2
|
Moksnes MR, Hansen AF, Wolford BN, Thomas LF, Rasheed H, Simić A, Bhatta L, Brantsæter AL, Surakka I, Zhou W, Magnus P, Njølstad PR, Andreassen OA, Syversen T, Zheng J, Fritsche LG, Evans DM, Warrington NM, Nøst TH, Åsvold BO, Flaten TP, Willer CJ, Hveem K, Brumpton BM. A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Commun Biol 2024; 7:432. [PMID: 38594418 PMCID: PMC11004147 DOI: 10.1038/s42003-024-06101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.
Collapse
Affiliation(s)
- Marta R Moksnes
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ailin F Hansen
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Brooke N Wolford
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent F Thomas
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Anica Simić
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tore Syversen
- Department of Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David M Evans
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Nicole M Warrington
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Therese H Nøst
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Peder Flaten
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen J Willer
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
| | - Ben M Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway.
- Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
4
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
5
|
Pandur E, Pap R, Varga E, Jánosa G, Komoly S, Fórizs J, Sipos K. Relationship of Iron Metabolism and Short-Term Cuprizone Treatment of C57BL/6 Mice. Int J Mol Sci 2019; 20:ijms20092257. [PMID: 31067791 PMCID: PMC6539941 DOI: 10.3390/ijms20092257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022] Open
Abstract
One of the models to investigate the distinct mechanisms contributing to neurodegeneration in multiple sclerosis is based on cuprizone (CZ) intoxication. CZ is toxic to mature oligodendrocytes and produces demyelination within the central nervous system but does not cause direct neuronal damage. The CZ model is suitable for better understanding the molecular mechanism of de- and remyelination processes of oligodendrocytes. CZ is a copper chelating agent and it also affects the iron metabolism in brain and liver tissues. To determine the early effect of CZ treatment on iron homeostasis regulation, cytosolic and mitochondrial iron storage, as well as some lipid metabolism genes, we investigated the expression of respective iron homeostasis and lipid metabolism genes of the corpus callosum (CC) and the liver after short-term CZ administration. In the present study C57BL/6 male mice aged four weeks were fed with standard rodent food premixed with 0.2 w/w% CZ for two or eight days. The major findings of our experiments are that short-term CZ treatment causes significant changes in iron metabolism regulation as well as in the expression of myelin and lipid synthesis-related genes, even before apparent demyelination occurs. Both in the CC and the liver the iron uptake, utilization and storage are modified, though not always the same way or to the same extent in the two organs. Understanding the role of iron in short-term and long-term CZ intoxication could provide a partial explanation of the discrepant signs of acute and chronic MS. These could contribute to understanding the development of multiple sclerosis and might provide a possible drug target.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Sámuel Komoly
- Department of Neurology, Medical School, University of Pécs, H-7623 Pécs, Hungary.
| | - Judit Fórizs
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| |
Collapse
|