Grillo
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Jeffrey M. Sundstrom
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
5
|
Cui K, Tang X, Hu A, Fan M, Wu P, Lu X, Lin J, Yang F, Zhao X, Huang J, Yu S, Xu Y, Liang X. Therapeutic Benefit of Melatonin in Choroidal Neovascularization During Aging Through the Regulation of Senescent Macrophage/Microglia Polarization. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37578424 PMCID: PMC10431207 DOI: 10.1167/iovs.64.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose This study aimed to investigate the age-dependent anti-angiogenic capability of melatonin in choroidal neovascularization (CNV) and to explore the underlying molecular mechanisms. Methods In the present study, a laser-induced CNV model was established in both young (three months of age) and old (18 months of age) mice, and the size of CNV lesions and vascular leakage was detected by morphological and imaging examination. Next, Western blot and immunostaining were used to observe the levels of M2 markers, senescence-related markers, and molecules involved in IL-10/STAT3 pathway. Additionally, colivelin was used to study the effect of IL-10/STAT3 pathway activation on the expression of M2 markers and senescence-related markers by Western blot and immunostaining. Finally, the effects of colivelin on melatonin-induced reduction of CNV size and vascular leakage in mice at different ages were assessed using morphological and imaging examination. Results Our results revealed that aging promoted M2 macrophage/microglia polarization, and aggravated CNV and vascular leakage. Melatonin significantly inhibited the M2 polarization of senescent macrophage/microglia and reduced the CNV area and vascular leakage. Moreover, melatonin markedly suppressed IL-10/STAT3 pathway activation in the macrophage/microglia of old mice, and STAT3 activator colivelin reversed the suppressive effect of melatonin on M2 polarization of senescent macrophage/microglia and laser-induced CNV in old mice. Conclusions Our data demonstrated that melatonin significantly prevented the M2 polarization of senescent macrophage/microglia by inhibiting the IL-10/STAT3 pathway, and eventually attenuated senescence-associated CNV. These findings suggested that melatonin could serve as a promising therapeutic agent to treat CNV and other age-related ocular diseases.
Collapse
Affiliation(s)
- Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
6
|
Ryu W, Park CW, Kim J, Lee H, Chung H. The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells. Mol Cells 2023; 46:420-429. [PMID: 37222160 PMCID: PMC10336274 DOI: 10.14348/molcells.2023.2188] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/12/2023] [Indexed: 05/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.
Collapse
Affiliation(s)
- Wonseon Ryu
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Chul-Woo Park
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Junghoon Kim
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Hyungwoo Lee
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Korea
- Department of Ophthalmology, Konkuk University Medical Center, Seoul 05030, Korea
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Korea
- Department of Ophthalmology, Konkuk University Medical Center, Seoul 05030, Korea
| |
Collapse
|
7
|
Xu W, Liu X, Han W, Wu K, Zhao M, Mei T, Shang B, Wu J, Luo J, Lai Y, Yang B, Zhuo Y, Lu L, Liu Y, Tian XL, Zhao L. Inhibiting HIF-1 signaling alleviates HTRA1-induced RPE senescence in retinal degeneration. Cell Commun Signal 2023; 21:134. [PMID: 37316948 DOI: 10.1186/s12964-023-01138-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), characterized by the degeneration of retinal pigment epithelium (RPE) and photoreceptors, is the leading cause of irreversible vision impairment among the elderly. RPE senescence is an important contributor to AMD and has become a potential target for AMD therapy. HTRA1 is one of the most significant susceptibility genes in AMD, however, the correlation between HTRA1 and RPE senescence hasn't been investigated in the pathogenesis of AMD. METHODS Western blotting and immunohistochemistry were used to detect HTRA1 expression in WT and transgenic mice overexpressing human HTRA1 (hHTRA1-Tg mice). RT-qPCR was used to detect the SASP in hHTRA1-Tg mice and ARPE-19 cells infected with HTRA1. TEM, SA-β-gal was used to detect the mitochondria and senescence in RPE. Retinal degeneration of mice was investigated by fundus photography, FFA, SD-OCT and ERG. The RNA-Seq dataset of ARPE-19 cells treated with adv-HTRA1 versus adv-NC were analyzed. Mitochondrial respiration and glycolytic capacity in ARPE-19 cells were measured using OCR and ECAR. Hypoxia of ARPE-19 cells was detected using EF5 Hypoxia Detection Kit. KC7F2 was used to reduce the HIF1α expression both in vitro and in vivo. RESULTS In our study, we found that RPE senescence was facilitated in hHTRA1-Tg mice. And hHTRA1-Tg mice became more susceptible to NaIO3 in the development of oxidative stress-induced retinal degeneration. Similarly, overexpression of HTRA1 in ARPE-19 cells accelerated cellular senescence. Our RNA-seq revealed an overlap between HTRA1-induced differentially expressed genes associated with aging and those involved in mitochondrial function and hypoxia response in ARPE-19 cells. HTRA1 overexpression in ARPE-19 cells impaired mitochondrial function and augmented glycolytic capacity. Importantly, upregulation of HTRA1 remarkably activated HIF-1 signaling, shown as promoting HIF1α expression which mainly located in the nucleus. HIF1α translation inhibitor KC7F2 significantly prevented HTRA1-induced cellular senescence in ARPE-19 cells, as well as improved the visual function in hHTRA1-Tg mice treated with NaIO3. CONCLUSIONS Our study showed elevated HTRA1 contributes to the pathogenesis of AMD by promoting cellular senescence in RPE through damaging mitochondrial function and activating HIF-1 signaling. It also pointed out that inhibition of HIF-1 signaling might serve as a potential therapeutic strategy for AMD. Video Abstract.
Collapse
Affiliation(s)
- Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenjuan Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Lenin RR, Koh YH, Zhang Z, Yeo YZ, Parikh BH, Seah I, Wong W, Su X. Dysfunctional Autophagy, Proteostasis, and Mitochondria as a Prelude to Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24108763. [PMID: 37240109 DOI: 10.3390/ijms24108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Retinal pigment epithelial (RPE) cell dysfunction is a key driving force of AMD. RPE cells form a metabolic interface between photoreceptors and choriocapillaris, performing essential functions for retinal homeostasis. Through their multiple functions, RPE cells are constantly exposed to oxidative stress, which leads to the accumulation of damaged proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. As miniature chemical engines of the cell, self-replicating mitochondria are heavily implicated in the aging process through a variety of mechanisms. In the eye, mitochondrial dysfunction is strongly associated with several diseases, including age-related macular degeneration (AMD), which is a leading cause of irreversible vision loss in millions of people globally. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation, and increased numbers of mitochondrial DNA mutations. Mitochondrial bioenergetics and autophagy decline during aging because of insufficient free radical scavenger systems, the impairment of DNA repair mechanisms, and reductions in mitochondrial turnover. Recent research has uncovered a much more complex role of mitochondrial function and cytosolic protein translation and proteostasis in AMD pathogenesis. The coupling of autophagy and mitochondrial apoptosis modulates the proteostasis and aging processes. This review aims to summarise and provide a perspective on (i) the current evidence of autophagy, proteostasis, and mitochondrial dysfunction in dry AMD; (ii) current in vitro and in vivo disease models relevant to assessing mitochondrial dysfunction in AMD, and their utility in drug screening; and (iii) ongoing clinical trials targeting mitochondrial dysfunction for AMD therapeutics.
