1
|
Karimi F, Moazamfard M, Taghvaeefar R, Sohrabipour S, Dehghani A, Azizi R, Dinarvand N. Early Detection of Diabetic Nephropathy Based on Urinary and Serum Biomarkers: An Updated Systematic Review. Adv Biomed Res 2024; 13:104. [PMID: 39717256 PMCID: PMC11665175 DOI: 10.4103/abr.abr_461_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease worldwide, particularly among individuals with type 2 diabetes mellitus (T2DM). Early detection and intervention are crucial in slowing the progression of DN and improving patient outcomes. Traditional diagnostic methods, such as the measurement of albuminuria and serum creatinine, often fail to detect early renal damage because structural kidney damage may occur before albumin excretion. This systematic review aims to evaluate the diagnostic value of various urinary and serum biomarkers in the early detection of DN in patients with T2DM. A comprehensive literature search was conducted using databases such as PubMed, Scopus, and Web of Science. We only considered studies involving human populations for inclusion in our analysis. Animal and in vitro studies were excluded from our review. Our analysis of 17 observational studies identified several key serum biomarkers, such as netrin-1, osteopontin, adiponectin, and specific cytokines (e.g., IL-6, IL-8), which show significant promise for early detection of DN. Urinary biomarkers, including neutrophil gelatinase-associated lipocalin (NGAL), transferrin, N-acetyl-β-D-glucosaminidase (NAG), and various cytokines, have also proven to be reliable indicators. The combination of both serum and urinary biomarkers may enhance diagnostic accuracy and enable earlier intervention. Additionally, incorporating genetic and mRNA markers could provide a more comprehensive approach to early DN detection. Implementing these biomarkers in clinical practice could significantly improve outcomes for patients with DN by facilitating early diagnosis and timely management.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mostafa Moazamfard
- Instructor of Operating Room, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | - Shahla Sohrabipour
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Azizi
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Ezzat GM, Azoz NMA, El Zohne RA, Abdellatif H, Saleem TH, Emam WA, Mohammed AR, Mohamed SA, Muhammed AA, Abd el-Rady NM, Hamdy M, Sherkawy HS, Sabet MA, Seif Eldin S, Dahpy MA. Dysregulated miRNA-375, IL-17, TGF-β, and Microminerals Are Associated with Calpain-10 SNP 19 in Diabetic Patients: Correlation with Diabetic Nephropathy Stages. Int J Mol Sci 2023; 24:17446. [PMID: 38139275 PMCID: PMC10744180 DOI: 10.3390/ijms242417446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Zinc (Zn) and copper (Cu) have been shown to have the potential to improve glucose metabolism through interactions with cytokines and signaling events with multiple genes. miRNA-375 and the Calpin-10 gene are potential genetic biomarkers for the early prediction of diabetic nephropathy (DN). 128 healthy controls and 129 type 2 diabetic (T2DM) participants were matched for age and sex. Three subgroups were identified from the T2DM group: 39 patients had microalbuminuria, 41 had macroalbuminuria, and 49 patients had renal problems. Circulating miR-375 expression levels were measured via qPCR. Calpain-10 SNP 19 (rs3842570) genotyping was assessed with allele-specific PCR in all the included participants. Spectrophotometry was used to measure the concentrations of serum copper, zinc, and magnesium, while ELISA was used to measure the levels of TGF-β and IL-17. There was significant up-regulation in the expression of miR-375 and serum levels of TGF-β, IL-17, Cu, and the Cu/Zn ratio, whereas, in contrast to the control group, the Zn and Mg levels were lower in the T2DM group. The DN groups had significantly lower miR-375, TGF-β, IL-17, Mg, and Zn levels compared with the T2DM without nephropathy group. Furthermore, between TGF-β, IL-17, and miRNA-375, there were notable correlations. Calpain-10 SNP 19 genotype 22 and allele 2 were linked to a higher incidence of T2DM and DN. Significant TGF-β, Cu, Cu/Zn ratio, HbAc1, and creatinine levels, but insignificant miRNA-375 levels, were associated with genotype 22 of Calpain-10 SNP 19. interactions between the Calpain-10 SNP 19 genotype 22 and IL-17, TGF-β, mineral levels, and miRNA-375 might contribute to the aetiology of DN and T2DM and may have clinical implications for diagnosis and management.
Collapse
Affiliation(s)
- Ghada M. Ezzat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.M.E.); (T.H.S.)
| | - Nashwa Mostafa A. Azoz
- Department of Internal Medicine, Nephrology Unit, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Randa A. El Zohne
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (R.A.E.Z.); (H.A.)
| | - HebatAllah Abdellatif
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (R.A.E.Z.); (H.A.)
| | - Tahia H. Saleem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.M.E.); (T.H.S.)
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11351, Egypt; (W.A.E.); (A.R.M.); (S.A.M.)
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11351, Egypt; (W.A.E.); (A.R.M.); (S.A.M.)
| | - Shimaa Ali Mohamed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11351, Egypt; (W.A.E.); (A.R.M.); (S.A.M.)
| | - Asmaa A. Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan 81511, Egypt;
| | - Nessren M. Abd el-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Medical Physiology Department, Sphinx University, New Assiut 71515, Egypt
| | - Marwa Hamdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hoda S. Sherkawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New Assiut 71684, Egypt;
| | - Salwa Seif Eldin
- Department of Medical Microbiology and Immunology, College of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Marwa A. Dahpy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (G.M.E.); (T.H.S.)
- Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt
| |
Collapse
|
3
|
Zhang W, Zhang L, Dong Q, Wang X, Li Z, Wang Q. Hsa_circ_0003928 regulates the progression of diabetic nephropathy through miR-136-5p/PAQR3 axis. J Endocrinol Invest 2023; 46:2103-2114. [PMID: 37017919 DOI: 10.1007/s40618-023-02061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the complications of diabetes and has a high mortality, but its specific pathogenesis is not clear. In recent years, researches on the mechanism of circRNAs in DN have been proved a lot, whereas the functional mechanism of circ_0003928 in DN remains open and it must be investigated to value its important role in DN prevention. METHODS HK-2 cells were treated with high glucose (HG), normal glucose (NG) or Mannitol. Cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Enzyme-linked immunosorbent assay (ELISA) was applied to analyze malondialdehyde (MDA) and superoxide dismutase 1 (SOD) levels. Flow cytometry and western blot were preformed to measure cell apoptosis. Real-time quantitative PCR (RT-qPCR) was used to test the levels of circ_0003928, miR-136-5p and progestin and adipoQ receptor family member 3 (PAQR3) mRNA. Western blot was executed to detect Bcl2 associated X (Bax), B cell leukemia/lymphoma 2 (Bcl2), smooth muscle (αSMA), apolipoprotein (C-IV) and PAQR3 levels. Luciferase reporter assay and RNA pull-down assay were used to analyze the target relationship between miR-136-5p and circ_0003928 or PAQR3. RESULTS Circ_0003928 and PAQR3 expression were up-regulated, whereas miR-136-5p was decreased in DN serum and HG-induced HK-2 cells. Circ_0003928 knockdown promoted cell proliferation, and inhibit cell apoptosis, oxidative stress, and fibrosis in HK-2 cells under HG condition. MiR-136-5p silencing overturned the protective effects of si-circ_0003928 on HG-induced HK-2 cells. MiR-136-5p was targeted by circ_0003928 and directly targeted PAQR3. Overexpression of PAQR3 counteracted the inhibitory functions of circ_0003928 knockdown or miR-136-5p overexpression on HG-induced HK-2 cell injury. CONCLUSION Circ_0003928 acted as a sponge of miR-136-5p to up-regulating PAQR3 expression, and then regulate the proliferation, oxidative stress, fibrosis and apoptosis in HG-induced HK-2 cells.
