1
|
Madhyastha S, Rao MS, Renno WM. Serotonergic and Adrenergic Neuroreceptor Manipulation Ameliorates Core Symptoms of ADHD through Modulating Dopaminergic Receptors in Spontaneously Hypertensive Rats. Int J Mol Sci 2024; 25:2300. [PMID: 38396978 PMCID: PMC10888658 DOI: 10.3390/ijms25042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The core symptoms of attention deficit hyperactivity disorder (ADHD) are due to the hypofunction of the brain's adrenergic (NE) and dopamine (DA) systems. Drugs that enhance DA and NE neurotransmission in the brain by blocking their transporters or receptors are the current therapeutic strategies. Of late, the emerging results point out the serotonergic (5-HT) system, which indirectly modulates the DA activity in reducing the core symptoms of ADHD. On this basis, second-generation antipsychotics, which utilize 5-HT receptors, were prescribed to children with ADHD. However, it is not clear how serotonergic receptors modulate the DA activity to minimize the symptoms of ADHD. The present study investigates the efficacy of serotonergic and alpha-2 adrenergic receptor manipulation in tackling the core symptoms of ADHD and how it affects the DA neuroreceptors in the brain regions involved in ADHD. Fifteen-day-old male spontaneously hypertensive rats (SHRs) received 5-HT1A agonist (ipsapirone) or 5-HT2A antagonist (MDL 100907) (i.p.) or alpha-2 agonist (GFC) from postnatal days 15 to 42 along with age-matched Wistar Kyoto rats (WKY) (n = 8 in each group). ADHD-like behaviors were assessed using a battery of behavioral tests during postnatal days 44 to 65. After the behavioral tests, rat brains were processed to estimate the density of 5-HT1A, 5-HT2A, DA-D1, and DA-D2 neuroreceptors in the prefrontal cortex, the striatum, and the substantia nigra. All three neuroreceptor manipulations were able to minimize the core symptoms of ADHD in SHRs. The positive effect was mainly associated with the upregulation of 5-HT2A receptors in all three areas investigated, while 5-HT1A was in the prefrontal cortex and the substantia nigra. Further, the DA-D1 receptor expression was downregulated by all three neuroreceptor manipulations except for alpha-2 adrenergic receptor agonists in the striatum and 5-HT2A antagonists in the substantia nigra. The DA-D2 expression was upregulated in the striatum while downregulated in the prefrontal cortex and the substantia nigra. In this animal model study, the 5-HT1A agonist or 5-HT2A antagonist monotherapies were able to curtail the ADHD symptoms by differential expression of DA receptors in different regions of the brain.
Collapse
Affiliation(s)
- Sampath Madhyastha
- Department of Anatomy, College of Medicine, Kuwait University, Safat 13110, Kuwait; (M.S.R.); (W.M.R.)
| | | | | |
Collapse
|
2
|
Dinu LM, Singh SN, Baker NS, Georgescu AL, Overton PG, Dommett EJ. The effects of tryptophan loading on Attention Deficit Hyperactivity in adults: A remote double blind randomised controlled trial. PLoS One 2023; 18:e0294911. [PMID: 38033150 PMCID: PMC10688902 DOI: 10.1371/journal.pone.0294911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Despite the impact and prevalence of Attention Deficit Hyperactivity Disorder (ADHD), current treatment options remain limited and there is a drive for alternative approaches, including those building on evidence of a role for tryptophan (TRP) and serotonin (5-HT). This study aimed to evaluate the effect of acute TRP loading on attention and impulsivity in adults with ADHD. TRIAL DESIGN AND METHODS We conducted a remote double blind randomised controlled trial (RCT) using TRP loading to examine the effects of a balanced amino acid load in comparison to low and high TRP loading in individuals with ADHD (medicated, N = 48, and unmedicated, N = 46) and controls (N = 50). Participants were randomised into one of three TRP treatment groups using stratified randomisation considering participant group and gender using a 1:1:1 ratio. Baseline testing of attention and impulsivity using the Test of Variables of Attention Task, Delay Discounting Task, and Iowa Gambling Task was followed by consumption of a protein drink (BAL, LOW, or HIGH TRP) before repeated testing. RESULTS AND CONCLUSIONS No effects of TRP were observed for any of the measures. In the present study, TRP loading did not impact on any measure of attention or impulsivity in those with ADHD or Controls. The findings need to be confirmed in another trial with a larger number of patients that also considers additional measures of dietary protein, plasma TRP and aggression. (Registration ID ISRCTN15119603).
