1
|
Zhou Y, Qiu T, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J. Research progress on the role of mitochondria in the process of hepatic ischemia-reperfusion injury. Gastroenterol Rep (Oxf) 2024; 12:goae066. [PMID: 38912038 PMCID: PMC11193119 DOI: 10.1093/gastro/goae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 06/25/2024] Open
Abstract
During liver ischemia-reperfusion injury, existing mechanisms involved oxidative stress, calcium overload, and the activation of inflammatory responses involve mitochondrial injury. Mitochondrial autophagy, a process that maintains the normal physiological activity of mitochondria, promotes cellular metabolism, improves cellular function, and facilitates organelle renewal. Mitochondrial autophagy is involved in oxidative stress and apoptosis, of which the PINK1-Parkin pathway is a major regulatory pathway, and the deletion of PINK1 and Parkin increases mitochondrial damage, reactive oxygen species production, and inflammatory response, playing an important role in mitochondrial quality regulation. In addition, proper mitochondrial permeability translational cycle regulation can help maintain mitochondrial stability and mitigate hepatocyte death during ischemia-reperfusion injury. This mechanism is also closely related to oxidative stress, calcium overload, and the aforementioned autophagy pathway, all of which leads to the augmentation of the mitochondrial membrane permeability transition pore opening and cause apoptosis. Moreover, the release of mitochondrial DNA (mtDNA) due to oxidative stress further aggravates mitochondrial function impairment. Mitochondrial fission and fusion are non-negligible processes required to maintain the dynamic renewal of mitochondria and are essential to the dynamic stability of these organelles. The Bcl-2 protein family also plays an important regulatory role in the mitochondrial apoptosis signaling pathway. A series of complex mechanisms work together to cause hepatic ischemia-reperfusion injury (HIRI). This article reviews the role of mitochondria in HIRI, hoping to provide new therapeutic clues for alleviating HIRI in clinical practice.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
2
|
Post A, Groothof D, Kremer D, Knobbe TJ, Abma W, Koops CA, Tsikas D, Wallimann T, Dullaart RPF, Franssen CFM, Kema IP, Heiner-Fokkema MR, Bakker SJL. Creatine homeostasis and the kidney: comparison between kidney transplant recipients and healthy controls. Amino Acids 2024; 56:42. [PMID: 38869518 PMCID: PMC11176230 DOI: 10.1007/s00726-024-03401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Creatine is a natural nitrogenous organic acid that is integral to energy metabolism and crucial for proper cell functioning. The kidneys are involved in the first step of creatine production. With kidney transplantation being the gold-standard treatment for end-stage kidney disease, kidney transplant recipients (KTR) may be at risk of impaired creatine synthesis. We aimed to compare creatine homeostasis between KTR and controls. Plasma and urine concentrations of arginine, glycine, guanidinoacetate, creatine and creatinine were measured in 553 KTR and 168 healthy controls. Creatine intake was assessed using food frequency questionnaires. Iothalamate-measured GFR data were available in subsets of 157 KTR and 167 controls. KTR and controls had comparable body weight, height and creatine intake (all P > 0.05). However, the total creatine pool was 14% lower in KTR as compared to controls (651 ± 178 vs. 753 ± 239 mmol, P < 0.001). The endogenous creatine synthesis rate was 22% lower in KTR as compared to controls (7.8 ± 3.0 vs. 10.0 ± 4.1 mmol per day, P < 0.001). Despite lower GFR, the plasma guanidinoacetate and creatine concentrations were 21% and 41% lower in KTR as compared to controls (both P < 0.001). Urinary excretion of guanidinoacetate and creatine were 66% and 59% lower in KTR as compared to controls (both P < 0.001). In KTR, but not in controls, a higher measured GFR was associated with a higher endogenous creatine synthesis rate (std. beta: 0.21, 95% CI: 0.08; 0.33; P = 0.002), as well as a higher total creatine pool (std. beta: 0.22, 95% CI: 0.11; 0.33; P < 0.001). These associations were fully mediated (93% and 95%; P < 0.001) by urinary guanidinoacetate excretion which is consistent with production of the creatine precursor guanidinoacetate as rate-limiting factor. Our findings highlight that KTR have a disturbed creatine homeostasis as compared to controls. Given the direct relationship of measured GFR with endogenous creatine synthesis rate and the total creatine pool, creatine supplementation might be beneficial in KTR with low kidney function.Trial registration ID: NCT02811835.Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02811835 .
