1
|
Bai F, Bono V, Borghi L, Bonazza F, Falcinella C, Vitaletti V, Miraglia F, Trunfio M, Calcagno A, Cusato J, Vegni E, d’Arminio Monforte A, Marchetti G. Association between tight junction proteins and cognitive performance in untreated persons with HIV. AIDS 2024; 38:1292-1303. [PMID: 38704619 PMCID: PMC11216391 DOI: 10.1097/qad.0000000000003923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) still affects persons with HIV (PWH) and their pathogenesis is not completely understood. We aimed to explore the association between plasma and cerebrospinal fluid (CSF) markers of blood-brain barrier (BBB) impairment and HAND in untreated PWH. DESIGN Cross-sectional study. METHODS We enrolled untreated PWH, who underwent blood examinations and lumbar puncture to measure inflammation (IL-15, TNF-α), BBB damage (zonulin and tight junction proteins, tight junction proteins: occludin, claudin-5) and endothelial adhesion molecules (VCAM-1, ICAM-1). A comprehensive neurocognitive battery was used to diagnose HAND (Frascati criteria). RESULTS Twenty-one patients (21/78, 26.9%) patients presented HAND (100% ANI). HAND patients displayed more frequently non-CNS AIDS-defining conditions, lower nadir CD4 + T cells and increased CD4 + T-cell exhaustion (lower CD4 + CD127 + and CD4 + CD45RA + T-cell percentages), in comparison to individuals without cognitive impairment. Furthermore, HAND was characterized by higher plasma inflammation (IL-15) but lower CSF levels of biomarkers of BBB impairment (zonulin and occludin). The association between BBB damage with HAND was confirmed by fitting a multivariable logistic regression. CSF/plasma endothelial adhesion molecules were not associated with HAND but with a poor performance in different cognitive domains. CONCLUSION By showing heightened inflammation and BBB impairment, our study suggests loss of BBB integrity as a possible factor contributing to the development of HAND in untreated PWH.
Collapse
Affiliation(s)
| | | | - Lidia Borghi
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Federica Bonazza
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Camilla Falcinella
- Unit of Infectious Diseases, ASST della Valle Olona, Busto Arsizio Hospital, Busto Arsizio
| | | | | | | | | | - Jessica Cusato
- Laboratory of Pharmacology and Pharmacotherapy, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Vegni
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | | | | |
Collapse
|
2
|
Skurlova M, Holubova K, Kleteckova L, Kozak T, Kubova H, Horacek J, Vales K. Chemobrain in blood cancers: How chemotherapeutics interfere with the brain's structure and functionality, immune system, and metabolic functions. Med Res Rev 2024; 44:5-22. [PMID: 37265248 DOI: 10.1002/med.21977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023]
Abstract
Cancer treatment brings about a phenomenon not fully clarified yet, termed chemobrain. Its strong negative impact on patients' well-being makes it a trending topic in current research, interconnecting many disciplines from clinical oncology to neuroscience. Clinical and animal studies have often reported elevated concentrations of proinflammatory cytokines in various types of blood cancers. This inflammatory burst could be the background for chemotherapy-induced cognitive deficit in patients with blood cancers. Cancer environment is a dynamic interacting system. The review puts into close relationship the inflammatory dysbalance and oxidative/nitrosative stress with disruption of the blood-brain barrier (BBB). The BBB breakdown leads to neuroinflammation, followed by neurotoxicity and neurodegeneration. High levels of intracellular reactive oxygen species (ROS) induce the progression of cancer resulting in increased mutagenesis, conversion of protooncogenes to oncogenes, and inactivation of tumor suppression genes to trigger cancer cell growth. These cell alterations may change brain functionality, as well as morphology. Multidrug chemotherapy is not without consequences to healthy tissue and could even be toxic. Specific treatment impacts brain function and morphology, functions of the immune system, and metabolism in a unique mixture. In general, a chemo-drug's effects on cognition in cancer are not direct and/or in-direct, usually a combination of effects is more probable. Last but not least, chemotherapy strongly impacts the immune system and could contribute to BBB disruption. This review points out inflammation as a possible mechanism of brain damage during blood cancers and discusses chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- M Skurlova
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - K Holubova
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - L Kleteckova
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - T Kozak
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - H Kubova
- Department of Internal Medicine and Hematology, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Horacek
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - K Vales
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
3
|
Fiorillo A, Gallego JJ, Casanova-Ferrer F, Giménez-Garzó C, Urios A, Ballester MP, Durbán L, Rios MP, Megías J, San Miguel T, Kosenko E, Escudero-García D, Benlloch S, Felipo V, Montoliu C. Mild Cognitive Impairment Is Associated with Enhanced Activation of Th17 Lymphocytes in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:10407. [PMID: 37373554 DOI: 10.3390/ijms241210407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) may show mild cognitive impairment (MCI). The mechanisms involved remain unclear. The plasma concentrations of several cytokines and chemokines were measured in 71 NAFLD patients (20 with and 51 without MCI) and 61 controls. Characterization and activation of leukocyte populations and CD4+ sub-populations were carried out and analyzed by flow cytometry. We analyzed the cytokines released from CD4+ cell cultures and the mRNA expression of transcription factors and receptors in peripheral blood mononuclear cells. The appearance of MCI in NAFLD patients was associated with increased activation of CD4+ T lymphocytes, mainly of the Th17 subtype, increased plasma levels of pro-inflammatory and anti-inflammatory cytokines such as IL-17A, IL-23, IL-21, IL-22, IL-6, INF-γ, and IL-13, and higher expression of the CCR2 receptor. Constitutive expression of IL-17 was found in cultures of CD4+ cells from MCI patients, reflecting Th17 activation. High IL-13 plasma levels were predictive of MCI and could reflect a compensatory anti-inflammatory response to the increased expression of pro-inflammatory cytokines. This study identified some specific alterations of the immune system associated with the appearance of neurological alterations in MCI patients with NAFLD that could be the basis to improve and restore cognitive functions and quality of life in these patients.