Collapse
Affiliation(s)
- Raji Rajesh Lenin
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Department of Medical Research, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Yi Hui Koh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Zheting Zhang
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 11 Mandalay Road, Experimental Medicine Building, Singapore 308232, Singapore
| | - Yan Zhuang Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ivan Seah
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital (NUH), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Ophthalmology, National University Hospital (NUH), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| |
Collapse
|
9
|
Ma X, Chen H, Jian S, He J, Liu Y, Han S, Chang L, Li P, Chen YA, Liu X, Hu X, Chen Y, Hou L. DAPL1 deficiency in mice impairs antioxidant defenses in the RPE and leads to retinal degeneration with AMD-like features. Redox Biol 2023; 62:102675. [PMID: 36933392 PMCID: PMC10031543 DOI: 10.1016/j.redox.2023.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
The decreased antioxidant capacity in the retinal pigment epithelium (RPE) is the hallmark of retinal degenerative diseases including age-related macular degeneration (AMD). Nevertheless, the exact regulatory mechanisms underlying the pathogenesis of retinal degenerations remain largely unknown. Here we show in mice that deficiencies in Dapl1, a susceptibility gene for human AMD, impair the antioxidant capacity of the RPE and lead to age-related retinal degeneration in the 18-month-old mice homozygous for a partial deletion of Dapl1. Dapl1-deficiency is associated with a reduction of the RPE's antioxidant capacity, and experimental re-expression of Dapl1 reverses this reduction and protects the retina from oxidative damage. Mechanistically, DAPL1 directly binds the transcription factor E2F4 and inhibits the expression of MYC, leading to upregulation of the transcription factor MITF and its targets NRF2 and PGC1α, both of which regulate the RPE's antioxidant function. When MITF is experimentally overexpressed in the RPE of DAPL1 deficient mice, antioxidation is restored and retinas are protected from degeneration. These findings suggest that the DAPL1-MITF axis functions as a novel regulator of the antioxidant defense system of the RPE and may play a critical role in the pathogenesis of age-related retinal degenerative diseases.
Collapse
Affiliation(s)
- Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China.
| | - Huaicheng Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Shuhui Jian
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junhao He
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Youjia Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Shuxian Han
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Lifu Chang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Pingping Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Ying-Ao Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Xiaoyan Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Xiaojuan Hu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
10
|
Nguyen T, Urrutia-Cabrera D, Wang L, Lees JG, Wang JH, Hung SS, Hewitt AW, Edwards TL, McLenachan S, Chen FK, Lim SY, Luu CD, Guymer R, Wong RC. Knockout of AMD-associated gene POLDIP2 reduces mitochondrial superoxide in human retinal pigment epithelial cells. Aging (Albany NY) 2023; 15:1713-1733. [PMID: 36795578 PMCID: PMC10085620 DOI: 10.18632/aging.204522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Genetic and epidemiologic studies have significantly advanced our understanding of the genetic factors contributing to age-related macular degeneration (AMD). In particular, recent expression quantitative trait loci (eQTL) studies have highlighted POLDIP2 as a significant gene that confers risk of developing AMD. However, the role of POLDIP2 in retinal cells such as retinal pigment epithelium (RPE) and how it contributes to AMD pathology are unknown. Here we report the generation of a stable human RPE cell line ARPE-19 with POLDIP2 knockout using CRISPR/Cas, providing an in vitro model to investigate the functions of POLDIP2. We conducted functional studies on the POLDIP2 knockout cell line and showed that it retained normal levels of cell proliferation, cell viability, phagocytosis and autophagy. Also, we performed RNA sequencing to profile the transcriptome of POLDIP2 knockout cells. Our results highlighted significant changes in genes involved in immune response, complement activation, oxidative damage and vascular development. We showed that loss of POLDIP2 caused a reduction in mitochondrial superoxide levels, which is consistent with the upregulation of the mitochondrial superoxide dismutase SOD2. In conclusion, this study demonstrates a novel link between POLDIP2 and SOD2 in ARPE-19, which supports a potential role of POLDIP2 in regulating oxidative stress in AMD pathology.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Luozixian Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Jarmon G. Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, Victoria, Australia
- Departments of Surgery and Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandy S.C. Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Thomas L. Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Sam McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Fred K. Chen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Shiang Y. Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, Victoria, Australia
- Departments of Surgery and Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chi D. Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Raymond C.B. Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
TRANSPLANTATION OF SUBRETINAL STEM CELL-DERIVED RETINAL PIGMENT EPITHELIUM FOR STARGARDT DISEASE: A Phase I Clinical Trial. Retina 2023; 43:263-274. [PMID: 36223778 DOI: 10.1097/iae.0000000000003655] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE To assess the safety of injecting human embryonic stem cell retinal pigment epithelial cell dose to treat Stargardt disease. METHODS In this prospective, Phase I clinical trial, human embryonic stem cell retinal pigment epithelial cells in suspension were injected into the subretinal space in eyes with the worse best-corrected visual acuity (BCVA). After vitrectomy/posterior hyaloid removal, a partial retinal detachment was created and the human embryonic stem cell retinal pigment epithelial cells were administered. Phacoemulsification with intraocular lens implantation was performed in eyes with lens opacity. All procedures were optical coherence tomography-guided. The 12-month follow-up included retinal imaging, optical coherence tomography, visual field/electrophysiologic testing, and systemic evaluation. The main outcome was the absence of ocular/systemic inflammation or rejection, tumor formation, or toxicity during follow-up. RESULTS The mean baseline BCVAs in the phacoemulsification and no phacoemulsification groups were similar (1.950 ± 0.446 and 1.575 ± 0.303, respectively). One year postoperatively, treated eyes showed a nonsignificant increase in BCVA. No adverse effects occurred during follow-up. Intraoperative optical coherence tomography was important for guiding all procedures. CONCLUSION This surgical procedure was feasible and safe without cellular migration, rejection, inflammation, or development of ocular or systemic tumors during follow-up.
Collapse
|
12
|
Muniyandi A, Martin M, Sishtla K, Motolani A, Sun M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic target in choroidal neovascularization. Sci Rep 2023; 13:1747. [PMID: 36720900 PMCID: PMC9889383 DOI: 10.1038/s41598-023-28215-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Ocular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients' non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nathan R Jensen
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lakshmi Prabhu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Dhirachaikulpanich D, Lagger C, Chatsirisupachai K, de Magalhães JP, Paraoan L. Intercellular communication analysis of the human retinal pigment epithelial and choroidal cells predicts pathways associated with aging, cellular senescence and age-related macular degeneration. Front Aging Neurosci 2022; 14:1016293. [PMID: 36408112 PMCID: PMC9669800 DOI: 10.3389/fnagi.2022.1016293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) and the choroid are ocular tissues with fundamental roles in supporting neuroretinal function. The pathogenesis of age-related macular degeneration (AMD), a leading cause of irreversible blindness for which aging is the highest risk factor is closely linked with progressive impairment of various functions of these tissues. Cellular senescence, marked by cell cycle arrest and secretion of proinflammatory factors, is known to be associated with aging and has been proposed as a potential driver of AMD. Here, we investigated the role played by intercellular communication in the RPE/choroid within the context of aging, senescence and AMD. We inferred cell–cell interactions in the RPE/choroid by applying CellChat and scDiffCom on a publicly available scRNA-seq dataset from three human donors with and without AMD. We identified age-regulated ligand and receptor genes by using limma on a separate publicly available bulk microarray dataset providing RPE/choroid samples at multiple time points. Cellular senescence was investigated by assigning a score to each cell and each sample of these scRNA-seq and microarray datasets, respectively, based on the expression of key signature genes determined by a previous senescence meta-analysis. We identified VEGF-, BMP-and tenascin-mediated pathways supporting some of the strongest cell–cell interactions between RPE cells, fibroblasts and choroidal endothelial cells and as strong intercellular communication pathways related to both aging and senescence. Their signaling strength was enhanced between subpopulations of cells having high senescence scores. Predominant ligands of these pathways were upregulated with age whereas predominant receptors were downregulated. Globally, we also observed that cells from AMD samples presented slightly bigger senescence scores than normal cells and that the senescence score positively correlated with age in bulk samples (R = 0.26, value of p < 0.01). Hence, our analysis provides novel information on RPE/choroid intercellular communication that gives insights into the connection between aging, senescence and AMD.