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands.
| | - Dion Groothof
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Tim J Knobbe
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Willem Abma
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Christa A Koops
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Robin P F Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Casper F M Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| |
Collapse
|
3
|
Meade A, McLaren C, Bennett PN. Combining exercise and nutrition in chronic kidney disease and dialysis: Can we learn from the performance nutrition of athletes? Semin Dial 2024; 37:3-9. [PMID: 35118721 DOI: 10.1111/sdi.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
The benefits of exercise interventions in individuals with chronic kidney disease have been widely reviewed; however, exercise has not yet been incorporated into routine clinical practice. In athletic populations, the goals of exercise training are to improve a specific aspect of physical performance such as strength or endurance, to ultimately optimize physical performance. This contrasts with many chronic kidney disease exercise studies where the goals are more aligned to a minimal effect, such as prevention of decline in physical function, frailty or protein energy wasting (PEW), weight loss for cardiovascular disease risk reduction, and risk minimization for mortality. In athletic populations, there are common targeted nutrition strategies used to optimize physical performance. In this review, we consider the evidence for and potential benefits of targeted nutrition strategies to complement well-designed exercise interventions to improve physical performance in people with chronic kidney disease and dialysis. Overall, we found a small number of studies using targeted protein supplementation in combination with a variety of exercise protocols; however, results were mixed. Future studies in people with chronic kidney disease should optimize acute (pre, during, and postexercise) and chronic nutritional status, utilizing targeted nutrition interventions proven in athletes to have benefit.
Collapse
Affiliation(s)
- Anthony Meade
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Carla McLaren
- Nutrition and Dietetics, Flinders University, Adelaide, South Australia, Australia
| | - Paul N Bennett
- Clinical Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Huang N, Jiang H, Zhang Y, Sun X, Li Y, Wei Y, Yang J, Zhao Y. Amniotic fluid metabolic fingerprinting contributes to shaping the unfavourable intrauterine environment in monochorionic diamniotic twins. Clin Nutr 2024; 43:111-123. [PMID: 38035859 DOI: 10.1016/j.clnu.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND & AIMS Amniotic fluid (AF) is the primary intrauterine environment for fetal growth throughout gestation. Selective fetal growth restriction (sFGR) is an adverse complication characterized by unequal growth in twins with nearly identical genetic makeup. However, the influence of AF-mediated intrauterine environment on the development and progression of sFGR remains unexplored. METHODS High-throughput targeted metabolomics analysis (G350) was performed on AF samples collected from sFGR (n = 18) and MCDA twins with birth weight concordance (MCDA-C, n = 20) cases. Weighted correlation network analysis (WGCNA) was used to identify clinical features that may influence the metabolite composition in AF. Subsequently, partial least-squares discriminant analysis (PLS-DA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to compare the different types of sFGR and MCDA-C twins. Receiver operating characteristic (ROC) and multivariate ROC curves were utilized to explore potential AF markers in twins with sFGR. RESULTS In our study, 182 metabolites were quantified in 76 AF samples. WGCNA indicated that the metabolite composition in late AF may not be influenced by gestational age. PLSDA demonstrated distinct variations between the metabolite profiles of AF in the sFGR and MCDA-C twins, with a significant emphasis on amino acids as the primary differential metabolite. The dissimilarities observed in sFGR twins were predominantly attributed to lipid metabolism-related metabolites. In particular, the KEGG enrichment metabolic pathway analysis revealed significant associations of both types of sFGR twins with central carbon metabolism in cancer. The multivariate ROC curves indicated that the combination of carnosine, sarcosine, l-alanine, beta-alanine, and alpha-n-phenylacetylglutamine significantly improved the AUC to 0.928. Notably, the ROC curves highlighted creatine (AUC:0.934) may be a potential biomarker for severe sFGR. CONCLUSION The data presented in this study offer a comprehensive metabolic map of the AF in cases of sFGR, shedding light on potential biomarkers associated with fetal growth and development in MCDA twins.
Collapse
Affiliation(s)
- Nana Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Youzhen Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Xiya Sun
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Yixin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| |
Collapse
|
5
|
Mei Z, Zhu B, Sun X, Zhou Y, Qiu Y, Ye X, Zhang H, Lu C, Chen J, Zhu H. Development and validation of a nomogram to predict protein-energy wasting in patients with peritoneal dialysis: a multicenter cohort study. PeerJ 2023; 11:e15507. [PMID: 37304869 PMCID: PMC10249631 DOI: 10.7717/peerj.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Protein-energy wasting (PEW) is a common complication in patients with peritoneal dialysis (PD). Few investigations involved risk factors identification and predictive model construction related to PEW. We aimed to develop a nomogram to predict PEW risk in patients with peritoneal dialysis. Methods We collected data from end-stage renal disease (ESRD) patients who regularly underwent peritoneal dialysis between January 2011 and November 2022 at two hospitals retrospectively. The outcome of the nomogram was PEW. Multivariate logistic regression screened predictors and established a nomogram. We measured the predictive performance based on discrimination ability, calibration, and clinical utility. Evaluation indicators were receiver operating characteristic (ROC), calibrate curve, and decision curve analysis (DCA). The performance calculation of the internal validation cohort validated the nomogram. Results In this study, 369 enrolled patients were divided into development (n = 210) and validation (n = 159) cohorts according to the proportion of 6:4. The incidence of PEW was 49.86%. Predictors were age, dialysis duration, glucose, C-reactive protein (CRP), creatinine clearance rate (Ccr), serum creatinine (Scr), serum calcium, and triglyceride (TG). These variables showed a good discriminate performance in development and validation cohorts (ROC = 0.769, 95% CI [0.705-0.832], ROC = 0.669, 95% CI [0.585-0.753]). This nomogram was adequately calibrated. The predicted probability was consistent with the observed outcome. Conclusion This nomogram can predict the risk of PEW in patients with PD and provide valuable evidence for PEW prevention and decision-making.