Collapse
Affiliation(s)
- W Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - L Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - X Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Z Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
4
|
Parada-Cruz B, Aztatzi-Aguilar OG, Ramírez-Martínez G, Jacobo-Estrada TL, Cárdenas-González M, Escamilla-Rivera V, Martínez-Olivas MA, Narváez-Morales J, Ávila-Rojas SH, Álvarez-Salas LM, Barbier O. Inflammation- and cancer-related microRNAs in rat renal cortex after subchronic exposure to fluoride. Chem Biol Interact 2023; 379:110519. [PMID: 37121298 DOI: 10.1016/j.cbi.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The proximal tubule is a target of subchronic exposure to fluoride (F) in the kidney. Early markers are used to classify kidney damage, stage, and prognosis. MicroRNAs (miRNAs) are small sequences of non-coding single-stranded RNA that regulate gene expression and play an essential role in developing many pathologies, including renal diseases. This study aimed to evaluate the expression of Cytokine-Chemokine molecules (IL-1α/1β/4/6/10, INF-γ, MIP-1α, MCP-1, RANTES, and TGF β1/2/3) and inflammation-related miRNAs to evidence the possible renal mechanisms involved in subchronic exposure to F. Total protein and miRNAs were obtained from the renal cortex of male Wistar rats exposed to 0, 15 and 50 mg NaF/L through drinking water during 40 and 80 days. In addition, cytokines-chemokines were analyzed by multiplexing assay, and a panel of 77 sequences of inflammatory-related miRNAs was analyzed by qPCR. The results show that cytokines-chemokines expression was concentration- and time-dependent with F, where the 50 mg NaF/L were the main altered groups. The miRNAs expression resulted in statistically significant differences in thirty-four miRNAs in the 50 mg NaF/L groups at 40 and 80 days. Furthermore, a molecular interaction network analysis was performed. The relevant pathways modified by subchronic exposure to fluoride were related to extracellular matrix-receptor interaction, Mucin type O-glycan biosynthesis, Gap junction, and miRNAs involved with renal cell carcinoma. Thus, F-induced cytokines-chemokines suggest subchronic inflammation; detecting miRNAs related to cancer and proliferation indicates a transition from renal epithelium to pathologic tissue after fluoride exposure.
Collapse
Affiliation(s)
- Benjamín Parada-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Gustavo Ramírez-Martínez
- Departamento de Toxicología y Medicina Ambiental, Laboratorio de inmunología y genética. Inst. Nac. de Enf. Resp, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, CDMX, Mexico.
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, CP 07340, Ciudad de México, CDMX, Mexico.
| | - Mariana Cárdenas-González
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| | - Vicente Escamilla-Rivera
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico; Department of Otolaryngology-Head & Neck Surgery, University of Arizona, Tucson, AZ, 85724, USA.
| | - Martha Adriana Martínez-Olivas
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Sabino Hazael Ávila-Rojas
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Luis Marat Álvarez-Salas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
5
|
Sinha N, Puri V, Kumar V, Nada R, Rastogi A, Jha V, Puri S. Urinary exosomal miRNA-663a shows variable expression in diabetic kidney disease patients with or without proteinuria. Sci Rep 2023; 13:4516. [PMID: 36934129 PMCID: PMC10024703 DOI: 10.1038/s41598-022-26558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/16/2022] [Indexed: 03/20/2023] Open
Abstract
Heterogeneity in the Diabetic Kidney Disease (DKD) diagnosis makes its rational therapeutics challenging. Although albuminuria characterizes DKD, reports also indicate its prevalence among non-proteinuric. Recent understanding of disease progression has thus inclined the focus on proximal tubular cell damage besides the glomeruli. A non-invasive approach exploiting exosomal miRNA derived from human kidney proximal tubular cell line was, hence, targeted. Upon miRNA profiling, three miRNAs, namely, hsa-miR-155-5p, hsa-miR-28-3p, and hsa-miR-425-5p were found to be significantly upregulated, while hsa-miR-663a was downregulated under diabetic conditions. Among these, hsa-miR-663a downregulation was more pronounced in non-proteinuric than proteinuric DKD subjects and was thus selected for the bioinformatics study. Ingenuity Pathway Analysis (IPA) narrowed on to IL-8 signaling and inflammatory response as the most enriched 'canonical pathway' and 'disease pathway' respectively, during DKD. Further, the putative gene network generated from these enriched pathways revealed experimentally induced diabetes, renal tubular injury, and decreased levels of albumin as part of mapping under 'disease and function'. Genes target predictions and annotations by IPA reiterated miR-663a's role in the pathogenesis of DKD following tubular injury. Overall, the observations might offer an indirect reflection of the underlying mechanism between patients who develop proteinuria and non-proteinuria.
Collapse
Affiliation(s)
- Nisha Sinha
- Centre for Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- The George Institute for Global Health, New Delhi, India.
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Rai B, Pande A, Tiwari S. TRAIL and EGFR Pathways Targeting microRNAs are Predominantly Regulated in Human Diabetic Nephropathy. Microrna 2023; 12:143-155. [PMID: 37098997 DOI: 10.2174/2211536612666230407093841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Unbiased microRNA profiling of renal tissue and urinary extracellular vesicles (uEVs) from diabetic nephropathy (DN) subjects may unravel novel targets with diagnostic and therapeutic potential. Here we used the miRNA profile of uEVs and renal biopsies from DN subjects available on the GEO database. METHODS The miR expression profiles of kidney tissue (GSE51674) and urinary exosomes (GSE48318) from DN and control subjects were obtained by GEO2R tools from Gene Expression Omnibus (GEO) databases. Differentially expressed miRNAs in DN samples, relative to controls, were identified using a bioinformatic pipeline. Targets of miRs commonly regulated in both sample types were predicted by miRWalk, followed by functional gene enrichment analysis. Gene targets were identified by MiRTarBase, TargetScan and MiRDB. RESULTS Eight miRs, including let-7c, miR-10a, miR-10b and miR-181c, were significantly regulated in kidney tissue and uEVs in DN subjects versus controls. The top 10 significant pathways targeted by these miRs included TRAIL, EGFR, Proteoglycan syndecan, VEGF and Integrin Pathway. Gene target analysis by miRwalk upon validation using ShinyGO 70 targets with significant miRNA-mRNA interaction. CONCLUSION In silico analysis showed that miRs targeting TRAIL and EGFR signaling are predominately regulated in uEVs and renal tissue of DN subjects. After wet-lab validation, the identified miRstarget pairs may be explored for their diagnostic and/or therapeutic potential in diabetic nephropathy.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Akshara Pande
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Paolini A, Baldassarre A, Bruno SP, Felli C, Muzi C, Ahmadi Badi S, Siadat SD, Sarshar M, Masotti A. Improving the Diagnostic Potential of Extracellular miRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Front Microbiol 2022; 13:888414. [PMID: 35756065 PMCID: PMC9218639 DOI: 10.3389/fmicb.2022.888414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, the clinical use of extracellular miRNAs as potential biomarkers of disease has increasingly emerged as a new and powerful tool. Serum, urine, saliva and stool contain miRNAs that can exert regulatory effects not only in surrounding epithelial cells but can also modulate bacterial gene expression, thus acting as a “master regulator” of many biological processes. We think that in order to have a holistic picture of the health status of an individual, we have to consider comprehensively many “omics” data, such as miRNAs profiling form different parts of the body and their interactions with cells and bacteria. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms coupled to other multiomics data (i.e., big data) could help researchers to classify better the patient’s molecular characteristics and drive clinicians to identify personalized therapeutic strategies. Here, we highlight how the integration of “multiomic” data (i.e., miRNAs profiling and microbiota signature) with other omics (i.e., metabolomics, exposomics) analyzed by AI algorithms could improve the diagnostic and prognostic potential of specific biomarkers of disease.