Collapse
Affiliation(s)
- Dhanach Dhirachaikulpanich
- Ocular Molecular Biology and Mechanisms of Disease Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Cyril Lagger
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: João Pedro de Magalhães,
| | - Luminita Paraoan
- Ocular Molecular Biology and Mechanisms of Disease Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Luminita Paraoan,
| |
Collapse
|
14
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
15
|
Accelerated aging phenotypes in the retinal pigment epithelium of Zmpste24-deficient mice. Biochem Biophys Res Commun 2022; 632:62-68. [DOI: 10.1016/j.bbrc.2022.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
|
16
|
Gao F, Wang L, Wu B, Ou Q, Tian H, Xu J, Jin C, Zhang J, Wang J, Lu L, Xu GT. Elimination of senescent cells inhibits epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res 2022; 223:109207. [PMID: 35926646 DOI: 10.1016/j.exer.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-β-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Binxin Wu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
17
|
Single-cell transcriptome of the mouse retinal pigment epithelium in response to a low-dose of doxorubicin. Commun Biol 2022; 5:722. [PMID: 35859009 PMCID: PMC9300683 DOI: 10.1038/s42003-022-03676-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/06/2022] [Indexed: 01/29/2023] Open
Abstract
Cellular senescence of the retinal pigment epithelium (RPE) is thought to play an important role in vision-threatening retinal degenerative diseases, such as age-related macular degeneration (AMD). However, the single-cell RNA profiles of control RPE tissue and RPE tissue exhibiting cellular senescence are not well known. We have analyzed the single-cell transcriptomes of control mice and mice with low-dose doxorubicin (Dox)-induced RPE senescence (Dox-RPE). Our results have identified 4 main subpopulations in the control RPE that exhibit heterogeneous biological activities and play roles in ATP synthesis, cell mobility/differentiation, mRNA processing, and catalytic activity. In Dox-RPE mice, cellular senescence mainly occurs in the specific cluster, which has been characterized by catalytic activity in the control RPE. Furthermore, in the Dox-RPE mice, 6 genes that have not previously been associated with senescence also show altered expression in 4 clusters. Our results might serve as a useful reference for the study of control and senescent RPE. Single cell transcriptomics pinpoints a cell subpopulation that could be involved in inducing cellular senescence of the retinal pigment epithelium, which in turn may construe retinal degenerative disease.
Collapse
|
18
|
Astrike-Davis EM, Coryell P, Loeser RF. Targeting cellular senescence as a novel treatment for osteoarthritis. Curr Opin Pharmacol 2022; 64:102213. [PMID: 35447516 DOI: 10.1016/j.coph.2022.102213] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Cellular senescence is associated with normal development and wound healing, but has also been implicated in the pathogenesis of numerous aging-related diseases including osteoarthritis (OA). Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of the senescence-associated secretory phenotype (SASP). The field of potential therapies continues to expand as new mechanistic targets of cell senescence and the SASP are identified. Ongoing pre-clinical and clinical studies of drugs targeting cellular senescence yield significant promise, but have yet to demonstrate long-term efficacy. Therapeutic targeting of senescence is challenged by the diverse phenotypes of senescent cells, which can vary depending on age, species, tissue source, and type of physiologic stressor. Accordingly, there remains considerable demand for more studies to further develop and assess senotherapeutics as disease-modifying treatments for OA.
Collapse
Affiliation(s)
- Emma M Astrike-Davis
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Philip Coryell
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Sreekumar PG, Reddy ST, Hinton DR, Kannan R. Mechanisms of RPE senescence and potential role of αB crystallin peptide as a senolytic agent in experimental AMD. Exp Eye Res 2022; 215:108918. [PMID: 34986369 PMCID: PMC8923947 DOI: 10.1016/j.exer.2021.108918] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 02/03/2023]
Abstract
Oxidative stress in the retinal pigment epithelium (RPE) can cause mitochondrial dysfunction and is likely a causative factor in the pathogenesis of age-related macular degeneration (AMD). Under oxidative stress conditions, some of the RPE cells become senescent and a contributory role for RPE senescence in AMD pathology has been proposed. The purpose of this study is to 1) characterize senescence in human RPE; 2) investigate the effect of an αB Crystallin chaperone peptide (mini Cry) in controlling senescence, in particular by regulating mitochondrial function and senescence-associated secretory phenotype (SASP) production and 3) develop mouse models for studying the role of RPE senescence in dry and nAMD. Senescence was induced in human RPE cells in two ways. First, subconfluent cells were treated with 0.2 μg/ml doxorubicin (DOX); second, subconfluent cells were treated with 500 μM H2O2. Senescence biomarkers (senescence-associated beta-galactosidase (SA-βgal), p21, p16) and mitochondrial proteins (Fis1, DRP1, MFN2, PGC1-α, mtTFA) were analyzed in control and experimental groups. The effect of mini Cry on mitochondrial bioenergetics, glycolysis and SASP was determined. In vivo, retinal degeneration was induced by intravenous injection of NaIO3 (20 mg/kg) and subretinal fibrosis by laser-induced choroidal neovascularization. Increased SA-βgal staining and p16 and p21 expression was observed after DOX- or H2O2-induced senescence and mini Cry significantly decreased senescence-positive cells. The expression of mitochondrial biogenesis proteins PGC-1 and mTFA increased with senescence, and mini Cry reduced expression significantly. Senescent RPE cells were metabolically active, as evidenced by significantly enhanced oxidative phosphorylation and anaerobic glycolysis, mini Cry markedly reduced rates of respiration and glycolysis. Senescent RPE cells maintain a proinflammatory phenotype characterized by significantly increased production of cytokines (IFN-ˠ, TNF-α, IL1-α IL1-β, IL-6, IL-8, IL-10), and VEGF-A; mini Cry significantly inhibited their secretion. We identified and localized senescent RPE cells for the first time in NaIO3-induced retinal degeneration and laser-induced subretinal fibrosis mouse models. We conclude that mini Cry significantly impairs stress-induced senescence by modulating mitochondrial biogenesis and fission proteins in RPE cells. Characterization of senescence could provide further understanding of the metabolic changes that accompany the senescent phenotype in ocular disease. Future studies in vivo may better define the role of senescence in AMD and the therapeutic potential of mini Cry as a senotherapeutic.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA.
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - David R Hinton
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Chae JB, Jang H, Son C, Park CW, Choi H, Jin S, Lee HY, Lee H, Ryu JH, Kim N, Kim C, Chung H. Targeting senescent retinal pigment epithelial cells facilitates retinal regeneration in mouse models of age-related macular degeneration. GeroScience 2021; 43:2809-2833. [PMID: 34601706 DOI: 10.1007/s11357-021-00457-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023] Open
Abstract
Although age-related macular degeneration (AMD) is a multifactorial disorder with angiogenic, immune, and inflammatory components, the most common clinical treatment strategies are antiangiogenic therapies. However, these strategies are only applicable to neovascular AMD, which accounts for less than 20% of all AMD cases, and there are no FDA-approved drugs for the treatment of dry AMD, which accounts for ~ 80% of AMD cases. Here, we report that the elimination of senescent cells is a potential novel therapeutic approach for the treatment of all types of AMD. We identified senescent retinal pigment epithelium (RPE) cells in animal models of AMD and determined their contributions to retinal degeneration. We further confirmed that the clearance of senescent RPE cells with the MDM2-p53 inhibitor Nutlin-3a ameliorated retinal degeneration. These findings provide new insights into the use of senescent cells as a therapeutic target for the treatment of AMD.