Collapse
Affiliation(s)
- Ziwei Mei
- Lishui Municipal Central Hospital, Lishui, China
| | - Bin Zhu
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaoli Sun
- Lishui Municipal Central Hospital, Lishui, China
| | - Yajie Zhou
- Lishui Municipal Central Hospital, Lishui, China
| | | | - Xiaolan Ye
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | | | - Chunlan Lu
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Jun Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Zhu
- Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
6
|
Fonseca RID, Menezes LRA, Santana-Filho AP, Schiefer EM, Pecoits-Filho R, Stinghen AEM, Sassaki GL. Untargeted plasma 1H NMR-based metabolomic profiling in different stages of chronic kidney disease. J Pharm Biomed Anal 2023; 229:115339. [PMID: 36963247 DOI: 10.1016/j.jpba.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Chronic kidney disease (CKD) is a serious public health issue affecting thousands of people worldwide. CKD diagnosis is usually made by Estimated Glomerular Filtration Rate (eGFR) and albuminuria, which limit the knowledge of the mechanisms behind CKD progression. The aim of the present study was to identify changes in the metabolomic profile that occur as CKD advances. In this sense, 77 plasma samples from patients with CDK were evaluated by 1D and 2D Nuclear Magnetic Resonance Spectroscopy (NMR). The NMR data showed significant changes in the metabolomic profile of CKD patients and the control group. Principal component analysis (PCA) clustered CKD and control patients into three distinct groups, control, stage 1 (G1)-stage 4 (G4) and stage 5 (G5). Lactate, glucose, acetate and creatinine were responsible for discriminating the control group from all the others CKD stages. Valine, alanine, glucose, creatinine, glutamate and lactate were responsible for the clustering of G1-G4 stages. G5 was discriminated by calcium ethylenediamine tetraacetic acid, magnesium ethylenediamine tetraacetic acid, creatinine, betaine/choline/trimethylamine N-oxide (TMAO), lactate and acetate. CKD G5 plasma pool which was submitted in MetaboAnalyst 4.0 platform (MetPA) analysis and showed 13 metabolic pathways involved in CKD physiopathology. Metabolic changes associated with glycolysis and gluconeogenesis allowed discriminating between CKD and control patients. The determination of involved molecules in TMAO generation in G5 suggests an important role in this uremic toxin linked to CKD and cardiovascular diseases. The aforementioned results propose the feasibility of metabolic assessment of CKD by NMR during treatment and disease progression.
Collapse
Affiliation(s)
| | | | | | - Elberth Manfron Schiefer
- Universidade Tecnológica Federal do Paraná, Av. Sete de Setembro, 3165, Curitiba 80230-901, Brazil
| | - Roberto Pecoits-Filho
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná, Curitiba CEP 80215-901, Brazil
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| |
Collapse
|
7
|
Creatine Supplementation to Improve Sarcopenia in Chronic Liver Disease: Facts and Perspectives. Nutrients 2023; 15:nu15040863. [PMID: 36839220 PMCID: PMC9958770 DOI: 10.3390/nu15040863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Creatine supplementation has been one of the most studied and useful ergogenic nutritional support for athletes to improve performance, strength, and muscular mass. Over time creatine has shown beneficial effects in several human disease conditions. This review aims to summarise the current evidence for creatine supplementation in advanced chronic liver disease and its complications, primarily in sarcopenic cirrhotic patients, because this condition is known to be associated with poor prognosis and outcomes. Although creatine supplementation in chronic liver disease seems to be barely investigated and not studied in human patients, its potential efficacy on chronic liver disease is indirectly highlighted in animal models of non-alcoholic fatty liver disease, bringing beneficial effects in the fatty liver. Similarly, encephalopathy and fatigue seem to have beneficial effects. Creatine supplementation has demonstrated effects in sarcopenia in the elderly with and without resistance training suggesting a potential role in improving this condition in patients with advanced chronic liver disease. Creatine supplementation could address several critical points of chronic liver disease and its complications. Further studies are needed to support the clinical burden of this hypothesis.