Collapse
Affiliation(s)
- Alessandro Paolini
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Stefania Paola Bruno
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.,Department of Science, University Roma Tre, Rome, Italy
| | - Cristina Felli
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chantal Muzi
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Sara Ahmadi Badi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
9
|
Chang W, Li M, Song L, Miao S, Yu W, Wang J. Noncoding RNAs from tissue-derived small extracellular vesicles: Roles in diabetes and diabetic complications. Mol Metab 2022; 58:101453. [PMID: 35121168 PMCID: PMC8866070 DOI: 10.1016/j.molmet.2022.101453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a systemic disease, and its progression involves multiple organ dysfunction. However, the exact mechanisms underlying pathological progression remain unclear. Small extracellular vesicles (sEVs) mediate physiological and pathological signaling communication between organs and have been shown to have important regulatory roles in diabetes and its complications in recent years. In particular, the majority of studies in the diabetes-related research field have focused on the noncoding RNAs carried by sEVs. Researchers found that noncoding RNA sorting into sEVs is not random but selective. Both tissue origin differences and environmental variations affect the cargo of sEVs. In addition, the function of sEVs differs according to the tissue they derive from; for example, sEVs derived from adipose tissue regulate insulin sensitivity in the periphery, while sEVs derived from bone marrow promote β-cell regeneration. Therefore, understanding the roles of sEVs from different tissues is important for elucidating their molecular mechanisms and is necessary for the application of sEVs as therapeutic agents for diabetes treatment in the future. In this review, we summarized current studies on the mechanisms of noncoding RNA sorting into sEVs, as well as the research progress on the effects of sEVs from different tissue origins and noncoding RNAs in diabetes and diabetic complications. The knowledge of noncoding RNAs in sEVs will help us better understand the role of sEVs in the diabetes progression.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China.
| | - Mengyang Li
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Lin Song
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Suo Miao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Al Mamun A, Ara Mimi A, Wu Y, Zaeem M, Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F, Xiao J. Pyroptosis in diabetic nephropathy. Clin Chim Acta 2021; 523:131-143. [PMID: 34529985 DOI: 10.1016/j.cca.2021.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN), a sterile inflammatory disease, is a serious complication of diabetes mellitus. However, recent evidence indicates that pyroptosis, a new term for pro-inflammatory cell death featured by gasdermin D (GSDMD)-stimulated plasma membrane pore generation, cell expansion and rapid lysis with the extensive secretion of pro-inflammatory factors, including interleukin-1β (IL-1β) and -18 (IL-18) may be involved in DN. Caspase-1-induced canonical and caspase-4/5/11-induced non-canonical inflammasome-signaling pathways are mainly believed to participate in pyroptosis-mediated cell death. Further research has uncovered that activation of the caspase-3/8 signaling pathway may also activate pyroptosis. Accumulating evidence has shown that NLRP3 inflammasome activation plays a critical role in promoting the pathogenesis of DN. In addition, current studies have suggested that pyroptosis-induced cell death promotes several diabetic complications that include DN. Our present study briefs the cellular mechanisms of pyroptosis-related signaling pathways and their impact on the promotion of DN. In this review, several investigational compounds suppressing pyroptosis-mediated cell death are explored as promising therapeutics in DN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka 1209, Bangladesh
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | - Eman Alyafeai
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated of Hospital Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
11
|
Kim J, Shim JS, Han BH, Kim HJ, Park J, Cho IJ, Kang SG, Kang JY, Bong KW, Choi N. Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens Bioelectron 2021; 192:113504. [PMID: 34298498 DOI: 10.1016/j.bios.2021.113504] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
Although urinary exosomal microRNAs (miRNAs) have recently emerged as potential biomarkers, clinical applications are still limited due to their low concentration in small volumes of clinical samples. Therefore, the development of a non-invasive, specific diagnostic tool, along with profiling exosomal miRNA markers from urine, remains a significant challenge. Here, we present hydrogel-based hybridization chain reaction (HCR) for multiplex signal amplification to detect urinary exosomal miRNAs from human clinical samples. We succeeded in identifying small amounts (~amol) of exosomal miRNAs from 600 μL of urine with up to ~35-fold amplification and enhanced detection limits by over an order of magnitude for two miRNA biomarker candidates, hsa-miR-6090 and hsa-miR-3665. Furthermore, we proposed ratiometric analysis without requiring normalization to a reference miRNA and validated the clinical diagnostic potential toward differentiating prostate cancer patients from healthy controls. Our hydrogel-based HCR could serve as a new diagnostic platform for a non-invasive liquid biopsy before burdensome tissue biopsy of various diseases, including prostate cancer screening, complementing the PSA test.
Collapse
Affiliation(s)
- Junbeom Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Ji Sung Shim
- Department of Urology, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Bo Hoon Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering. Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul, 03722, South Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, South Korea
| | - Sung Gu Kang
- Department of Urology, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Ji Yoon Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea.
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
Jiang P, Yang X, Li Y, Chen J. miRNA-216 knockdown has effects to suppress osteosarcoma via stimulating PTEN. Food Sci Nutr 2020; 8:4708-4716. [PMID: 32994932 PMCID: PMC7500758 DOI: 10.1002/fsn3.1587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to explain the effects and mechanism of miRNA-216 in osteosarcoma. We firstly evaluated the PTEN expression in 30 pairs of tumor and adjacent tissues which were from the 30 osteosarcoma patients. In the following cell experiments, we measured the cell proliferation, cell cycle, cell invasion, and migration abilities of NC (normal control) group, BL (blank) group, siRNA (miRNA-216 inhibitor) group, and siRNA+PTEN inhibitor group. Furthermore, we measured the relative protein expression of difference groups by WB to explain the mechanism of miRNA-216 in osteosarcoma. The PTEN was confirmed the target gene of miRNA-216 by double luciferase target test. In conclusion, miRNA-216 was an oncogene in osteosarcoma. miRNA-216 knockdown had effects to suppress cancer cell proliferation, invasion and migration and improve cell apoptosis by keeping in G1 phase via PTEN.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Xin Yang
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Yuanli Li
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Juan Chen
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
13
|
Yu J, Su W, Zhang X, Zheng F, Guan Y. MicroRNAs in type 2 diabetes mellitus: Important for the pathogenesis but uncertain as biomarkers. J Diabetes 2020; 12:697-700. [PMID: 29845732 DOI: 10.1111/1753-0407.12772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jingwei Yu
- Shenzhen University Diabetes Center, Shenzhen University Health Science Center, Department of Medicine, Shenzhen University, Shenzhen, China
- Department of Biology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen Su
- Shenzhen University Diabetes Center, Shenzhen University Health Science Center, Department of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Department of Physiology and Pathophysiology, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Department of Physiology and Pathophysiology, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Department of Physiology and Pathophysiology, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Abdelsalam M, Wahab AM, El Sayed Zaki M, Motawea M. MicroRNA-451 as an Early Predictor of Chronic Kidney Disease in Diabetic Nephropathy. Int J Nephrol 2020; 2020:8075376. [PMID: 32855824 PMCID: PMC7443237 DOI: 10.1155/2020/8075376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Diabetes mellitus is the leading cause of end-stage renal disease worldwide. Microalbuminuria is the cornerstone for the diagnosis of diabetic nephropathy. However, it is an inadequate marker for early diagnosis. MicroRNAs are not only new and promising markers for early diagnosis but also, but they may also play a role in the prevention of disease progression. METHODS This study included ninety patients with type 2 DM in addition to 30 control subjects. MicroRNA-451 expression in blood and plasma using real-time PCR was evaluated in addition to the classic diabetic nephropathy markers (serum creatinine, urinary albumin, and eGFR). RESULTS There was a significant difference between the studied groups versus control regarding serum creatinine, eGFR, urinary, and plasma microRNA-451 with p=0.0001. Patients with eGFR 60 ml/min/1.73 m2 showed a significantly higher plasma microRNA-451 (29.6 ± 1.6) and significantly lower urinary microRNA-451 (21 ± 0.9) in comparison to patients with eGFR >60 ml/min/1.73 m2 and p=0.0001. eGFR showed a positive correlation with urinary microRNA-451 and negative correlation with both plasma microRNA-451 and urinary albumin. Both plasma and urinary microRNA-451 are highly sensitive and specific markers for chronicity in diabetic nephropathy patients with sensitivity of 90.9% and 95.5% and specificity of 67.6% and 95.6%, respectively. CONCLUSION MicroRNA-451 is a promising early biomarker for chronic kidney disease in diabetic nephropathy with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - A. M. Wahab
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamad Motawea
- Endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Liu C, Zhuo H, Ye MY, Huang GX, Fan M, Huang XZ. LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J Med Sci 2020; 36:682-691. [PMID: 32391974 DOI: 10.1002/kjm2.12226] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy (DN), characterized by the chronic loss of kidney function during diabetes, is a long-term kidney disease that affects millions of populations. However, the etiology of DN remains unclear. DN cell model was established by treating HK-2 cells with high glucose (HG) in vitro. Expression of metastasis-associated lung adenocarcinoma transcript-1 (MALAT1), miR-30c, nucleotide binding and oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, IL-1β, and IL-18 in treated HK-2 cells were tested by quantitative polymerase chain reaction. HK-2 cell pyroptosis was assessed using flow cytometry analysis. Lactate dehydrogenase (LDH) activity was examined with a LDH assay kit. Correlation among MALAT1, miR-30c, and NLRP3 was examined via dual-luciferase reporter assay. Here, we revealed that MALAT1 was upregulated, but miR-30c was downregulated in HG-treated HK-2 cells, leading to upregulation of NLRP3 expression and cell pyroptosis. Knockdown of MALAT1 or overexpression of miR-30c protected HK-2 cells from HG-induced pyroptosis. Meanwhile, we found that MALAT1 promoted NLRP3 expression by sponging miR-30c through dual-luciferase reporter assay. Moreover, the co-transfection of sh-MALAT1 and miR-30c inhibitor could reverse the protective effects of the sh-MALAT1 on the HG-induced pyroptosis. These results confirmed that MALAT1 regulated HK-2 cell pyroptosis by inhibiting miR-30c targeting for NLRP3, contributing to a better understanding of DN pathogenesis and help to find out the effective treatment for DN.