Collapse
Affiliation(s)
- Jae-Byoung Chae
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyoik Jang
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Chanok Son
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Chul-Woo Park
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea
| | - Huyeon Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Hyungwoo Lee
- Department of Ophthalmology, Konkuk University Medical Center, Seoul, South Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Chaekyu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, South Korea. .,Department of Ophthalmology, Konkuk University Medical Center, Seoul, South Korea.
| |
Collapse
|
21
|
Chen DD, Peng X, Wang Y, Jiang M, Xue M, Shang G, Liu X, Jia X, Liu B, Lu Y, Mu H, Zhang F, Hu Y. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging (Albany NY) 2021; 13:21547-21570. [PMID: 34495872 PMCID: PMC8457597 DOI: 10.18632/aging.203496] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/14/2021] [Indexed: 01/09/2023]
Abstract
The senescence of retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD), a leading cause of blindness in the world. HSP90 is a predominant chaperone that regulates cellular homeostasis under divergent physio-pathological conditions including senescence. However, the role of HSP90 in senescent RPE cells still remains unclear. Here, we reported that HSP90 acts as a senomorphic target of senescent RPE cells in vitro. Using H2O2-induced senescent ARPE-19 cells and replicative senescent primary RPE cells from rhesus monkey, we found that HSP90 upregulates the expression of IKKα, and HIF1α in senescent ARPE-19 cells and subsequently controls the induction of distinct senescence-associated inflammatory factors. Senescent ARPE-19 cells are more resistant to the cytotoxic HSP90 inhibitor IPI504 (IC50 = 36.78 μM) when compared to normal ARPE-19 cells (IC50 = 6.16 μM). Administration of IPI504 at 0.5–5 μM can significantly inhibit the induction of IL-1β, IL-6, IL-8, MCP-1 and VEGFA in senescent ARPE-19 and the senescence-mediated migration of retinal capillary endothelial cells in vitro. In addition, we found that inhibition of HSP90 by IPI504 reduces SA-β-Gal’s protein expression and enzyme activity in a dose-dependent manner. HSP90 interacts with and regulates SA-β-Gal protein stabilization in senescent ARPE-19 cells. Taken together, these results suggest that HSP90 regulates the SASP and SA-β-Gal activity in senescent RPE cells through associating with distinctive mechanism including NF-κB, HIF1α and lysosomal SA-β-Gal. HSP90 inhibitors (e.g. IPI504) could be a promising senomorphic drug candidate for AMD intervention.
Collapse
Affiliation(s)
- Dan-Dan Chen
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mingjun Jiang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
| | - Xuhui Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Jia
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Baixue Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yingwei Lu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hongmei Mu
- Kaifeng Key laboratory of Cataracts and Myopia, Eye Disease Institute, Kaifeng Central Hospital, Kaifeng, China
| | - Fengyan Zhang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanzhong Hu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The jointed National Laboratory of Antibody Drug Engineering, Department of Cell Biology and Genetics, The College of Basic Medical Science of Henan University, Kaifeng, China.,Kaifeng Key laboratory of Cataracts and Myopia, Eye Disease Institute, Kaifeng Central Hospital, Kaifeng, China
| |
Collapse
|
22
|
Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int J Mol Sci 2021; 22:ijms22137194. [PMID: 34281248 PMCID: PMC8268995 DOI: 10.3390/ijms22137194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD), the main cause of vision loss in the elderly, is associated with oxidation in the retina cells promoting telomere attrition. Activation of telomerase was reported to improve macular functions in AMD patients. The catalytic subunit of human telomerase (hTERT) may directly interact with proteins important for senescence, DNA damage response, and autophagy, which are impaired in AMD. hTERT interaction with mTORC1 (mTOR (mechanistic target of rapamycin) complex 1) and PINK1 (PTEN-induced kinase 1) activates macroautophagy and mitophagy, respectively, and removes cellular debris accumulated over AMD progression. Ectopic expression of telomerase in retinal pigment epithelium (RPE) cells lengthened telomeres, reduced senescence, and extended their lifespan. These effects provide evidence for the potential of telomerase in AMD therapy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be involved in AMD pathogenesis through decreasing oxidative stress and senescence, regulation of vascular endothelial growth factor (VEGF), and improving autophagy. PGC-1α and TERT form an inhibitory positive feedback loop. In conclusion, telomerase activation and its ectopic expression in RPE cells, as well as controlled clinical trials on the effects of telomerase activation in AMD patients, are justified and should be assisted by PGC-1α modulators to increase the therapeutic potential of telomerase in AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (J.B.); (K.K.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: (J.B.); (K.K.)
| |
Collapse
|
23
|
Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY) 2021; 13:10866-10890. [PMID: 33872219 PMCID: PMC8109132 DOI: 10.18632/aging.202974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product β-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robin R. Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- KCL Centre for Cell and Gene Therapy, London, England WC2R 2LS, United Kingdom
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Debra A. Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jason ML. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 2021; 33:818-832.e7. [PMID: 33548171 DOI: 10.1016/j.cmet.2021.01.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Attenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence. Senescent (p16INK4A-expressing) cells accumulate in retinas of patients with diabetic retinopathy and during peak destructive neovascularization in a mouse model of retinopathy. Using either genetic approaches that clear p16INK4A-expressing cells or small molecule inhibitors of the anti-apoptotic protein BCL-xL, we show that senolysis suppresses pathological angiogenesis. Single-cell analysis revealed that subsets of endothelial cells with senescence signatures and expressing Col1a1 are no longer detected in BCL-xL-inhibitor-treated retinas, yielding a retina conducive to physiological vascular repair. These findings provide mechanistic evidence supporting the development of BCL-xL inhibitors as potential treatments for neovascular retinal disease.
Collapse
|
25
|
Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. Int J Mol Sci 2021; 22:ijms22041684. [PMID: 33567500 PMCID: PMC7915526 DOI: 10.3390/ijms22041684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of PGC-1α and NFE2L2 (double knock-out, dKO) genes in aged animals. The implanted area was assessed by histology, immunohistochemistry and transmission electron microscopy. Confocal microscopy revealed altered regions in the filamentous actin ring. This contrasted with hexagonal RPE morphology in wild-type mice. The ultrastructural RPE features here illustrated loss of apical microvilli, alteration of cell-cell contact, loss of basal in-folding with deposits on Bruch’s membrane, and excessive lipofuscin deposition in dKO samples. We also found the expression of epithelial-mesenchymal transition transcription factors, such as Snail, Slug, collagen 1, vimentin and OB-cadherin, to be significantly different in dKO RPEs. An increased immunoreactivity of senescence markers p16, DEC1 and HMGB1 was also noted. These findings suggest that EMT and senescence pathways may intersect in the retinas of dKO mice. Both processes can be activated by damage to the RPE, which may be caused by increased oxidative stress resulting from the absence of NFE2L2 and PGC-1α genes, important for antioxidant defense. This dKO model may provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease.