Collapse
|
8
|
McCarthy C, Schoeller D, Brown JC, Gonzalez MC, Varanoske AN, Cataldi D, Shepherd J, Heymsfield SB. D 3 -creatine dilution for skeletal muscle mass measurement: historical development and current status. J Cachexia Sarcopenia Muscle 2022; 13:2595-2607. [PMID: 36059250 PMCID: PMC9745476 DOI: 10.1002/jcsm.13083] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
The French chemist Michel Eugène Chevreul discovered creatine in meat two centuries ago. Extensive biochemical and physiological studies of this organic molecule followed with confirmation that creatine is found within the cytoplasm and mitochondria of human skeletal muscles. Two groups of investigators exploited these relationships five decades ago by first estimating the creatine pool size in vivo with 14 C and 15 N labelled isotopes. Skeletal muscle mass (kg) was then calculated by dividing the creatine pool size (g) by muscle creatine concentration (g/kg) measured on a single muscle biopsy or estimated from the literature. This approach for quantifying skeletal muscle mass is generating renewed interest with the recent introduction of a practical stable isotope (creatine-(methyl-d3 )) dilution method for estimating the creatine pool size across the full human lifespan. The need for a muscle biopsy has been eliminated by assuming a constant value for whole-body skeletal muscle creatine concentration of 4.3 g/kg wet weight. The current single compartment model of estimating creatine pool size and skeletal muscle mass rests on four main assumptions: tracer absorption is complete; tracer is all retained; tracer is distributed solely in skeletal muscle; and skeletal muscle creatine concentration is known and constant. Three of these assumptions are false to varying degrees. Not all tracer is retained with urinary isotope losses ranging from 0% to 9%; an empirical equation requiring further validation is used to correct for spillage. Not all tracer is distributed in skeletal muscle with non-muscle creatine sources ranging from 2% to 10% with a definitive value lacking. Lastly, skeletal muscle creatine concentration is not constant and varies between muscles (e.g. 3.89-4.62 g/kg), with diets (e.g. vegetarian and omnivore), across age groups (e.g. middle-age, ~4.5 g/kg; old-age, 4.0 g/kg), activity levels (e.g. athletes, ~5 g/kg) and in disease states (e.g. muscular dystrophies, <3 g/kg). Some of the variability in skeletal muscle creatine concentrations can be attributed to heterogeneity in the proportions of wet skeletal muscle as myofibres, connective tissues, and fat. These observations raise serious concerns regarding the accuracy of the deuterated-creatine dilution method for estimating total body skeletal muscle mass as now defined by cadaver analyses of whole wet tissues and in vivo approaches such as magnetic resonance imaging. A new framework is needed in thinking about how this potentially valuable method for measuring the creatine pool size in vivo can be used in the future to study skeletal muscle biology in health and disease.
Collapse
Affiliation(s)
- Cassidy McCarthy
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Los Angeles, USA
| | - Dale Schoeller
- Biotechnology Center and Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Los Angeles, USA
| | - M Cristina Gonzalez
- Post-graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Alyssa N Varanoske
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Devon Cataldi
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - John Shepherd
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Los Angeles, USA
| |
Collapse
|
9
|
Impact of Hospitalization on the Quality of Life of Patients with Chronic Kidney Disease in Saudi Arabia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159718. [PMID: 35955072 PMCID: PMC9368667 DOI: 10.3390/ijerph19159718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease (CKD) is a global health problem. CKD causes patients to be hospitalized for a longer time to treat the disease. The impact of the hospitalization brings major changes and affects the quality of life (QoL) of the patients. In this study, we aimed to evaluate the impact of hospitalization on the QoL of patients with CKD. A cross-sectional study was conducted at the inpatient departments (IPDs) and outpatient departments (OPDs) of selected hospitals, in the eastern region of Saudi Arabia. The kidney disease quality of life (KDQOL) scale was used for the data collection and the findings were analyzed. The hospitalized patients had a poorer QoL than the OPD patients. The physical component summary (PCS) and mental component summary (MCS) mean scores were 52.82 ± 2.32 and 52.57 ± 2.93 in IPD patients, respectively, and 63.46 ± 3.65 and 66.39 ± 0.91 in OPD patients, respectively, which was significant (p < 0.0001). The QoL of patients decreased in the end stages of CKD. A significant association was observed between gender, occupation, smoking, and the stages of CKD with the QoL of the hospitalized patients. Measures must be taken to improve the QoL of these patients at all levels.