Collapse
Affiliation(s)
- Alessandra Fiorillo
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Juan-José Gallego
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Franc Casanova-Ferrer
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Carla Giménez-Garzó
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Amparo Urios
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Maria-Pilar Ballester
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Lucia Durbán
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Maria-Pilar Rios
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Javier Megías
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Teresa San Miguel
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Elena Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Desamparados Escudero-García
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Salvador Benlloch
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carmina Montoliu
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Balzano T, Leone P, Ivaylova G, Castro MC, Reyes L, Ramón C, Malaguarnera M, Llansola M, Felipo V. Rifaximin Prevents T-Lymphocytes and Macrophages Infiltration in Cerebellum and Restores Motor Incoordination in Rats with Mild Liver Damage. Biomedicines 2021; 9:biomedicines9081002. [PMID: 34440206 PMCID: PMC8393984 DOI: 10.3390/biomedicines9081002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
In patients with liver cirrhosis, minimal hepatic encephalopathy (MHE) is triggered by a shift in peripheral inflammation, promoting lymphocyte infiltration into the brain. Rifaximin improves neurological function in MHE by normalizing peripheral inflammation. Patients who died with steatohepatitis showed T-lymphocyte infiltration and neuroinflammation in the cerebellum, suggesting that MHE may already occur in these patients. The aims of this work were to assess, in a rat model of mild liver damage similar to steatohepatitis, whether: (1) the rats show impaired motor coordination in the early phases of liver damage; (2) this is associated with changes in the immune system and infiltration of immune cells into the brain; and (3) rifaximin improves motor incoordination, associated with improved peripheral inflammation, reduced infiltration of immune cells and neuroinflammation in the cerebellum, and restoration of the alterations in neurotransmission. Liver damage was induced by carbon tetrachloride (CCl4) injection over four weeks. Peripheral inflammation, immune cell infiltration, neuroinflammation, and neurotransmission in the cerebellum and motor coordination were assessed. Mild liver damage induces neuroinflammation and altered neurotransmission in the cerebellum and motor incoordination. These alterations are associated with increased TNFa, CCL20, and CX3CL1 in plasma and cerebellum, IL-17 and IL-15 in plasma, and CCL2 in cerebellum. This promotes T-lymphocyte and macrophage infiltration in the cerebellum. Early treatment with rifaximin prevents the shift in peripheral inflammation, immune cell infiltration, neuroinflammation, and motor incoordination. This report provides new clues regarding the mechanisms of the beneficial effects of rifaximin, suggesting that early rifaximin treatment could prevent neurological impairment in patients with steatohepatitis.
Collapse
|
5
|
Pang Y, Li C, Wang S, Ba W, Yu T, Pei G, Bi D, Liang H, Pan X, Zhu T, Gou M, Han Y, Li Q. A novel protein derived from lamprey supraneural body tissue with efficient cytocidal actions against tumor cells. Cell Commun Signal 2017; 15:42. [PMID: 29037260 PMCID: PMC5644163 DOI: 10.1186/s12964-017-0198-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/05/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In previous research, we found that cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells, but the protein with cytocidal activity was unidentified. METHODS A novel lamprey immune protein (LIP) as defense molecule was first purified and identified in jawless vertebrates (cyclostomes) using hydroxyapatite column and Q Sepharose Fast Flow column. After LIP stimulation, morphological changes of tumor cells were analysed and measured whether in vivo or in vitro. RESULTS LIP induces remarkable morphological changes in tumor cells, including cell blebbing, cytoskeletal alterations, mitochondrial fragmentation and endoplasmic reticulum vacuolation, and most of the cytoplasmic and organelle proteins are released following treatment with LIP. LIP evokes an elevation of intracellular calcium and inflammatory molecule levels. Our analysis of the cytotoxic mechanism suggests that LIP can upregulate the expression of caspase 1, RIPK1, RIP3 to trigger pyroptosis and necroptosis. To examine the effect of LIP in vivo, tumor xenograft experiments were performed, and the results indicated that LIP inhibits tumor growth without damage to mice. In addition, the cytotoxic action of LIP depended on the phosphatidylserine (PS) content of the cell membrane. CONCLUSIONS These observations suggest that LIP plays a crucial role in tumor cell survival and growth. The findings will also help to elucidate the mechanisms of host defense in lamprey.
Collapse
Affiliation(s)
- Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Shiyue Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Wei Ba
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Tao Yu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Guangying Pei
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Dan Bi
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiong Pan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|