Collapse
|
26
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Front Cell Dev Biol 2021; 9:623175. [PMID: 33585480 PMCID: PMC7876289 DOI: 10.3389/fcell.2021.623175] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
During vertebrate embryonic development, cellular senescence occurs at multiple locations. To date, it has been accepted that when there has been induction of senescence in an embryonic tissue, β-galactosidase activity is detectable at a pH as high as 6.0, and this has been extensively used as a marker of cellular senescence in vivo in both whole-mount and cryosections. Such senescence-associated β-galactosidase (SA-β-GAL) labeling appears enhanced in degenerating regions of the vertebrate embryo that are also affected by programmed cell death. In this sense, there is a strong SA-β-GAL signal which overlaps with the pattern of cell death in the interdigital tissue of the developing limbs, and indeed, many of the labeled cells detected go on to subsequently undergo apoptosis. However, it has been reported that β-GAL activity at pH 6.0 is also enhanced in healthy neurons, and some retinal neurons are strongly labeled with this histochemical technique when they begin to differentiate during early embryonic development. These labeled early post-mitotic neurons also express other senescence markers such as p21. Therefore, the reliability of this histochemical technique in studying senescence in cells such as neurons that undergo prolonged and irreversible cell-cycle arrest is questionable because it is also expressed in healthy post-mitotic cells. The identification of new biomarkers of cellular senescence would, in combination with established markers, increase the specificity and efficiency of detecting cellular senescence in embryonic and healthy mature tissues.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
27
|
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021; 18:32. [PMID: 33482879 PMCID: PMC7821689 DOI: 10.1186/s12974-021-02088-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shuxiao Lin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David A Copland
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Ophthalmology, University College London, London, EC1V 9EL, UK. .,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 2QH, UK.
| | - Jian Liu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
28
|
Crosstalk between Long-Term Sublethal Oxidative Stress and Detrimental Inflammation as Potential Drivers for Age-Related Retinal Degeneration. Antioxidants (Basel) 2020; 10:antiox10010025. [PMID: 33383836 PMCID: PMC7823845 DOI: 10.3390/antiox10010025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related retinal degenerations, including age-related macular degeneration (AMD), are caused by the loss of retinal pigmented epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD, deeply linked to the aging process, also involves oxidative stress and inflammatory responses. However, the molecular mechanisms contributing to the shift from healthy aging to AMD are still poorly understood. Since RPE cells in the retina are chronically exposed to a pro-oxidant microenvironment throughout life, we simulated in vivo conditions by growing ARPE-19 cells in the presence of 10 μM H2O2 for several passages. This long-term oxidative insult induced senescence in ARPE-19 cells without affecting cell proliferation. Global proteomic analysis revealed a dysregulated expression in proteins involved in antioxidant response, mitochondrial homeostasis, and extracellular matrix organization. The analyses of mitochondrial functionality showed increased mitochondrial biogenesis and ATP generation and improved response to oxidative stress. The latter, however, was linked to nuclear factor-κB (NF-κB) rather than nuclear factor erythroid 2–related factor 2 (Nrf2) activation. NF-κB hyperactivation also resulted in increased pro-inflammatory cytokines expression and inflammasome activation. Moreover, in response to additional pro-inflammatory insults, senescent ARPE-19 cells underwent an exaggerated inflammatory reaction. Our results indicate senescence as an important link between chronic oxidative insult and detrimental chronic inflammation, with possible future repercussions for therapeutic interventions.
Collapse
|
29
|
Xie K, Jin B, Zhu H, Zhou P, Du L, Jin X. Ferulic acid (FA) protects human retinal pigment epithelial cells from H 2 O 2 -induced oxidative injuries. J Cell Mol Med 2020; 24:13454-13462. [PMID: 33079459 PMCID: PMC7701513 DOI: 10.1111/jcmm.15970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of present study is to investigate whether Ferulic acid (FA), a natural polyphenol antioxidant, was able to protect ARPE-19 cells from hydrogen peroxide (H2 O2 )-induced damage, and elucidate the underlying mechanisms. Our results revealed that FA pre-treatment for 24 hours can reverse cell loss of H2 O2 -induced ARPE-19 cells via the promotion of cell proliferation and prevention of apoptosis, as evidenced by 5-ethynyl-2'-deoxyuridine (EdU) incorporation and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) assay, respectively. Moreover, the addition of FA (5 mM) can decrease Bax and cleaved caspase-3 protein expression, but increase Bcl-2 protein expression in ARPE-19 cells. Furthermore, H2 O2 -induced oxidative stress in ARPE-19 cells was significantly alleviated by FA, illustrated by reduced levels of ROS and MDA. In addition, the attenuated antioxidant enzymes activities of (SOD, CAT and GPX) and GSH level were reversed almost to the normal base level by the pre-addition of FA for 24 hours. In all assays, FA itself did not exert any effect on the change of the above parameters. These novel findings indicated that FA effectively protected human ARPE-19 cells from H2 O2 -induced oxidative damage through its pro-proliferation, anti-apoptosis and antioxidant activity, suggesting that FA has a therapeutic potential in the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Kunpeng Xie
- Department of Ophthalmologythe First Affiliated Hospital of Zhengzhou UniversityHenan Province Eye HospitalHenan International Joint Research Laboratory for Ocular Immunology and Retinal Injury RepairZhengzhouChina
| | - Bo Jin
- Department of Ophthalmologythe First Affiliated Hospital of Zhengzhou UniversityHenan Province Eye HospitalHenan International Joint Research Laboratory for Ocular Immunology and Retinal Injury RepairZhengzhouChina
| | - Haiyan Zhu
- Department of Ophthalmologythe First Affiliated Hospital of Zhengzhou UniversityHenan Province Eye HospitalHenan International Joint Research Laboratory for Ocular Immunology and Retinal Injury RepairZhengzhouChina
| | - Pengyi Zhou
- Department of Ophthalmologythe First Affiliated Hospital of Zhengzhou UniversityHenan Province Eye HospitalHenan International Joint Research Laboratory for Ocular Immunology and Retinal Injury RepairZhengzhouChina
| | - Liping Du
- Department of Ophthalmologythe First Affiliated Hospital of Zhengzhou UniversityHenan Province Eye HospitalHenan International Joint Research Laboratory for Ocular Immunology and Retinal Injury RepairZhengzhouChina
| | - Xuemin Jin
- Department of Ophthalmologythe First Affiliated Hospital of Zhengzhou UniversityHenan Province Eye HospitalHenan International Joint Research Laboratory for Ocular Immunology and Retinal Injury RepairZhengzhouChina
| |
Collapse
|
30
|
A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. Int J Mol Sci 2020; 21:ijms21155563. [PMID: 32756487 PMCID: PMC7432893 DOI: 10.3390/ijms21155563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid–retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates’ accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch’s membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed.
Collapse
|
31
|
Sreekumar PG, Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol 2020; 37:101663. [PMID: 32768357 PMCID: PMC7767738 DOI: 10.1016/j.redox.2020.101663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial-derived peptides (MDPs) are a new class of small open reading frame encoded polypeptides with pleiotropic properties. The prominent members are Humanin (HN) and small HN-like peptide (SHLP) 2, which encode 16S rRNA, while mitochondrial open reading frame of the twelve S c (MOTS-c) encodes 12S rRNA of the mitochondrial genome. While the multifunctional properties of HN and its analog 14-HNG have been well documented, their protective role in the retinal pigment epithelium (RPE)/retina has been investigated only recently. In this review, we have summarized the multiple effects of HN and its analogs, SHLP2 and MOTS-c in oxidatively stressed human RPE and the regulatory pathways of signaling, mitochondrial function, senescence, and inter-organelle crosstalk. Emphasis is given to the mitochondrial functions such as biogenesis, bioenergetics, and autophagy in RPE undergoing oxidative stress. Further, the potential use of HN and its analogs in the prevention of age-related macular degeneration (AMD) are also presented. In addition, the role of novel, long-acting HN elastin-like polypeptides in nanotherapy of AMD and other ocular diseases stemming from oxidative damage is discussed. It is expected MDPs will become a promising group of mitochondrial peptides with valuable therapeutic applications in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
32
|
EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21124271. [PMID: 32560057 PMCID: PMC7349630 DOI: 10.3390/ijms21124271] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.