Collapse
|
10
|
González-Ortiz A, Ramos-Acevedo S, Santiago-Ayala V, Gaytan G, Valencia-Flores M, Correa-Rotter R, Carrero JJ, Xu H, Espinosa-Cuevas Á. Sleep Quality After Intradialytic Oral Nutrition: A New Benefit of This Anabolic Strategy? A Pilot Study. Front Nutr 2022; 9:882367. [PMID: 35938133 PMCID: PMC9355791 DOI: 10.3389/fnut.2022.882367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince disturbances of appetite and sleep are closely related and both affect metabolic disorders, it would be expected that a renal specific oral nutritional supplement (RS-ONS) that covers the energy the patient does not consume on the HD day, could contribute to improve the nutritional status and body composition, as well as sleep quality. There is still scarce information related to this topic.AimTo evaluate the effect of the use of intra-dialytic RS-ONS vs. RS-ONS at home on sleep quality, nutritional status, and body composition in patients on HD.MethodsAdult patients < 65 years, with ≥3 months on HD were invited to participate in an open randomized pilot study (ISRCTN 33897). Patients were randomized to a dialysis-specific high-protein supplement provided during the HD session (Intradialytic oral nutrition [ION]) or at home (control), during non-HD days (thrice weekly, for both) 12 weeks. The primary outcome was sleep quality defined by the Pittsburgh Sleep Quality Index (PSQI) score. Nutritional assessment included Malnutrition Inflammation Score (MIS), bioelectrical impedance analysis, anthropometry, 3-day food records, and routine blood chemistries.ResultsA total of 23 patients completed the study. Age was median 35 (range 24–48 years), 42% were women. At baseline, the PSQI score was median 4 (range 2–7), and MIS showed a median of 6 (range 5–8); there were no baseline differences between groups. After intervention, both groups improved their MIS scores and similarly when we analyzed the whole cohort (pre- vs. post-intervention P < 0.01). Patients in the ION group improved the overall PSQI score to median 3 (2–5), and assessment of sleep duration and sleep disturbances (pre- vs. post-intervention P < 0.05), with a trend toward an effect difference compared to patients consuming the supplement at home (P for treatment-effect across arms 0.07 for PSQI score and 0.05 for sleep latency).ConclusionOral supplementation improved nutritional status in the whole cohort, but only ION improved the PSQI score. More studies are needed to explore the nutritional strategies that influence the relationship between sleep and nutritional status in HD patients.
Collapse
Affiliation(s)
| | - Samuel Ramos-Acevedo
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Victoria Santiago-Ayala
- Neurology Department, Sleep Disorders Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- School of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Gaytan
- Neurology Department, Sleep Disorders Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Matilde Valencia-Flores
- Neurology Department, Sleep Disorders Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- School of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Correa-Rotter
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Jesus Carrero
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hong Xu
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ángeles Espinosa-Cuevas
- Translational Research Center, Instituto Nacional de Pediatría, Mexico City, Mexico
- Health Care Department, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- *Correspondence: Ángeles Espinosa-Cuevas
| |
Collapse
|
11
|
Rahimmi A, Tozandehjani S, Daraei M, Khademerfan M. The neuroprotective roles of Dietary Micronutrients on Parkinson’s disease: a review. Mol Biol Rep 2022; 49:8051-8060. [DOI: 10.1007/s11033-022-07345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
|
12
|
Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of Mitochondrial Pathways in Cell Apoptosis during He-Patic Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23042357. [PMID: 35216473 PMCID: PMC8877300 DOI: 10.3390/ijms23042357] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors. Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transition pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins, unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis that account for the most deleterious effect of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sen Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sijing Rao
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China;
| | - Chen Ma
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fengfang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Correspondence: (F.H.); or (S.Y.)
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China
- Correspondence: (F.H.); or (S.Y.)
| |
Collapse
|
13
|
Chronic Dialysis Patients Are Depleted of Creatine: Review and Rationale for Intradialytic Creatine Supplementation. Nutrients 2021; 13:nu13082709. [PMID: 34444869 PMCID: PMC8400647 DOI: 10.3390/nu13082709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
There is great need for the identification of new, potentially modifiable risk factors for the poor health-related quality of life (HRQoL) and of the excess risk of mortality in dialysis-dependent chronic kidney disease patients. Creatine is an essential contributor to cellular energy homeostasis, yet, on a daily basis, 1.6–1.7% of the total creatine pool is non-enzymatically degraded to creatinine and subsequently lost via urinary excretion, thereby necessitating a continuous supply of new creatine in order to remain in steady-state. Because of an insufficient ability to synthesize creatine, unopposed losses to the dialysis fluid, and insufficient intake due to dietary recommendations that are increasingly steered towards more plant-based diets, hemodialysis patients are prone to creatine deficiency, and may benefit from creatine supplementation. To avoid problems with compliance and fluid balance, and, furthermore, to prevent intradialytic losses of creatine to the dialysate, we aim to investigate the potential of intradialytic creatine supplementation in improving outcomes. Given the known physiological effects of creatine, intradialytic creatine supplementation may help to maintain creatine homeostasis among dialysis-dependent chronic kidney disease patients, and consequently improve muscle status, nutritional status, neurocognitive status, HRQoL. Additionally, we describe the rationale and design for a block-randomized, double-blind, placebo-controlled pilot study. The aim of the pilot study is to explore the creatine uptake in the circulation and tissues following different creatine supplementation dosages.
Collapse
|
14
|
Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients 2021; 13:nu13051429. [PMID: 33922654 PMCID: PMC8145094 DOI: 10.3390/nu13051429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.