Collapse
Affiliation(s)
- Chan Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hui Zhuo
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Mu-Yao Ye
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Gu-Xiang Huang
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Min Fan
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xian-Zhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
16
|
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2020; 15:327-345. [PMID: 30894700 DOI: 10.1038/s41581-019-0135-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
17
|
Ibrahim AA, Soliman HM, El-Lebedy D, Hassan M, Helmy NA, Abdel Hamid TA, Abdelhamid N. Expression of exosomal miR-21 and miR-29 in serum of children and adolescents with T1DM and persistent microalbuminuria. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Nascimento LRD, Domingueti CP. MicroRNAs: new biomarkers and promising therapeutic targets for diabetic kidney disease. ACTA ACUST UNITED AC 2019; 41:412-422. [PMID: 30742700 PMCID: PMC6788850 DOI: 10.1590/2175-8239-jbn-2018-0165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes mellitus associated with significant morbidity and mortality regarded as a global health issue. MicroRNAs - small RNA molecules responsible for the post-transcriptional regulation of gene expression by degradation of messenger RNA or translational repression of protein synthesis - rank among the factors linked to the development and progression of DKD. This study aimed to offer a narrative review on investigations around the use of microRNAs in the diagnosis, monitoring, and treatment of DKD. Various microRNAs are involved in the pathogenesis of DKD, while others have a role in nephroprotection and thus serve as promising therapeutic targets for DKD. Serum and urine microRNAs levels have also been considered in the early diagnosis and monitoring of individuals with DKD, since increases in albuminuria, decreases in the glomerular filtration rate, and progression of DKD have been linked to changes in the levels of some microRNAs.
Collapse
|
19
|
Is miRNA-375 a promising biomarker for early detection and monitoring of patients with type 2 diabetes? ACTA ACUST UNITED AC 2018; 3:e119-e122. [PMID: 30775601 PMCID: PMC6374562 DOI: 10.5114/amsad.2018.78775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
miRNAs are small, non-coding RNAs, functioning as negative suppressors of target gene expression. A significant proportion of the transcriptome is subject to miRNA modulation. A single miRNA determines the expression of hundreds of genes, while miRNAs are relatively stable in biological fluids. Thus, they have attracted scientific interest regarding their use as biomarkers for several diseases. miRNA-375 mainly influences β-cell function and insulin secretion. Several studies, primarily experimental, have assessed its role as a biomarker in type 2 diabetes, while recently obtained human evidence supports this potential role. Besides its diagnostic potential, miRNA-375 may also have therapeutic implications. In view of the growing epidemic of type 2 diabetes, there is an unmet need for identification of biomarkers for early recognition and monitoring of these patients. Long-term, prospective human studies are required to elucidate whether miRNA-375 can evolve as a key player in diagnosis and prognosis of type 2 diabetes.
Collapse
|
20
|
Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res Clin Pract 2018; 37:197-209. [PMID: 30254844 PMCID: PMC6147183 DOI: 10.23876/j.krcp.2018.37.3.197] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/01/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major renal complication of diabetes that leads to renal dysfunction and end-stage renal disease (ESRD). Major features of DKD include accumulation of extracellular matrix proteins and glomerular hypertrophy, especially in early stage. Transforming growth factor-β plays key roles in regulation of profibrotic genes and signal transducers such as Akt kinase and MAPK as well as endoplasmic reticulum stress, oxidant stress, and autophagy related to hypertrophy in diabetes. Many drugs targeting the pathogenic signaling in DKD (mostly through protein-coding genes) are under development. However, because of the limited number of protein-coding genes, noncoding RNAs (ncRNAs) including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are attracting more attention as potential new drug targets for human diseases. Some miRNAs and lncRNAs regulate each other (by hosting, enhancing transcription from the neighbor, hybridizing each other, and changing chromatin modifications) and create circuits and cascades enhancing the pathogenic signaling in DKD. In this short and focused review, the functional significance of ncRNAs (miRNAs and lncRNAs) in the early stages of DKD and their therapeutic potential are discussed.
Collapse
Affiliation(s)
- Mitsuo Kato
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
21
|
Al-Kafaji G, Al-Muhtaresh HA. Expression of microRNA‑377 and microRNA‑192 and their potential as blood‑based biomarkers for early detection of type 2 diabetic nephropathy. Mol Med Rep 2018; 18:1171-1180. [PMID: 29845236 DOI: 10.3892/mmr.2018.9040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
The increased incidence of diabetic nephropathy (DN) in type 2 diabetes (T2D) requires novel markers for the early detection of DN. Previously, microRNAs (miRs) have been demonstrated to be promising disease biomarkers. The present study evaluated the biomarker potential of DN‑associated miR‑377 and miR‑192 in the early stages of DN. The study included 85 participants: 55 patients with T2D (30 without DN and 25 with DN) and 30 healthy controls. The patients with T2D were classified according to albumin‑to‑creatinine ratio and were split into three groups: Normoalbuminuric group (n=30), microalbuminuric group (n=15) and macroalbuminuric group (n=10). Reverse transcription‑quantitative polymerase chain reaction analysis was used to evaluate blood miR expression. It was observed that there was higher miR‑377 expression and lower miR‑192 expression in T2D patients with and without DN compared with healthy controls (P<0.05). miR‑377 was higher in the normoalbuminuric group and gradually increased in the microalbuminuric and macroalbuminuric groups (P<0.05), whereas miR‑192 was lower in the macroalbuminuric group compared with the normoalbuminuric group (P<0.05). Regression analysis revealed direct associations between the two miRs and albuminuria (P<0.05). miR‑377 was independently associated with DN risk, even following multivariable adjustment, and albuminuria was the only predictor of miR‑377 (P<0.001). In discriminating overall patients from healthy subjects, ROC analysis revealed areas under the curve (AUCs) of 0.851 for miR377 and 0.774 for miR‑192 (P<0.001). In discriminating the normoalbuminuric group from the microalbuminuric/macroalbuminuric groups, the AUCs were 0.711 (P=0.008) and 0.70 (P=0.049) for miR‑377 and miR‑192, respectively. In patients with microalbuminuria and macroalbuminuria, miR‑377 correlated positively with albuminuria and negatively with renal function, whereas miR‑192 correlated negatively with albuminuria and positively with renal function (P=0.001), and the two miRs were correlated with known risk factors of DN (P<0.05). The results suggested that blood‑based miR‑377 and miR‑192 may serve as potential biomarkers for early detection of DN. Further validation studies are required with larger sample sizes.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al‑Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Haifa Abdulla Al-Muhtaresh
- Department of Molecular Medicine and Al‑Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
22
|
El-Samahy MH, Adly AA, Elhenawy YI, Ismail EA, Pessar SA, Mowafy MES, Saad MS, Mohammed HH. Urinary miRNA-377 and miRNA-216a as biomarkers of nephropathy and subclinical atherosclerotic risk in pediatric patients with type 1 diabetes. J Diabetes Complications 2018; 32:185-192. [PMID: 29175120 DOI: 10.1016/j.jdiacomp.2017.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Urinary microRNAs (miRNAs) play a role in the pathogenesis of chronic kidney disease (CKD). AIM To identify the expression of urinary miR-377 and miR-216a in 50 children and adolescents with type 1 diabetes (T1DM) compared with 50 healthy controls and assess their relation to the degree of albuminuria, glycemic control and carotid intimal thickness (CIMT) as an index of atherosclerosis. METHODS Diabetic subjects were divided into normoalbuminuric and microalbuminuric groups according to urinary albumin creatinine ration (UACR). Urinary miRNAs were assessed using real time polymerase chain reaction. CIMT was measured using high resolution carotid ultrasound. RESULTS The expression of urinary miR-377 was significantly higher in patients with microalbumiuria (median, 3.8) compared with 2.65 and 0.98 in normoalbuminic patients and healthy controls, respectively (p<0.05). Urinary miR-216a was significantly lower in all patients with type 1 diabetes and the lowest levels were among the microalbumiuric group. Significant positive correlations were found between urinary miR-377 and HbA1C, UACR and CIMT while urinary miR-216a was negatively correlated to these variables. CONCLUSIONS Urinary miR-377 and miR-216a can be considered early biomarkers of nephropathy in pediatric type 1 diabetes. Their correlation with CIMT provides insights on the subclinical atherosclerotic process that occurs in diabetic nephropathy.