Collapse
|
33
|
Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies. Proc Natl Acad Sci U S A 2020; 117:13094-13104. [PMID: 32434914 PMCID: PMC7293639 DOI: 10.1073/pnas.2000339117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main cause for blindness in the elderly worldwide is age-related macular degeneration (AMD). What causes AMD remains unknown. The high metabolic demands of photoreceptors are thought to contribute to disease pathogenesis, yet whether photoreceptor metabolism differs in individuals with AMD has not been determined. Here, we show that photoreceptor metabolism does differ between diseased and nondiseased individuals. Mimicking the metabolic profile of diseased individuals in mouse resulted in the similar advanced pathologies as those that cause blindness in humans. A disease model with photoreceptors as a contributing factor explains also why AMD affects preferentially the macula; it is the region of highest photoreceptor density. The data might open new avenues to study the role of PRs in disease pathogenesis. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. While the histopathology of the different disease stages is well characterized, the cause underlying the progression, from the early drusen stage to the advanced macular degeneration stage that leads to blindness, remains unknown. Here, we show that photoreceptors (PRs) of diseased individuals display increased expression of two key glycolytic genes, suggestive of a glucose shortage during disease. Mimicking aspects of this metabolic profile in PRs of wild-type mice by activation of the mammalian target of rapamycin complex 1 (mTORC1) caused early drusen-like pathologies, as well as advanced AMD-like pathologies. Mice with activated mTORC1 in PRs also displayed other early disease features, such as a delay in photoreceptor outer segment (POS) clearance and accumulation of lipofuscin in the retinal-pigmented epithelium (RPE) and of lipoproteins at the Bruch’s membrane (BrM), as well as changes in complement accumulation. Interestingly, formation of drusen-like deposits was dependent on activation of mTORC1 in cones. Both major types of advanced AMD pathologies, including geographic atrophy (GA) and neovascular pathologies, were also seen. Finally, activated mTORC1 in PRs resulted in a threefold reduction in di-docosahexaenoic acid (DHA)–containing phospholipid species. Feeding mice a DHA-enriched diet alleviated most pathologies. The data recapitulate many aspects of the human disease, suggesting that metabolic adaptations in photoreceptors could contribute to disease progression in AMD. Identifying the changes downstream of mTORC1 that lead to advanced pathologies in mouse might present new opportunities to study the role of PRs in AMD pathogenesis.
Collapse
|
34
|
Yang C, Shani S, Tahiri H, Ortiz C, Gu M, Lavoie JC, Croteau S, Hardy P. Extracellular microparticles exacerbate oxidative damage to retinal pigment epithelial cells. Exp Cell Res 2020; 390:111957. [PMID: 32173468 DOI: 10.1016/j.yexcr.2020.111957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced retinal pigment epithelial cell (RPE) dysfunction is a primary contributing factor to early dry age-related macular degeneration (AMD). Oxidative injury to the retina may promote extracellular vesicles (EVs) released from RPE. In this study, we investigated the effects of oxidative-induced RPE cell-derived microparticles (RMPs) on RPE cell functions. The oxidative stress induced more RMPs released from RPE cells in vitro and in vivo, and significant more RMPs were released from aged RPE cells than that from younger RPE cells. RMPs were taken up by RPE cells in a time-dependent manner; however, blockage of CD36 attenuated the uptake process. Furthermore, the decrease of RPE cell viability by RMPs treatment was associated with an increased expression of cyclin-dependent kinase inhibitors p15 and p21. RMPs enhanced senescence and interrupted phagocytic activity of RPE cells as well. The present study demonstrated that RMPs produce a strong effect of inducing RPE cell degeneration. This finding further supports the postulate that RMPs exacerbate oxidative stress damage to RPE cells, which may uncover a potentially relevant process in the genesis of dry AMD.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Saeideh Shani
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Houda Tahiri
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Christina Ortiz
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | | | - Stéphane Croteau
- Department of Medicine, University of Montréal, Montréal, H3T 1C5, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, H3T 1C5, Canada.
| |
Collapse
|
35
|
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020; 77:789-805. [PMID: 31897543 PMCID: PMC11105088 DOI: 10.1007/s00018-019-03420-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease underlined by the death of photoreceptors and degeneration of retinal pigment epithelium (RPE) and choriocapillaris (CC). The mechanism(s) responsible for massive and progressive retinal degeneration is not completely known. Senescence, a state of permanent inhibition of cell growth, may be induced by many factors important for AMD pathogenesis and results in senescence-associated secretory phenotype (SASP) that releases growth factors, cytokines, chemokines, proteases and other molecules inducing inflammation and other AMD-related effects. These effects can be induced in the affected cell and neighboring cells, leading to progression of AMD phenotype. Senescent cells also release reactive oxygen species that increase SASP propagation. Many other pathways of senescence-related AMD pathogenesis, including autophagy, the cGAS-STING signaling, degeneration of CC by membrane attack complex, can be considered. A2E, a fluorophore present in lipofuscin, amyloid-beta peptide and humanin, a mitochondria-derived peptide, may link AMD with senescence. Further studies on senescence in AMD pathogenesis to check the possibility of opening a perspective of the use of drugs killing senescent cells (senolytics) and terminating SASP bystander effects (senostatics) might be beneficial for AMD that at present is an incurable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, Poland.
| |
Collapse
|
36
|
Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019; 60:3468-3479. [PMID: 31408109 PMCID: PMC6692057 DOI: 10.1167/iovs.19-26690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. Methods Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. Results Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. Conclusions hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Melissa Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - Carol Charniga
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
37
|
Loss of NAMPT in aging retinal pigment epithelium reduces NAD + availability and promotes cellular senescence. Aging (Albany NY) 2019; 10:1306-1323. [PMID: 29905535 PMCID: PMC6046249 DOI: 10.18632/aging.101469] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Retinal pigment epithelium (RPE) performs numerous functions critical to retinal health and visual function. RPE senescence is a hallmark of aging and degenerative retinal disease development. Here, we evaluated the temporal expression of key nicotinamide adenine dinucleotide (NAD+)-biosynthetic genes and associated levels of NAD+, a principal regulator of energy metabolism and cellular fate, in mouse RPE. NAD+ levels declined with age and correlated directly with decreased nicotinamide phosphoribosyltransferase (NAMPT) expression, increased expression of senescence markers (p16INK4a, p21Waf/Cip1, ApoJ, CTGF and β-galactosidase) and significant reductions in SIRT1 expression and activity. We simulated in vitro the age-dependent decline in NAD+ and the related increase in RPE senescence in human (ARPE-19) and mouse primary RPE using the NAMPT inhibitor FK866 and demonstrated the positive impact of NAD+-enhancing therapies on RPE cell viability. This, we confirmed in vivo in the RPE of mice injected sub-retinally with FK866 in the presence or absence of nicotinamide mononucleotide. Our data confirm the importance of NAD+ to RPE cell biology normally and in aging and demonstrate the potential utility of therapies targeting NAMPT and NAD+ biosynthesis to prevent or alleviate consequences of RPE senescence in aging and/or degenerative retinal diseases in which RPE dysfunction is a crucial element.