Collapse
Affiliation(s)
- Larisa M. Dinu
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Samriddhi N. Singh
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Neo S. Baker
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Alexandra L. Georgescu
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Paul G. Overton
- Department of Psychology, The University of Sheffield, Cathedral Court, Sheffield, United Kingdom
| | - Eleanor J. Dommett
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Thumtecho S, Wainipitapong S, Tantakitti P. Transient depersonalisation/derealisation syndrome from tramadol. BMJ Case Rep 2023; 16:e254909. [PMID: 37280010 PMCID: PMC10254872 DOI: 10.1136/bcr-2023-254909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Depersonalisation/derealisation (DD) syndrome is often associated with severe traumatic experiences and the use of certain medications. Our patient reported experiencing a transient DD phenomenon a few hours after taking 37.5 mg of tramadol, together with etoricoxib, acetaminophen and eperisone. His symptoms subsided upon tramadol discontinuation, suggesting the possibility of tramadol-induced DD. A study of the patient's cytochrome P450 (CYP) 2D6 polymorphism, which mainly metabolises tramadol, indicated normal metaboliser status with reduced function. The concomitant administration of the CYP2D6 inhibitor, etoricoxib, would have led to higher concentrations of the serotonergic parent tramadol, providing an explanation for the patient's symptoms.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Sorawit Wainipitapong
- Department of Psychiatry and Center of Excellence in Transgender Health, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | | |
Collapse
|
4
|
Chen TC, Hsu WL, Wu CY, Lai YR, Chao HR, Chen CH, Tsai MH. Effect of omega-6 linoleic acid on neurobehavioral development in Caenorhabditis elegans. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102557. [PMID: 36889241 DOI: 10.1016/j.plefa.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Linoleic acid (LA, omega-6), an essential polyunsaturated fatty acid, is supplied by vegetable oils such as corn, sunflower and soybean. Supplementary LA in infants and children is required for normal growth and brain development, but has also been reported to induce brain inflammation and neurodegenerative diseases. This controversial role of LA development requires further investigation. Our study utilized Caenorhabditis elegans (C. elegans) as a model to clarify the role of LA in regulating neurobehavioral development. A mere supplementary quantity of LA in C. elegans larval stage affected the worm's locomotive ability, intracellular ROS accumulation and lifespan. We found that more serotonergic neurons were activated by supplementing LA above 10 μM thereby promoting locomotive ability with upregulation of serotonin-related genes. Supplementation with LA above 10 μM also inhibited the expression of mtl-1, mtl-2 and ctl-3 to accelerate oxidative stress and attenuate lifespan in nematodes; however, enhancement of stress-related genes such as sod-1, sod-3, mtl-1, mtl-2 and cyp-35A2 by supplementary LA under 1 μM decreased oxidative stress and increased the worm's lifespan. In conclusion, our study reveals that supplementary LA possesses both pros and cons in worm physiology and provides new suggestions for LA intake administration in childhood.
Collapse
Affiliation(s)
- Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Yun-Ru Lai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, 77030, United States of America; New York Heart Research Foundation, Mineola, New York, 11501, United States of America; Institute for Biomedical Sciences, Shinshu University, Nagano, 390-8621, Japan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
5
|
Lin X, Huang L, Huang H, Ke Z, Chen Y. Disturbed relationship between glucocorticoid receptor and 5-HT1AR/5-HT2AR in ADHD rats: A correlation study. Front Neurosci 2023; 16:1064369. [PMID: 36699537 PMCID: PMC9869156 DOI: 10.3389/fnins.2022.1064369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objective This work is to investigate the alterations of the central 5-hydroxytryptamine (5-HT) system in spontaneously hypertensive rats (SHR) and the correlation with the behaviors of SHR, and to explore the effects of glucocorticoid intervention on the central 5-HT system and SHR behaviors. Materials and methods Three weeks old SHR were chosen as the attention-deficit hyperactivity disorder (ADHD) model and treated with glucocorticoid receptor (GR) agonist or inhibitor, whereas Wista Kyoto rats (WKY) were chosen as the normal control group. Open-field test and Làt maze test were used to evaluate the spontaneous activities and non-selective attention. The levels of 5-HT in the extracellular fluid specimens of the prefrontal cortex of rats were analyzed by high-performance liquid chromatography. The expressions of GR, 5-HT1A receptor (5-HT1AR), and 5-HT2A receptor (5-HT2AR) in the prefrontal cortex were analyzed through immunohistochemistry. Results Our study demonstrated that the 5-HT level was lower in the prefrontal cortex of SHR compared to that of WKY. The Open-field test and Làt maze test showed that GR agonist (dexamethasone, DEX) intervention ameliorated attention deficit and hyperactive behavior, whereas GR inhibitor (RU486) aggravated the disorders. With DEX, the expression levels of 5-HT and 5-HT2AR in the prefrontal cortex of SHR were significantly higher than those in the control group, whereas the expression level of 5-HT1AR was lower. However, the expression levels of 5-HT and 5-HT2AR were significantly decreased after the intervention with RU486, while the expression level of 5-HT1AR increased. Results showed that glucocorticoid was negatively correlated with 5-HT1AR and positively correlated with 5-HT2AR. Conclusion In the prefrontal cortex of ADHD rats, the down-regulation of 5-HT and 5-HT2AR expressions and the up-regulation of 5-HT1AR, compared with WYK rats, suggested a dysfunctional central 5-HT system in ADHD rats. The GR agonist can upregulate the expression of 5-HT and 5-HT2AR and downregulate the expression of 5-HT1AR in the prefrontal cortex of SHR as well as reduce the hyperactivity and attention deficit behavior in SHR, while the opposite was true for the GR inhibitor. It is suggested that the dysfunction of the 5-HT system in ADHD rats is closely related to glucocorticoid receptor activity.
Collapse
|