Collapse
Affiliation(s)
| | - A A Adly
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - E A Ismail
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohammed Salah Saad
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
23
|
Uwaezuoke SN. The role of novel biomarkers in predicting diabetic nephropathy: a review. Int J Nephrol Renovasc Dis 2017; 10:221-231. [PMID: 28860837 PMCID: PMC5566367 DOI: 10.2147/ijnrd.s143186] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the microvascular complications of the kidney arising commonly from type 1 diabetes mellitus (T1DM), and occasionally from type 2 diabetes mellitus (T2DM). Microalbuminuria serves as an early indicator of DN risk and a predictor of its progression as well as cardiovascular disease risk in both T1DM and T2DM. Although microalbuminuria remains the gold standard for early detection of DN, it is not a sufficiently accurate predictor of DN risk due to some limitations. Thus, there is a paradigm shift to novel biomarkers which would help to predict DN risk early enough and possibly prevent the occurrence of end-stage kidney disease. These new biomarkers have been broadly classified into glomerular biomarkers, tubular biomarkers, biomarkers of inflammation, biomarkers of oxidative stress, and miscellaneous biomarkers which also include podocyte biomarkers, some of which are also considered as tubular and glomerular biomarkers. Although they are potentially useful for the evaluation of DN, current data still preclude the routine clinical use of majority of them. However, their validation using high-quality and large longitudinal studies is of paramount importance, as well as the subsequent development of a biomarker panel which can reliably predict and evaluate this renal microvascular disease. This paper aims to review the predictive role of these biomarkers in the evaluation of DN.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
24
|
Urinary glycated uromodulin in diabetic kidney disease. Clin Sci (Lond) 2017; 131:1815-1829. [DOI: 10.1042/cs20160978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/22/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
Advanced glycation end-products (AGEs) form during oxidative stress, which is increased in diabetes mellitus (DM). Uromodulin is a protein with a renal protective effect, and may be subject to glycation. The implications of uromodulin glycation and AGEs in the urine are not understood. Here, immunoprecipitation and liquid chromatography–mass spectrometry identified glycated uromodulin (glcUMOD) in the urine of 62.5% of patients with diabetic kidney disease (DKD), 20.0% of patients with non-diabetic chronic kidney disease (CKD), and no DM patients with normal renal function or healthy control participants; a finding replicated in a larger cohort of 84 patients with CKD in a case–control study (35 with DM, 49 without). Uromodulin forms high molecular weight polymers that associate with microvesicles and exosomes. Differential centrifugation identified uromodulin in the supernatant, microvesicles, and exosomes of the urine of healthy participants, but only in the supernatant of samples from patients with DKD, suggesting that glycation influences uromodulin function. Finally, the diagnostic and prognostic utility of measuring urinary glcUMOD concentration was examined. Urinary glcUMOD concentration was substantially higher in DKD patients than non-diabetic CKD patients. Urinary glcUMOD concentration predicted DKD status, particularly in patients with CKD stages 1–3a aged <65 years and with urine glcUMOD concentration ≥9,000 arbitrary units (AU). Urinary uromodulin is apparently glycated in DKD and forms AGEs, and glcUMOD may serve as a biomarker for DKD.
Collapse
|
25
|
Barreiro K, Holthofer H. Urinary extracellular vesicles. A promising shortcut to novel biomarker discoveries. Cell Tissue Res 2017; 369:217-227. [PMID: 28429073 PMCID: PMC5487850 DOI: 10.1007/s00441-017-2621-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
Proteomic and genomic techniques have reached full maturity and are providing unforeseen details for the comprehensive understanding of disease pathologies at a fraction of previous costs. However, for kidney diseases, many gaps in such information remain to inhibit major advances in the prevention, treatment and diagnostics of these devastating diseases, which have enormous global impact. The discovery of ubiquitous extracellular vesicles (EV) in all bodily fluids is rapidly increasing the fundamental knowledge of disease mechanisms and the ways in which cells communicate with distant locations in processes of cancer spread, immunological regulation, barrier functions and general modulation of cellular activity. In this review, we describe some of the most prominent research streams and findings utilizing urinary extracellular vesicles as highly versatile and dynamic tools with their extraordinary protein and small regulatory RNA species. While being a highly promising approach, the relatively young field of EV research suffers from a lack of adherence to strict standardization and carefully scrutinized methods for obtaining fully reproducible results. With the appropriate guidelines and standardization achieved, urine is foreseen as forming a unique, robust and easy route for determining accurate and personalized disease signatures and as providing highly useful early biomarkers of the disease pathology of the kidney and beyond.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. .,Freiburg Institute for Advanced Studies, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Hu R, Wang G, Yuan R, Xu Y, Yu T, Zhong L, Zhou Q, Ding S. An electrochemical biosensor for highly sensitive detection of microRNA-377 based on strand displacement amplification coupled with three-way junction. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
28
|
Mwangi JN, Chiu NHL. High Percentage of Isomeric Human MicroRNA and Their Analytical Challenges. Noncoding RNA 2016; 2:ncrna2040013. [PMID: 29657271 PMCID: PMC5831925 DOI: 10.3390/ncrna2040013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR) are short non-coding RNAs known to post-transcriptionally regulate gene expression, and have been reported as biomarkers for various diseases. miR have also been served as potential drug targets. The identity, functions and detection of a specific miR are determined by its RNA sequence, whose composition is made up of only 4 canonical ribonucleotides. Hence, among over two thousand human miR, their nucleotide compositions are expected to be similar but the extent of similarity has not been reported. In this study, the sequences of mature human miR were downloaded from miRBase, and collated using different tools to determine and compare their nucleotide compositions and sequences. 55% of all human miR were found to be structural isomers. The structural isomers of miR (SimiR) are defined as having the same size and identical nucleotide composition. A number of SimiR were also found to have high sequence similarities. To investigate the extent of SimiR in biological samples, three disease models were chosen, and disease-associated miR were identified from miR2Disease. Among the disease models, as high as 73% of miR were found to be SimiR. This report provides the missing information about human miR and highlights the challenges on the detection of SimiR.
Collapse
Affiliation(s)
- Joseph N Mwangi
- Department of Chemistry and Biochemistry, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| | - Norman H L Chiu
- Department of Chemistry and Biochemistry, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
29
|
Ma L, Zhang XQ, Zhou DX, Cui Y, Deng LL, Yang T, Shao Y, Ding M. Feasibility of urinary microRNA profiling detection in intrahepatic cholestasis of pregnancy and its potential as a non-invasive biomarker. Sci Rep 2016; 6:31535. [PMID: 27534581 PMCID: PMC4989235 DOI: 10.1038/srep31535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP), a pregnancy-related liver disease, leads to complications for both mother and fetus. Circulating microRNAs (miRNAs) have emerged as candidate biomarkers for many diseases. So far, the circulating miRNAs profiling of ICP has not been investigated. To assess the urinary miRNAs as non-invasive biomarkers for ICP, a differential miRNA profiling was initially analyzed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay in urinary samples from a screening set including 10 ICP and 10 healthy pregnancies. The selected candidate miRNAs were then validated by a validation set with 40 ICP and 50 healthy pregnancies using individual qRT-PCR assay. Compared with the expression in urine of healthy pregnant women, the expression levels of hsa-miR-151-3p and hsa-miR-300 were significantly down-regulated, whereas hsa-miR-671-3p and hsa-miR-369-5p were significantly up-regulated in urine from ICP patients (p < 0.05 and false discovery rate < 0.05). A binary logistic regression model was constructed using the four miRNAs. The area under the receiver operating characteristic curve was 0.913 (95% confidence interval = 0.847 to 0.980; sensitivity = 82.9%, specificity = 87.0%). Therefore, urinary microRNA profiling detection in ICP is feasible and maternal urinary miRNAs have the potential to be non-invasive biomarkers for the diagnosis of ICP.