Collapse
|
38
|
Protective effects of delphinidin against H 2O 2-induced oxidative injuries in human retinal pigment epithelial cells. Biosci Rep 2019; 39:BSR20190689. [PMID: 31345961 PMCID: PMC6695502 DOI: 10.1042/bsr20190689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/20/2019] [Accepted: 07/14/2019] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is now one of the leading causes of blindness in the elderly population and oxidative stress-induced damage to retinal pigment epithelial (RPE) cells occurs as part of the pathogenesis of AMD. In the present study, we evaluated the protective effect of delphinidin (2-(3,4,5-trihydroxyphenyl) chromenylium-3,5,7-triol) against hydrogen peroxide (H2O2)-induced toxicity in human ARPE-19 cells and its molecular mechanism. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry demonstrated that pretreatment of ARPE-19 cells with delphinidin (25, 50, and 100 μg/ml) significantly increased cell viability and reduced the apoptosis from H2O2 (0.5 mM)-induced oxidative stress in a concentration-dependent manner, which was achieved by the inhibition of Bax, cytochrome c, and caspase-3 protein expression and enhancement of Bcl-2 protein. The same tendency was observed in ARPE-19 cells pre-treated with 15 mM of N-acetylcysteine (NAC) before the addition of H2O2. Furthermore, pre-incubation of ARPE-19 cells with delphinidin markedly inhibited the intracellular reactive oxygen species (ROS) generation and Nox1 protein expression induced by H2O2. Moreover, the decreased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT), and glutathione-peroxidase (GSH-PX) and elevated (MDA) level in H2O2-treated cells were reversed to the normal standard by the addition of delphinidin, which was regulated by increasing nuclear Nrf2 protein expression in ARPE-19 cells. Our results suggest that delphinidin effectively protects human ARPE-19 cells from H2O2-induced oxidative damage via anti-apoptotic and antioxidant effects.
Collapse
|
39
|
Bellezza I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front Pharmacol 2018; 9:1280. [PMID: 30455645 PMCID: PMC6230566 DOI: 10.3389/fphar.2018.01280] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration is one of the leading causes of vision loss in the elderly. Genetics, environmental insults, and age-related issues are risk factors for the development of the disease. All these risk factors are linked to the induction of oxidative stress. In young subjects retinal pigment epithelial cells mitigate reactive oxygen generation by the elimination of dysfunctional mitochondria, via mitophagy, and by increasing antioxidant defenses via Nrf2 activation. The high amount of UV light absorbed by the retina, together with cigarette smoking, cooperate with the aging process to increase the amount of reactive oxygen species generated by retinal pigment epithelium where oxidative stress arises. Moreover, in the elderly both the mitophagic process and Nrf2 activation are impaired thus causing retinal cell death. This review will focus on the impact of oxidative stress on the pathogenesis of age-related macular degeneration and analyze the natural and synthetic Nrf2-activating compounds that have been tested as potential therapeutic agents for the disease.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
40
|
Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res 2018; 181:325-345. [PMID: 30296412 DOI: 10.1016/j.exer.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD". RPE cells accumulate DHA from shed rod photoreceptor outer segments through phagocytosis and from plasma lipoproteins secreted by the liver through active uptake from the choriocapillaris. As a cell model of light-induced oxidative damage of DHA phospholipids in RPE cells, ARPE-19 cells were supplemented with DHA, with or without the lipofuscin fluorophore A2E. In this model, light exposure, in the absence of A2E, promoted the generation HOHA lactone-glutathione (GSH) adducts, depletion of intracellular GSH and a competing generation of CEPs. While DHA-rich RPE cells exhibit an inherent proclivity toward light-induced oxidative damage, photosensitization by A2E nearly doubled the amount of lipid oxidation and expanded the spectral range of photosensitivity to longer wavelengths. Exposure of ARPE-19 cells to 1 μM HOHA lactone for 24 h induced massive (50%) loss of lysosomal membrane integrity and caused loss of mitochondrial membrane potential. Using senescence-associated β-galactosidase (SA β-gal) staining that detects lysosomal β-galactosidase, we determined that exposure to HOHA lactone induces senescence in ARPE-19 cells. The present study shows that products of light-induced oxidative damage of DHA phospholipids in the absence of A2E can lead to RPE cell dysfunction. Therefore, their toxicity may be especially important in the early stages of AMD before RPE cells accumulate lipofuscin fluorophores.
Collapse
|
41
|
Chae JB, Rho CR, Shin JA, Lyu J, Kang S. Effects of Ranibizumab, Bevacizumab, and Aflibercept on Senescent Retinal Pigment Epithelial Cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2018; 32:328-338. [PMID: 30091312 PMCID: PMC6085187 DOI: 10.3341/kjo.2017.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Anti-vascular endothelial growth factor (VEGF) agents have been used for the last 10 years, but their safety profile, including cytotoxicity against various ocular cells such as retinal pigment epithelial (RPE) cells, remains a serious concern. Safety studies of VEGF agents conducted to date have primarily relied on healthy RPE cells. In this study, we assessed the safety of three anti-VEGF agents, namely, ranibizumab, bevacizumab, and aflibercept, on senescent RPE cells. METHODS Senescent human induced pluripotent stem cell-derived RPE cells were generated by continuous replication and confirmed with senescence biomarkers. The viability, proliferation, protein expression, and phagocytosis of the senescent RPE cells were characterized 3 days after anti-VEGF treatment with clinical doses of ranibizumab, bevacizumab, or aflibercept. RESULTS Clinical doses of ranibizumab, bevacizumab, or aflibercept did not decrease the viability or alter proliferation of senescent RPE cells. In addition, the anti-VEGF agents did not induce additional senescence, impair the protein expression of zonula occludens-1 and RPE65, or reduce the phagocytosis capacity of senescent RPE cells. CONCLUSIONS Clinical dosages of ranibizumab, bevacizumab, or aflibercept do not induce significant cytotoxicity in senescent RPE cells.
Collapse
Affiliation(s)
- Jae Byoung Chae
- Department of Medical Science, Konyang University College of Medicine, Daejeon, Korea
| | - Chang Rae Rho
- Department of Ophthalmology and Visual Science, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jeong Ah Shin
- Department of Ophthalmology and Visual Science, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jungmook Lyu
- Department of Medical Science, Konyang University College of Medicine, Daejeon, Korea.,Myunggok Eye Research Institute, Konyang University College of Medicine, Daejeon, Korea.
| | - Seungbum Kang
- Department of Ophthalmology and Visual Science, The Catholic University of Korea College of Medicine, Seoul, Korea.,Clinical Research Institute, Daejeon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Daejeon, Korea.
| |
Collapse
|
42
|
Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J. PGC-1α Protects RPE Cells of the Aging Retina against Oxidative Stress-Induced Degeneration through the Regulation of Senescence and Mitochondrial Quality Control. The Significance for AMD Pathogenesis. Int J Mol Sci 2018; 19:ijms19082317. [PMID: 30087287 PMCID: PMC6121367 DOI: 10.3390/ijms19082317] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland.
| | - Jakub Kajdanek
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Jan Morawiec
- Department of General and Colorectal Surgery, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
43
|
Hyttinen JMT, Viiri J, Kaarniranta K, Błasiak J. Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell Mol Life Sci 2018; 75:2991-3008. [PMID: 29777261 PMCID: PMC11105454 DOI: 10.1007/s00018-018-2843-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle's homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all contribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other degenerative diseases is as well explored.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
44
|
Berberine Protects Human Retinal Pigment Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Damage through Activation of AMPK. Int J Mol Sci 2018; 19:ijms19061736. [PMID: 29895743 PMCID: PMC6032421 DOI: 10.3390/ijms19061736] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly with less effective treatment, especially for dry AMD (90% of AMD). Although the etiology of this disease is not well elucidated, increasing evidences indicate that excessive reactive oxygen species (ROS) impairing the physiological functions of retinal pigment epithelium (RPE) cells may be one of the main causes. Therefore, it could be a great strategy to find some drugs that can effectively protect RPE cells from oxidative damage which is desired to treat and slow the process of AMD. In the present study, a well-known traditional Chinese medicine berberine (BBR) was found to suppress hydrogen peroxide (H2O2)-induced oxidative damage in D407 cells, a human RPE cell line. Pre-treatment of D407 cells with BBR significantly suppressed H2O2-induced cell apoptosis by restoring abnormal changes in nuclear morphology, preventing the decline of mitochondrial membrane potential, reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities induced by H2O2. Western blot analysis showed that BBR was able to stimulate the phosphorylation/activation of AMPK in a time- and dose-dependent manner in D407 cells, while treatment of cells with AMPK pathway inhibitor Compound C, or knockdown of the AMPK by specific siRNA blocked the effect of BBR. Similar results were obtained in primary cultured human RPE cells. Taken together, these results demonstrated that BBR was able to protect RPE cells against oxidative stress via the activation of AMPK pathway. Our findings also indicate the potential application of BBR in AMD treatment.