Collapse
|
15
|
Post A, Groothof D, Schutten JC, Flores‐Guerrero JL, Swarte JC, Douwes RM, Kema IP, de Boer RA, Garcia E, Connelly MA, Wallimann T, Dullaart RPF, Franssen CFM, Bakker SJL. Plasma creatine and incident type 2 diabetes in a general population-based cohort: The PREVEND study. Clin Endocrinol (Oxf) 2021; 94:563-574. [PMID: 33348429 PMCID: PMC8048485 DOI: 10.1111/cen.14396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Type 2 diabetes is associated with both impaired insulin action at target tissues and impaired insulin secretion in pancreatic beta cells. Mitochondrial dysfunction may play a role in both insulin resistance and impaired insulin secretion. Plasma creatine has been proposed as a potential marker for mitochondrial dysfunction. We aimed to investigate the association between plasma creatine and incident type 2 diabetes. METHODS We measured fasting plasma creatine concentrations by nuclear magnetic resonance spectroscopy in participants of the general population-based PREVEND study. The study outcome was incident type 2 diabetes, defined as a fasting plasma glucose ≥7.0 mmol/L (126 mg/dl); a random sample plasma glucose ≥11.1 mmol/L (200 mg/dl); self-report of a physician diagnosis or the use of glucose-lowering medications based on a central pharmacy registration. Associations of plasma creatine with type 2 diabetes were quantified using Cox proportional hazards models and were adjusted for potential confounders. RESULTS We included 4735 participants aged 52 ± 11 years, of whom 49% were male. Mean plasma creatine concentrations were 36.7 ± 17.6 µmol/L, with lower concentrations in males than in females (30.4 ± 15.1 µmol/L vs. 42.7 ± 17.7 µmol/L; p for difference <.001). During 7.3 [6.2-7.7] years of follow-up, 235 (5.4%) participants developed type 2 diabetes. Higher plasma creatine concentrations were associated with an increased risk of incident type 2 diabetes (HR per SD change: 1.27 [95% CI: 1.11-1.44]; p < .001), independent of potential confounders. This association was strongly modified by sex (p interaction <.001). Higher plasma creatine was associated with an increased risk of incident type 2 diabetes in males (HR: 1.40 [1.17-1.67]; p < .001), but not in females (HR: 1.10 [0.90-1.34]; p = .37). CONCLUSION Fasting plasma creatine concentrations are lower in males than in females. Higher plasma creatine is associated with an increased risk of type 2 diabetes in males.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Dion Groothof
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Joëlle C. Schutten
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jose L. Flores‐Guerrero
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Casper Swarte
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rianne M. Douwes
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ido P. Kema
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (LabCorp)MorrisvilleNCUSA
| | - Marge A. Connelly
- Laboratory Corporation of America Holdings (LabCorp)MorrisvilleNCUSA
| | | | - Robin P. F. Dullaart
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Casper F. M. Franssen
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
16
|
Post A, Schutten JC, Kremer D, van der Veen Y, Groothof D, Sotomayor CG, Koops CA, de Blaauw P, Kema IP, Westerhuis R, Wallimann T, Heiner-Fokkema MR, Bakker SJL, Franssen CFM. Creatine homeostasis and protein energy wasting in hemodialysis patients. J Transl Med 2021; 19:115. [PMID: 33743724 PMCID: PMC7981955 DOI: 10.1186/s12967-021-02780-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Muscle wasting, low protein intake, hypoalbuminemia, low body mass, and chronic fatigue are prevalent in hemodialysis patients. Impaired creatine status may be an often overlooked, potential contributor to these symptoms. However, little is known about creatine homeostasis in hemodialysis patients. We aimed to elucidate creatine homeostasis in hemodialysis patients by assessing intradialytic plasma changes as well as intra- and interdialytic losses of arginine, guanidinoacetate, creatine and creatinine. Additionally, we investigated associations of plasma creatine concentrations with low muscle mass, low protein intake, hypoalbuminemia, low body mass index, and chronic fatigue. Arginine, guanidinoacetate, creatine and creatinine were measured in plasma, dialysate, and urinary samples of 59 hemodialysis patients. Mean age was 65 ± 15 years and 63% were male. During hemodialysis, plasma concentrations of arginine (77 ± 22 to 60 ± 19 μmol/L), guanidinoacetate (1.8 ± 0.6 to 1.0 ± 0.3 μmol/L), creatine (26 [16–41] to 21 [15–30] μmol/L) and creatinine (689 ± 207 to 257 ± 92 μmol/L) decreased (all P < 0.001). During a hemodialysis session, patients lost 1939 ± 871 μmol arginine, 37 ± 20 μmol guanidinoacetate, 719 [399–1070] μmol creatine and 15.5 ± 8.4 mmol creatinine. In sex-adjusted models, lower plasma creatine was associated with a higher odds of low muscle mass (OR per halving: 2.00 [1.05–4.14]; P = 0.04), low protein intake (OR: 2.13 [1.17–4.27]; P = 0.02), hypoalbuminemia (OR: 3.13 [1.46–8.02]; P = 0.008) and severe fatigue (OR: 3.20 [1.52–8.05]; P = 0.006). After adjustment for potential confounders, these associations remained materially unchanged. Creatine is iatrogenically removed during hemodialysis and lower plasma creatine concentrations were associated with higher odds of low muscle mass, low protein intake, hypoalbuminemia, and severe fatigue, indicating a potential role for creatine supplementation.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands.