Collapse
Affiliation(s)
- Li Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiao-Qing Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Da-Xue Zhou
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400030, P. R.China
| | - Yue Cui
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lin-Lin Deng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Ting Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Min Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
30
|
Jovanovic I, Zivkovic M, Kostic M, Krstic Z, Djuric T, Kolic I, Alavantic D, Stankovic A. Transcriptome-wide based identification of miRs in congenital anomalies of the kidney and urinary tract (CAKUT) in children: the significant upregulation of tissue miR-144 expression. J Transl Med 2016; 14:193. [PMID: 27364533 PMCID: PMC4929761 DOI: 10.1186/s12967-016-0955-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The genetic cause of most congenital anomalies of the kidney and urinary tract (CAKUT) cases remains unknown, therefore the novel approaches in searching for the common disease denominators are required. miRs regulate gene expression in humans and therefore have potentially therapeutic and biomarker properties. No studies thus far have attempted to explore the miRs in human CAKUT. We applied a new strategy to identify most specific miRs associated with CAKUT, in pediatric patients. METHODS Data from the whole genome expression, gathered from ureter tissue samples of 19 patients and 7 controls, were used for the bioinformatic prediction of miRs activity in CAKUT. We integrated microarray gene expression data and miR target predictions from multiple prediction algorithms using Co-inertia analysis (CIA) in conjunction with correspondence analysis and between group analysis, to produce a ranked list of miRs associated with CAKUT. The CIA included five different sequence based miR target prediction algorithms and the Co-expression Meta-analysis of miR Targets. For the experimental validation of expression of miRs identified by the CIA we used tissue from 36 CAKUT patients and 9 controls. The results of gene ontology (GO) analysis on co-expressed targets of miRs associated with CAKUT were used for the selection of putative biological processes relevant to CAKUT. RESULTS We identified 7 miRs with a potential role in CAKUT. The top ranked miRs from miRCos communities 4, 1 and 7 were chosen for experimental validation of expression in CAKUT tissue. The 5.7 fold increase of hsa-miR-144 expression in human tissue from CAKUT patients compared to controls (p = 0.005) was observed. From the GO we selected 7 biological processes that could contribute to CAKUT, which genes are potentially influenced by hsa-miR-144. The hsa-miR-200a, hsa-miR-183 and hsa-miR-375 weren't differentially expressed in CAKUT. CONCLUSIONS This study shows that integrative approach applied here was useful in identification of the miRs associated with CAKUT. The hsa-miR-144, first time identified in CAKUT, could be connected with biological processes crucial for normal development of kidney and urinary tract. Further functional analysis must follow to reveal the impact of hsa-miR-144 on CAKUT occurrence.
Collapse
Affiliation(s)
- Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Mirjana Kostic
- Nephrology and Urology Departments, University Children's Hospital, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Zoran Krstic
- Nephrology and Urology Departments, University Children's Hospital, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Ivana Kolic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Dragan Alavantic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| |
Collapse
|
31
|
Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases. Exp Biol Med (Maywood) 2016; 241:783-99. [PMID: 27013544 DOI: 10.1177/1535370216638770] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
32
|
Delić D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, Zimdahl H, Pullen SS, Urquhart R. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS One 2016; 11:e0150154. [PMID: 26930277 PMCID: PMC4773074 DOI: 10.1371/journal.pone.0150154] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/10/2016] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies.
Collapse
Affiliation(s)
- Denis Delić
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
- * E-mail:
| | - Claudia Eisele
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
| | - Ramona Schmid
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
| | - Franziska Wiech
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
| | - Martin Gerl
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
| | - Heike Zimdahl
- R&D Project Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397 Biberach, Germany
| | - Steven S. Pullen
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877–0368, United States of America
| | - Richard Urquhart
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877–0368, United States of America
| |
Collapse
|
33
|
Nassirpour R, Raj D, Townsend R, Argyropoulos C. MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond. Food Chem Toxicol 2016; 98:73-88. [PMID: 26925770 DOI: 10.1016/j.fct.2016.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 12/13/2022]
Abstract
Chronic Kidney Disease (CKD) is a common health problem affecting 1 in 12 Americans. It is associated with elevated risks of mortality, cardiovascular disease, and high costs for the treatment of renal failure with dialysis or transplantation. Advances in CKD care are impeded by the lack of biomarkers for early diagnosis, assessment of the extent of tissue injury, estimation of disease progression, and evaluation of response to therapy. Such biomarkers should improve the performance of existing measures of renal functional impairment (estimated glomerular filtration rate, eGFR) or kidney damage (proteinuria). MicroRNAs (miRNAs) a class of small, non-coding RNAs that act as post-transcriptional repressors are gaining momentum as biomarkers in a number of disease areas. In this review, we examine the potential utility of miRNAs as promising biomarkers for renal disease. We explore the performance of miRNAs as biomarkers in two clinically important forms of CKD, diabetes and the nephropathy developing in kidney transplant recipients. Finally, we highlight the pitfalls and opportunities of miRNAs and provide a broad perspective for the future clinical development of miRNAs as biomarkers in CKD beyond the current gold standards of eGFR and albuminuria.
Collapse
Affiliation(s)
- Rounak Nassirpour
- Drug Safety, Pfizer Worldwide Research and Development, Andover, MA, USA
| | - Dominic Raj
- Department of Internal Medicine, Division of Renal Disease and Hypertension, The George Washington University School of Medicine, Washington, DC, USA
| | - Raymond Townsend
- Department of Internal Medicine, Nephrology and Hypertension, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | |
Collapse
|
34
|
Gluhovschi C, Gluhovschi G, Petrica L, Timar R, Velciov S, Ionita I, Kaycsa A, Timar B. Urinary Biomarkers in the Assessment of Early Diabetic Nephropathy. J Diabetes Res 2016; 2016:4626125. [PMID: 27413755 PMCID: PMC4927990 DOI: 10.1155/2016/4626125] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a frequent and severe complication of diabetes mellitus (DM). Its diagnosis in incipient stages may allow prompt interventions and an improved prognosis. Towards this aim, biomarkers for detecting early DN can be used. Microalbuminuria has been proven a remarkably useful biomarker, being used for diagnosis of DN, for assessing its associated condition-mainly cardiovascular ones-and for monitoring its progression. New researches are pointing that some of these biomarkers (i.e., glomerular, tubular, inflammation markers, and biomarkers of oxidative stress) precede albuminuria in some patients. However, their usefulness is widely debated in the literature and has not yet led to the validation of a new "gold standard" biomarker for the early diagnosis of DN. Currently, microalbuminuria is an important biomarker for both glomerular and tubular injury. Other glomerular biomarkers (transferrin and ceruloplasmin) are under evaluation. Tubular biomarkers in DN seem to be of a paramount importance in the early diagnosis of DN since tubular lesions occur early. Additionally, biomarkers of inflammation, oxidative stress, podocyte biomarkers, and vascular biomarkers have been employed for assessing early DN. The purpose of this review is to provide an overview of the current biomarkers used for the diagnosis of early DN.