Collapse
|
45
|
Schottler J, Randoll N, Lucius R, Caliebe A, Roider J, Klettner A. Long-term treatment with anti-VEGF does not induce cell aging in primary retinal pigment epithelium. Exp Eye Res 2018. [DOI: 10.1016/j.exer.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Limoli PG, Vingolo EM, Limoli C, Scalinci SZ, Nebbioso M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J Vis Exp 2018. [PMID: 29553543 DOI: 10.3791/56469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study is aimed at examining whether a suprachoroidal graft of autologous cells can improve best corrected visual acuity (BCVA) and responses to microperimetry (MY) in eyes affected by dry Age-related Macular Degeneration (AMD) over time through the production and secretion of growth factors (GFs) on surrounding tissue. Patients were randomly assigned to each study group. All patients were diagnosed with dry AMD and with BCVA equal to or greater than 1 logarithm of the minimum angle of resolution (logMAR). A suprachoroidal autologous graft by Limoli Retinal Restoration Technique (LRRT) was carried out on group A, which included 11 eyes from 11 patients. The technique was performed by implanting adipocytes, adipose-derived stem cells obtained from the stromal vascular fraction, and platelets from platelet-rich plasma in the suprachoroidal space. Conversely, group B, including 14 eyes of 14 patients, was used as a control group. For each patient, diagnosis was verified by confocal scanning laser ophthalmoscope and spectral domain-optical coherence tomography (SD-OCT). In group A, BCVA improved by 0.581 to 0.504 at 90 days and to 0.376 logMAR at 180 days (+32.20%) postoperatively. Furthermore, MY test increased by 11.44 dB to 12.59 dB at 180 days. The different cell types grafted behind the choroid were able to ensure constant GF secretion in the choroidal flow. Consequently, the results indicate that visual acuity (VA) in the grafted group can increase more than in the control group after six months.
Collapse
Affiliation(s)
| | - Enzo Maria Vingolo
- Department of Ophthalmology, A. Fiorini Hospital, Sapienza University of Rome
| | | | - Sergio Zaccaria Scalinci
- Glaucoma and Low Vision Study Center, Department of General Surgery and Organ Transplants, University of Bologna
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome;
| |
Collapse
|
47
|
Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 2018; 7:46913-46923. [PMID: 27391437 PMCID: PMC5216913 DOI: 10.18632/oncotarget.10442] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Background The aim of this research was to study the overall restoration effect on residual retinal cells through surgically grafted autologous cells onto the surrounding tissue, choroid and retina in order to produce a constant secretion of growth factors (GFs) in dry age-related macular degeneration (AMD) patients. Results 6 months after surgery, several values were statistically significant in the group with higher RTA. Also patient compliance analysis (PCA) in relation to functional change perception appeared to be very good. Methods Thirty-six eyes of 25 patients (range 64-84 years of age) affected by dry AMD were included in study, and divided in two groups by spectral domain-optical coherence tomography (SD-OCT): group A with retinal thickness average (RTA) less than 250 microns (μm) and group B with RTA equal to or more than 250 μm. Adipocytes, adipose-derived stem cells from the stromal-vascular fraction, and platelets from platelet-rich plasma were implanted in the suprachoroidal space. Particularly, the following parameters were evaluated: best corrected visual acuity (BCVA) for far and near distance, retinal thickness maps, scotopic and photopic electroretinogram (ERG), and microperimetry (MY). All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Conclusions The available set of GFs allowed biological retinal neuroenhancement. After 6 months it improved visual performance (VP), but the increase was better if RTA recorded by OCT was higher, probably in relation to the presence of areas with greater cellularity.
Collapse
Affiliation(s)
| | | | - Enzo Maria Vingolo
- Department of Ophthalmology, A. Fiorini Hospital, Terracina, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Sergio Zaccaria Scalinci
- Departement of Ophthalmology, Glaucoma and Low Vision Study Center, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
48
|
Ischemic Retinopathies: Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3940241. [PMID: 29410732 PMCID: PMC5749295 DOI: 10.1155/2017/3940241] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and (in many cases) age-related macular degeneration (AMD), are ocular disorders characterized by an initial phase of microvascular changes that results in ischemia, followed by a second phase of abnormal neovascularization that may culminate into retinal detachment and blindness. IRs are complex retinal conditions in which several factors play a key role during the development of the different pathological stages of the disease. Increasing evidence reveals that oxidative stress and inflammatory processes are important contributors to the pathogenesis of IRs. Despite the beneficial effects of the photocoagulation and anti-VEGF therapy during neovascularization phase, the need to identify novel targets to prevent initial phases of these ocular pathologies is still needed. In this review, we provide an update on the involvement of oxidative stress and inflammation in the progression of IRs and address some therapeutic interventions by using antioxidants and anti-inflammatory agents.
Collapse
|
49
|
Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5293258. [PMID: 29225722 PMCID: PMC5687149 DOI: 10.1155/2017/5293258] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is the main reason of blindness in developed countries. Aging is the main AMD risk factor. Oxidative stress, inflammation and some genetic factors play a role in AMD pathogenesis. AMD is associated with the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillaris. Lost RPE cells in the central retina can be replaced by their peripheral counterparts. However, if they are senescent, degenerated regions in the macula cannot be regenerated. Oxidative stress, a main factor of AMD pathogenesis, can induce DNA damage response (DDR), autophagy, and cell senescence. Moreover, cell senescence is involved in the pathogenesis of many age-related diseases. Cell senescence is the state of permanent cellular division arrest and concerns only mitotic cells. RPE cells, although quiescent in the retina, can proliferate in vitro. They can also undergo oxidative stress-induced senescence. Therefore, cellular senescence can be considered as an important molecular pathway of AMD pathology, resulting in an inability of the macula to regenerate after degeneration of RPE cells caused by a factor inducing DDR and autophagy. It is too early to speculate about the role of the mutual interplay between cell senescence, autophagy, and DDR, but this subject is worth further studies.
Collapse
|
50
|
Govindaraju VK, Bodas M, Vij N. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PLoS One 2017; 12:e0182420. [PMID: 28767736 PMCID: PMC5540403 DOI: 10.1371/journal.pone.0182420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/18/2017] [Indexed: 12/01/2022] Open
Abstract
Age related macular degeneration (AMD) is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS) initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE) cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE) induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01), which was subsequently mitigated through cysteamine (p < 0.01) or fisetin (p < 0.05) treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05) that were cleared- off with cysteamine (p < 0.05) or fisetin (p < 0.05). Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization) and autophagy-flux impairment was significantly (p<0.01) mitigated by cysteamine (p<0.05) or fisetin (p<0.05) treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001) while impacting cell viability (p < 0.001), which was quantified using CMH2DCFDA-dye (ROS) and MTS (proliferation) or propodium iodide staining (cell viability) assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05) and diminished cell viability (p < 0.05). Lastly, CSE was found to induce cellular senescence (p < 0.001), which was significantly ameliorated by cysteamine (p < 0.001) or fisetin (p < 0.001). In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover, autophagy-inducing drugs such as cysteamine or fisetin can ameliorate AMD pathogenesis mechanisms that warrant further investigation in pre-clinical murine models.
Collapse
Affiliation(s)
- Viren Kumar Govindaraju
- College of Medicine, Central Michigan University, Mt Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, Michigan, United States of America
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|