| | - Joëlle C Schutten
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Yvonne van der Veen
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Dion Groothof
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Camilo G Sotomayor
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Christa A Koops
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Ralf Westerhuis
- Dialysis Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Casper F M Franssen
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
17
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
18
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
19
|
Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach. Nutrients 2020; 12:nu12030785. [PMID: 32188148 PMCID: PMC7146606 DOI: 10.3390/nu12030785] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Dialysis and nutrition are two sides of the same coin—dialysis depurates metabolic waste that is typically produced by food intake. Hence, dietetic restrictions are commonly imposed in order to limit potassium and phosphate and avoid fluid overload. Conversely, malnutrition is a major challenge and, albeit to differing degrees, all nutritional markers are associated with survival. Dialysis-related malnutrition has a multifactorial origin related to uremic syndrome and comorbidities but also to dialysis treatment. Both an insufficient dialysis dose and excessive removal are contributing factors. It is thus not surprising that dialysis alone, without proper nutritional management, often fails to be effective in combatting malnutrition. While composite indexes can be used to identify patients with poor prognosis, none is fully satisfactory, and the definitions of malnutrition and protein energy wasting are still controversial. Furthermore, most nutritional markers and interventions were assessed in hemodialysis patients, while hemodiafiltration and peritoneal dialysis have been less extensively studied. The significant loss of albumin in these two dialysis modalities makes it extremely difficult to interpret common markers and scores. Despite these problems, hemodialysis sessions represent a valuable opportunity to monitor nutritional status and prescribe nutritional interventions, and several approaches have been tried. In this concept paper, we review the current evidence on intradialytic nutrition and propose an algorithm for adapting nutritional interventions to individual patients.
Collapse
|
20
|
Marini ACB, Motobu RD, Freitas ATV, Mota JF, Wall BT, Pichard C, Laviano A, Pimentel GD. Short-Term Creatine Supplementation May Alleviate the Malnutrition-Inflammation Score and Lean Body Mass Loss in Hemodialysis Patients: A Pilot Randomized Placebo-Controlled Trial. JPEN J Parenter Enteral Nutr 2019; 44:815-822. [PMID: 31531996 DOI: 10.1002/jpen.1707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Creatine supplementation has been proposed to alleviate muscle loss in various populations, but has not been investigated in hemodialysis (HD) patients. Thus, our objective was to evaluate whether creatine supplementation could attenuate the loss of lean body mass (LBM) and malnutrition-inflammation score (MIS) in HD patients. METHODS A randomized, placebo-controlled, double blind, parallel-design study included HD patients, of both sexes, aged 18-59 years. The patients were allocated to a Placebo Group (PG; n = 15; received maltodextrin, 1st week: 40 g/day and 2nd-4th weeks: 10 g/day) and a Creatine Group (CG; n = 15; received creatine plus maltodextrin, 1st week: 20 g/day of creatine plus 20 g/day of maltodextrin and 2nd-4th weeks: 5 g/day of creatine plus 5 g/day of maltodextrin). Pre and post the intervention, patients were evaluated for food intake, MIS, body composition and biochemical parameters. RESULTS CG group attenuated the MIS (Pre: 5.57 ± 0.72 vs. Post: 3.85 ± 0.47 score, P = 0.003) compared with PG (Pre: 5.71 ± 0.97 vs. Post: 5.36 ± 0.95 score, P = 0.317) (supplement × time P = 0.017, effect size: 0.964). The change of LBM was greater in CG than in PG (CG: Δ0.95 vs PG: Δ0.13 kg). At post-intervention, 28.6% of PG patients presented LBM loss and 71.4% remain stable. In contrast, 14.4% of CG patients had LBM loss, 42.8% remain stable and 42.8% gained. Food intake and quality of life did not change. CG increased the BMI and gait speed in post-compared to pre-moment, but no difference among the groups. CONCLUSION In HD patients, four weeks of creatine supplementation may alleviate the MIS as well as attenuate the LBM loss compared to placebo.