Collapse
Affiliation(s)
- Cristina Gluhovschi
- Division of Nephrology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
- *Cristina Gluhovschi:
| | | | - Ligia Petrica
- Division of Nephrology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Romulus Timar
- Department of Diabetes and Metabolic Diseases, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Silvia Velciov
- Division of Nephrology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Ioana Ionita
- Division of Hematology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Adriana Kaycsa
- Department of Biochemistry, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Bogdan Timar
- Department of Diabetes and Metabolic Diseases, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| |
Collapse
|
35
|
Jia Y, Guan M, Zheng Z, Zhang Q, Tang C, Xu W, Xiao Z, Wang L, Xue Y. miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy. J Diabetes Res 2016; 2016:7932765. [PMID: 26942205 PMCID: PMC4749815 DOI: 10.1155/2016/7932765] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND miR-192, miR-194, and miR-215 are enriched in the kidney and play roles in the pathogenesis of diabetic nephropathy (DN). Extracellular vesicles (EVs) can be detected in body fluids and may serve as disease biomarkers. METHODS Eighty type 2 diabetes patients with normoalbuminuria (n = 30), microalbuminuria (n = 30), or macroalbuminuria (n = 20), as well as 10 healthy controls, were enrolled in this study. Real-time PCR was used to evaluate urinary EV miRNAs expression. RESULTS The miR-192 levels were significantly higher than the miR-194 and miR-215 levels in urine EVs and all three miRNAs were significantly increased in the microalbuminuric group compared with the normoalbuminuric and control subjects but were decreased in the macroalbuminuric group. In patients with normoalbuminuria and microalbuminuria, miR-192 was positively correlated with albuminuria (r = 0.357, P = 0.005) levels and transforming growth factor- (TGF-) β1 (r = 0.356, P = 0.005) expression. Receiver operating characteristic (ROC) curve analysis revealed that miR-192 was better than miR-194 and miR-215 in discriminating the normoalbuminuric group from the microalbuminuric group. Exposure of human renal tubular epithelial cells to high glucose increased the expression of both miRNAs in cellular supernatant EVs, indicating a potential source. CONCLUSION These results suggest the potential use of urinary EV miR-192 as a biomarker of the early stage of DN.
Collapse
Affiliation(s)
- Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuan Tang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenwei Xu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhizhou Xiao
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- *Yaoming Xue:
| |
Collapse
|
36
|
Bhatt K, Kato M, Natarajan R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2015; 310:F109-18. [PMID: 26538441 DOI: 10.1152/ajprenal.00387.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNA) are endogenously produced short noncoding regulatory RNAs that can repress gene expression by posttranscriptional mechanisms. They can therefore influence both normal and pathological conditions in diverse biological systems. Several miRNAs have been detected in kidneys, where they have been found to be crucial for renal development and normal physiological functions as well as significant contributors to the pathogenesis of renal disorders such as diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and others, due to their effects on key genes involved in these disease processes. miRNAs have also emerged as novel biomarkers in these renal disorders. Due to increasing evidence of their actions in various kidney segments, in this mini-review we discuss the functional significance of altered miRNA expression during the development of renal pathologies and highlight emerging miRNA-based therapeutics and diagnostic strategies for early detection and treatment of kidney diseases.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
37
|
Montero RM, Covic A, Gnudi L, Goldsmith D. Diabetic nephropathy: What does the future hold? Int Urol Nephrol 2015; 48:99-113. [PMID: 26438328 PMCID: PMC4705119 DOI: 10.1007/s11255-015-1121-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/19/2015] [Indexed: 12/24/2022]
Abstract
The consensus management of diabetic nephropathy (DN) in 2015 involves good control of glycaemia, dyslipidaemia and blood pressure (BP). Blockade of the renin-angiotensin-aldosterone system using angiotensin-converting enzyme inhibitors, angiotensin-2 receptor blockers or mineralocorticoid inhibitors are key therapeutic approaches, shown to be beneficial once overt nephropathy is manifest, as either, or both, of albuminuria and loss of glomerular filtration rate. Some significant additional clinical benefits in slowing the progression of DN was reported from the Remission clinic experience, where simultaneous intensive control of BP, tight glycaemic control, weight loss, exercise and smoking cessation were prioritised in the management of DN. This has not proved possible to translate to more conventional clinical settings. This review briefly looks over the history and limitations of current therapy from landmark papers and expert reviews, and following an extensive PubMed search identifies the most promising clinical biomarkers (both established and proposed). Many challenges need to be addressed urgently as in order to obtain novel therapies in the clinic; we also need to examine what we mean by remission, stability and progression of DN in the modern era.
Collapse
Affiliation(s)
- R M Montero
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK.
| | - A Covic
- Hospital "C.I.Parhon" and University of Medicine "Grigore T Popa", Iasi, Romania
| | - L Gnudi
- Cardiovascular Division, Department of Diabetes and Endocrinology, Guy's and St Thomas' Hospital, School of Medicine and Life Science, King's College London, London, UK
| | - D Goldsmith
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
38
|
Hsu YC, Lei CC, Ho C, Shih YH, Lin CL. Potential biomarkers associated with diabetic glomerulopathy through proteomics. Ren Fail 2015; 37:1308-15. [PMID: 26364511 DOI: 10.3109/0886022x.2015.1077321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by the development of progressive glomerulosclerotic lesions gradually leading to an increasing loss of functioning kidney parenchyma. Relatively little proteomic research of isolated glomeruli of experimental animal models has been done so far. Isolated glomerular proteomics is an innovative tool that potentially detects simultaneous expressions of glomeruli in diabetic pathological contexts. We compared the isolated glomerular profiles of rats with and without diabetes. The proteins in the aliquots of glomeruli were subjected to two-dimensional gel electrophoresis. The protein spots were matched and quantified using an imaging analysis system. The peptide mass fingerprints were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and a bioinformation search. We found that diabetes increased collagen type I and collagen type IV levels in diabetic glomeruli when compared to normal control group using Dynabeads. We found that rats with diabetes had significantly higher abundance of the Protein disulfide isomerase associated 3, Aspartoacylase-3,3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase, Lactamase beta 2 and Agmat protein. However, diabetic glomeruli in rats had significantly lower levels of the Regucalcin, rCG52140, Aldo-keto reductase family 1, Peroxiredoxin 1, and l-arginine: glycine amidinotransferase. These proteins of interest were reported to modulate disturbances in the homeostasis of endoplasmic reticulum stress, disturbance of inflammatory and fibrinogenic activities, impairing endothelial function, and dysregulation in the antioxidation capacity/oxidative stress in several tissue types under pathological contexts. Taken together, our high-throughput isolated glomerular proteomic findings indicated that multiple pathological reactions presumably occurred in DN.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- a Department of Nephrology , Chang Gung Memorial Hospital , Chiayi , Taiwan .,b Department of Kidney and Diabetic Complications Research Team (KDCRT) , Chang Gung Memorial Hospital , Chiayi , Taiwan .,c Chronic Kidney Disease Care Center, Chang Gung Memorial Hospital , Chiayi , Taiwan
| | - Chen-Chou Lei
- a Department of Nephrology , Chang Gung Memorial Hospital , Chiayi , Taiwan .,b Department of Kidney and Diabetic Complications Research Team (KDCRT) , Chang Gung Memorial Hospital , Chiayi , Taiwan .,c Chronic Kidney Disease Care Center, Chang Gung Memorial Hospital , Chiayi , Taiwan
| | - Cheng Ho
- d Division of Endocrinology and Metabolism , Chang Gung Memorial Hospital , Chiayi , Taiwan
| | - Ya-Hsueh Shih
- a Department of Nephrology , Chang Gung Memorial Hospital , Chiayi , Taiwan .,b Department of Kidney and Diabetic Complications Research Team (KDCRT) , Chang Gung Memorial Hospital , Chiayi , Taiwan .,c Chronic Kidney Disease Care Center, Chang Gung Memorial Hospital , Chiayi , Taiwan
| | - Chun-Liang Lin
- a Department of Nephrology , Chang Gung Memorial Hospital , Chiayi , Taiwan .,b Department of Kidney and Diabetic Complications Research Team (KDCRT) , Chang Gung Memorial Hospital , Chiayi , Taiwan .,c Chronic Kidney Disease Care Center, Chang Gung Memorial Hospital , Chiayi , Taiwan .,e Kidney Research Center, Chang Gung Memorial Hospital , Taipei , Taiwan , and.,f School of Traditional Chinese Medicine, Chang Gung University College of Medicine , Tao-Yuan , Taiwan
| |
Collapse
|
39
|
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 2015; 1353:72-88. [PMID: 25877817 PMCID: PMC4607544 DOI: 10.1111/nyas.12758] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by posttranscriptional and epigenetic mechanisms and thereby affect many cellular processes and disease states. Over 2,000 human mature miRNAs have been identified, and at least 60% of all human protein-coding genes are known to be regulated by miRNAs. MicroRNA biogenesis involves classical transcription regulation and processing by key ribonucleases, as well as other protein factors and epigenetic mechanisms. Diabetic nephropathy (DN), a severe microvascular complication frequently associated with diabetes mellitus, is a major cause of renal failure. Although several mechanisms of regulation of key renal genes implicated in DN pathogenesis have been identified, a greater understanding is needed to develop better treatment modalities. Recent studies show that miRNAs induced in renal cells in vivo and in vitro under diabetic conditions can promote the accumulation of extracellular matrix proteins related to fibrosis and glomerular dysfunction. In this review, we highlight the significance of the expression of miRNAs in various stages of DN and emerging approaches to exploit them as biomarkers for early detection or novel therapeutic targets to prevent progression of DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
40
|
Urinary MicroRNA Profiling Predicts the Development of Microalbuminuria in Patients with Type 1 Diabetes. J Clin Med 2015; 4:1498-517. [PMID: 26239688 PMCID: PMC4519802 DOI: 10.3390/jcm4071498] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/06/2015] [Accepted: 07/14/2015] [Indexed: 12/27/2022] Open
Abstract
Microalbuminuria provides the earliest clinical marker of diabetic nephropathy among patients with Type 1 diabetes, yet it lacks sensitivity and specificity for early histological manifestations of disease. In recent years microRNAs have emerged as potential mediators in the pathogenesis of diabetes complications, suggesting a possible role in the diagnosis of early stage disease. We used quantiative polymerase chain reaction (qPCR) to evaluate the expression profile of 723 unique microRNAs in the normoalbuminuric urine of patients who did not develop nephropathy (n = 10) relative to patients who subsequently developed microalbuminuria (n = 17). Eighteen microRNAs were strongly associated with the subsequent development of microalbuminuria, while 15 microRNAs exhibited gender-related differences in expression. The predicted targets of these microRNAs map to biological pathways known to be involved in the pathogenesis and progression of diabetic renal disease. A microRNA signature (miR-105-3p, miR-1972, miR-28-3p, miR-30b-3p, miR-363-3p, miR-424-5p, miR-486-5p, miR-495, miR-548o-3p and for women miR-192-5p, miR-720) achieved high internal validity (cross-validated misclassification rate of 11.1%) for the future development of microalbuminuria in this dataset. Weighting microRNA measurements by their number of kidney-relevant targets improved the prognostic performance of the miRNA signature (cross-validated misclassification rate of 7.4%). Future studies are needed to corroborate these early observations in larger cohorts.