Collapse
Affiliation(s)
- Ana Clara B Marini
- Clinical and Sports Nutrition Research Laboratory (Labince), Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Reika D Motobu
- Clinical and Sports Nutrition Research Laboratory (Labince), Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Ana T V Freitas
- Clinical and Sports Nutrition Research Laboratory (Labince), Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - João F Mota
- Clinical and Sports Nutrition Research Laboratory (Labince), Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Claude Pichard
- Clinical Nutrition, Geneva University Hospital, Geneva, Switzerland
| | - Alessandro Laviano
- Department of Clinical Medicine, Sapienza University, Viale dell'Università 37, 00185, Rome, Italy
| | - Gustavo Duarte Pimentel
- Clinical and Sports Nutrition Research Laboratory (Labince), Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| |
Collapse
|
21
|
Hanifa MA, Skott M, Maltesen RG, Rasmussen BS, Nielsen S, Frøkiær J, Ring T, Wimmer R. Tissue, urine and blood metabolite signatures of chronic kidney disease in the 5/6 nephrectomy rat model. Metabolomics 2019; 15:112. [PMID: 31422467 DOI: 10.1007/s11306-019-1569-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Progressive chronic kidney disease (CKD) is an important cause of morbidity and mortality. It has a long asymptomatic phase, where routine blood tests cannot identify early functional losses, and therefore identifying common mechanisms across the many etiologies is an important goal. OBJECTIVES Our aim was to characterize serum, urine and tissue (kidney, lung, heart, spleen and liver) metabolomics changes in a rat model of CKD. METHODS A total of 17 male Wistar rats underwent 5/6 nephrectomy, whilst 13 rats underwent sham operation. Urine samples were collected weekly, for 6 weeks; blood was collected at weeks 0, 3 and 6; and tissue samples were collected at week 6. Samples were analyzed on a nuclear magnetic resonance spectroscopy platform with multivariate and univariate data analysis. RESULTS Changes in several metabolites were statistically significant. Allantoin was affected in all compartments. Renal asparagine, creatine, hippurate and trimethylamine were significantly different; in other tissues creatine, dimethylamine, dimethylglycine, trigonelline and trimethylamine were significant. Benzoate, citrate, dimethylglycine, fumarate, guanidinoacetate, malate, myo-inositol and oxoglutarate were altered in urine or serum. CONCLUSION Although the metabolic picture is complex, we suggest oxidative stress, the gut-kidney axis, acid-base balance, and energy metabolism as promising areas for future investigation.
Collapse
Affiliation(s)
- Munsoor A Hanifa
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Martin Skott
- Department of Urology, Aarhus University Hospital, 8250, Aarhus N, Denmark
| | - Raluca G Maltesen
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Bodil S Rasmussen
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Troels Ring
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Department of Critical Care Medicine, The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburg, PA, 15261, USA
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
22
|
Sárközy M, Kovács ZZA, Kovács MG, Gáspár R, Szűcs G, Dux L. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia. Front Physiol 2018; 9:1648. [PMID: 30534079 PMCID: PMC6275322 DOI: 10.3389/fphys.2018.01648] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·−) and/or hydrogen peroxide (H2O2). O2·− reacts with nitric oxide (NO) forming peroxynitrite (ONOO−) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Fairman CM, Kendall KL, Hart NH, Taaffe DR, Galvão DA, Newton RU. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit Rev Oncol Hematol 2018; 133:46-57. [PMID: 30661658 DOI: 10.1016/j.critrevonc.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Low muscle mass in individuals with cancer has a profound impact on quality of life and independence and is associated with greater treatment toxicity and poorer prognosis. Exercise interventions are regularly being investigated as a means to ameliorate treatment-related adverse effects, and nutritional/supplementation strategies to augment adaptations to exercise are highly valuable. Creatine (Cr) is a naturally-occurring substance in the human body that plays a critical role in energy provision during muscle contraction. Given the beneficial effects of Cr supplementation on lean body mass, strength, and physical function in a variety of clinical populations, there is therapeutic potential in individuals with cancer at heightened risk for muscle loss. Here, we provide an overview of Cr physiology, summarize the evidence on the use of Cr supplementation in various aging/clinical populations, explore mechanisms of action, and provide perspectives on the potential therapeutic role of Cr in the exercise oncology setting.
Collapse
Affiliation(s)
- C M Fairman
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.
| | - K L Kendall
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - N H Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Institute for Health Research, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - D R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - D A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - R U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Baldissera MD, Souza CF, Júnior GB, Verdi CM, Moreira KLS, da Rocha MIUM, da Veiga ML, Santos RCV, Vizzotto BS, Baldisserotto B. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics. Microb Pathog 2017; 110:439-443. [PMID: 28735082 DOI: 10.1016/j.micpath.2017.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
Abstract
Cytosolic and mitochondrial creatine kinases (CK), through the creatine kinase-phosphocreatine (CK/PCr) system, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. However, the effects of bacterial infections on the kidney remain poorly understood and are limited only to histopathological analyses. Thus, the aim of this study was to investigate the involvement of cytosolic and mitochondrial CK activities in renal energetic homeostasis in silver catfish experimentally infected with Aeromonas caviae. Cytosolic CK activity decreased in infected animals, while mitochondrial CK activity increased compared to uninfected animals. Moreover, the activity of the sodium-potassium pump (Na+, K+-ATPase) decreased in infected animals compared to uninfected animals. Based on this evidence, it can be concluded that the inhibition of cytosolic CK activity by A. caviae causes an impairment on renal energy homeostasis through the depletion of adenosine triphosphate (ATP) levels. This contributes to the inhibition of Na+, K+-ATPase activity, although the mitochondrial CK activity acted in an attempt to restore the cytosolic ATP levels through a feedback mechanism. In summary, A. caviae infection causes a severe energetic imbalance in infected silver catfish, which may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guerino B Júnior
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Camila Marina Verdi
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Karen L S Moreira
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Marcelo L da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roberto C V Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bruno S Vizzotto
- Laboratory of Molecular Biology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|