Collapse
|
41
|
Zhang F, Cheng X, Yuan Y, Wu J, Gao Y. Urinary microRNA can be concentrated, dried on membranes and stored at room temperature in vacuum bags. PeerJ 2015. [PMID: 26213651 PMCID: PMC4512770 DOI: 10.7717/peerj.1082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Urine accumulates traces of changes that occur in the body and can potentially serve as a better biomarker source. Urinary microRNA is a promising class of non-invasive disease biomarkers. However, long-term frozen human urine samples are not a good source for the extraction of urinary microRNA. In this paper, we demonstrate that urinary microRNA can be concentrated, dried on membranes and stored in vacuum bags at room temperature for several months. The amount of total RNA on the membranes after storage at room temperature for three months was unchanged. The levels of miR-16 and miR-21 exhibited no significant differences (P = 0.564, 0.386). This simple and economical method makes the large-scale storage of clinical samples of urinary microRNA or other nucleic acids possible.
Collapse
Affiliation(s)
- Fanshuang Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Xiaoyu Cheng
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Yuan Yuan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Jianqiang Wu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Youhe Gao
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College , Beijing , China ; Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University , Beijing , China
| |
Collapse
|
42
|
Barupal JK, Saini AK, Chand T, Meena A, Beniwal S, Suthar JR, Meena N, Kachhwaha S, Kothari SL. ExcellmiRDB for Translational Genomics: A Curated Online Resource for Extracellular MicroRNAs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:24-30. [DOI: 10.1089/omi.2014.0106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jitendra Kumar Barupal
- Department of Botany, University of Rajasthan, Jaipur, India
- Barupal Research Foundation, Jaisalmer, India
| | | | - Tara Chand
- Barupal Research Foundation, Jaisalmer, India
| | - Arun Meena
- Barupal Research Foundation, Jaisalmer, India
| | | | - Jetha Ram Suthar
- Department of Botany, University of Rajasthan, Jaipur, India
- Barupal Research Foundation, Jaisalmer, India
| | | | | | - Shanker Lal Kothari
- Department of Botany, University of Rajasthan, Jaipur, India
- Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
43
|
Abstract
Diabetic nephropathy (DN), a severe microvascular complication frequently associated with both type 1 and type 2 diabetes mellitus, is a leading cause of renal failure. The condition can also lead to accelerated cardiovascular disease and macrovascular complications. Currently available therapies have not been fully efficacious in the treatment of DN, suggesting that further understanding of the molecular mechanisms underlying the pathogenesis of DN is necessary for the improved management of this disease. Although key signal transduction and gene regulation mechanisms have been identified, especially those related to the effects of hyperglycaemia, transforming growth factor β1 and angiotensin II, progress in functional genomics, high-throughput sequencing technology, epigenetics and systems biology approaches have greatly expanded our knowledge and uncovered new molecular mechanisms and factors involved in DN. These mechanisms include DNA methylation, chromatin histone modifications, novel transcripts and functional noncoding RNAs, such as microRNAs and long noncoding RNAs. In this Review, we discuss the significance of these emerging mechanisms, how they mediate the actions of growth factors to augment the expression of extracellular matrix and inflammatory genes associated with DN and their potential usefulness as diagnostic biomarkers or novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
44
|
Urine miRNA in nephrotic syndrome. Clin Chim Acta 2014; 436:308-13. [PMID: 24992527 DOI: 10.1016/j.cca.2014.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022]
Abstract
Nephrotic syndrome is a common problem in clinical nephrology. In general, nephrotic syndrome is pathognomonic of glomerular disease, but the underlying pathological etiology is highly variable. Although kidney biopsy is the standard method to classify the histology and determine the extent of renal scarring, it is an invasive procedure with potential complications, and is generally not suitable for serial monitoring. MicroRNAs (miRNAs) are short noncoding RNA molecules that regulate gene expression. Recent studies show that the urinary levels of several miRNAs are significantly changed in nephrotic syndrome; some appear to be disease specific, others being damage related. Specifically, urinary miR-192 level is lower in patients with diabetic nephropathy than other causes of nephrotic syndrome, while patients with minimal change nephropathy or focal glomerulosclerosis had higher urinary miR-200c level than those with other diagnosis. Elevated urinary miR-21, miR-216a, and miR-494 levels may predict a high risk of disease progression and renal function loss, irrespective of the histological diagnosis. Furthermore, a number of small scale studies suggest that the urinary levels of certain miRNA targets may assist in the diagnosis and assessment of disease activity in patients with lupus nephritis. Since miRNA in urinary sediment is relatively stable and easily quantified, it has the potential to be developed as biomarkers for disease diagnosis and monitoring. However, available published evidence is limited to small scale studies. Further research is urgently needed in many areas.
Collapse
|
45
|
McClelland A, Hagiwara S, Kantharidis P. Where are we in diabetic nephropathy. Curr Opin Nephrol Hypertens 2014; 23:80-6. [DOI: 10.1097/01.mnh.0000437612.50040.ae] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64:85-94. [PMID: 23770198 PMCID: PMC3762900 DOI: 10.1016/j.freeradbiomed.2013.06.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
The incidence of diabetes is escalating worldwide and, consequently, this has become a major health care problem. Moreover, both type 1 and type 2 diabetes are associated with significantly accelerated rates of microvascular complications, including retinopathy, nephropathy, and neuropathy, as well as macrovascular complications such as atherosclerotic cardiovascular and hypertensive diseases. Key factors have been implicated in leading to these complications, including hyperglycemia, insulin resistance, dyslipidemia, advanced glycation end products, growth factors, inflammatory cytokines/chemokines, and related increases in cellular oxidant stress (including mitochondrial) and endoplasmic reticulum stress. However, the molecular mechanisms underlying the high incidence of diabetic complications, which often progress despite glycemic control, are still not fully understood. MicroRNAs (miRNAs) are short noncoding RNAs that have elicited immense interest in recent years. They repress target gene expression via posttranscriptional mechanisms and have diverse cellular and biological functions. Herein, we discuss the role of miRNAs in the pathobiology of various diabetic complications, their involvement in oxidant stress, and also the potential use of differentially expressed miRNAs as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|