1
|
Chen F, Chen Y, Ke Q, Wang Y, Gong Z, Chen X, Cai Y, Li S, Sun Y, Peng X, Ji Y, Zhang T, Wu W, Cui L, Wang Y. ApoE4 associated with severe COVID-19 outcomes via downregulation of ACE2 and imbalanced RAS pathway. J Transl Med 2023; 21:103. [PMID: 36759834 PMCID: PMC9910247 DOI: 10.1186/s12967-023-03945-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Recent numerous epidemiology and clinical association studies reported that ApoE polymorphism might be associated with the risk and severity of coronavirus disease 2019 (COVID-19), and yielded inconsistent results. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptor expressed on host cell membranes. METHODS A meta-analysis was conducted to clarify the association between ApoE polymorphism and the risk and severity of COVID-19. Multiple protein interaction assays were utilized to investigate the potential molecular link between ApoE and the SARS-CoV-2 primary receptor ACE2, ApoE and spike protein. Immunoblotting and immunofluorescence staining methods were used to access the regulatory effect of different ApoE isoform on ACE2 protein expression. RESULTS ApoE gene polymorphism (ε4 carrier genotypes VS non-ε4 carrier genotypes) is associated with the increased risk (P = 0.0003, OR = 1.44, 95% CI 1.18-1.76) and progression (P < 0.00001, OR = 1.85, 95% CI 1.50-2.28) of COVID-19. ApoE interacts with both ACE2 and the spike protein but did not show isoform-dependent binding effects. ApoE4 significantly downregulates ACE2 protein expression in vitro and in vivo and subsequently decreases the conversion of Ang II to Ang 1-7. CONCLUSIONS ApoE4 increases SARS-CoV-2 infectivity in a manner that may not depend on differential interactions with the spike protein or ACE2. Instead, ApoE4 downregulates ACE2 protein expression and subsequently the dysregulation of renin-angiotensin system (RAS) may provide explanation by which ApoE4 exacerbates COVID-19 disease.
Collapse
Affiliation(s)
- Feng Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China ,grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yanting Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China ,grid.33199.310000 0004 0368 7223Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiongwei Ke
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zheng Gong
- grid.410560.60000 0004 1760 3078Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shengnan Li
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- grid.266871.c0000 0000 9765 6057Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Xiaoping Peng
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianzhen Zhang
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenxian Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
2
|
Espinosa-Salinas I, Colmenarejo G, Fernández-Díaz CM, Gómez de Cedrón M, Martinez JA, Reglero G, Ramírez de Molina A. Potential protective effect against SARS-CoV-2 infection by APOE rs7412 polymorphism. Sci Rep 2022; 12:7247. [PMID: 35508522 PMCID: PMC9065660 DOI: 10.1038/s41598-022-10923-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic burden caused by the SARS-CoV-2 coronavirus constitutes a global public health emergency. Increasing understanding about predisposing factors to infection and severity is now a priority. Genetic, metabolic, and environmental factors can play a crucial role in the course and clinical outcome of COVID-19. We aimed to investigate the putative relationship between genetic factors associated to obesity, metabolism and lifestyle, and the presence and severity of SARS-CoV-2 infection. A total of 249 volunteers (178 women and 71 men, with mean and ± SD age of 49 ± 11 years) characterized for dietary, lifestyle habits and anthropometry, were studied for presence and severity of COVID-19 infection, and genotyped for 26 genetic variants related to obesity, lipid profile, inflammation, and biorhythm patterns. A statistically significant association was found concerning a protective effect of APOE rs7412 against SARS-CoV-2 infection (p = 0.039; OR 0.216; CI 0.084, 0.557) after correction for multiple comparisons. This protective effect was also ascribed to the APOɛ2 allele (p = 0.001; OR 0.207; CI 0.0796, 0.538). The genetic variant rs7412 resulting in ApoE2, genetic determinant of lipid and lipoprotein levels, could play a significant role protecting against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | - J Alfredo Martinez
- IMDEA-Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain.,Center for Nutrition Research (CIN), Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.,Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029, Madrid, Spain
| | - Guillermo Reglero
- IMDEA-Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain.,Institute of Food Science Research (CIAL), CEI UAM+CSIC, 28049, Madrid, Spain
| | | |
Collapse
|
3
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
4
|
Jafarpour R, Pashangzadeh S, Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract 2021; 228:153647. [PMID: 34749207 PMCID: PMC8505027 DOI: 10.1016/j.prp.2021.153647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is more serious in people with underlying diseases, but the cause of healthy people with progressive disease is largely unknown. Host genetic factors such as ACE2 variants, IFITM-3, HLA, TMRSS2, and furin polymorphisms appear to be one of the agents involved in the progression of the COVID-19 and outcome of the disease. This review discusses the general characteristics of SARS-CoV-2, including viral features, receptors, cell entry, clinical findings, and the main human genetic factors that may contribute to the pathogenesis of COVID-19 and get the patients' situation more complex. Further knowledge in this context may help to find a way to prevent and treat this viral pneumonia.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran,Immunology Today, Universal Scientific Education and Research Network (USERN), Tehan, Iran
| | - Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author at: Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Yildirim Z, Sahin OS, Yazar S, Bozok Cetintas V. Genetic and epigenetic factors associated with increased severity of Covid-19. Cell Biol Int 2021; 45:1158-1174. [PMID: 33590936 PMCID: PMC8014716 DOI: 10.1002/cbin.11572] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/14/2021] [Indexed: 01/07/2023]
Abstract
Since December 2019, a new form of severe acute respiratory syndrome (SARS) from a novel strain of coronavirus (SARS coronavirus 2 [SARS-CoV-2]) has been spreading worldwide. The disease caused by SARS-CoV-2 was named Covid-19 and declared as a pandemic by the World Health Organization in March 2020. Clinical symptoms of Covid-19 range from common cold to more severe disease defined as pneumonia, hypoxia, and severe respiratory distress. In the next stage, disease can become more critical with respiratory failure, sepsis, septic shock, and/or multiorgan failure. Outcomes of Covid-19 indicate large gaps between the male-female and the young-elder groups. Several theories have been proposed to explain variations, such as gender, age, comorbidity, and genetic factors. It is likely that mixture of genetic and nongenetic factors interplays between virus and host genetics and determines the severity of disease outcome. In this review, we aimed to summarize current literature in terms of potential host genetic and epigenetic factors that associated with increased severity of Covid-19. Several studies indicated that the genetic variants of the SARS-CoV-2 entry mechanism-related (angiotensin-converting enzymes, transmembrane serine protease-2, furin) and host innate immune response-related genes (interferons [IFNs], interleukins, toll-like receptors), and human leukocyte antigen, ABO, 3p21.31, and 9q34.2 loci are critical host determinants related to Covid-19 severity. Epigenetic mechanisms also affect Covid-19 outcomes by regulating IFN signaling, angiotensin-converting enzyme-2, and immunity-related genes that particularly escape from X chromosome inactivation. Enhanced understanding of host genetic and epigenetic factors and viral interactions of SARS-CoV-2 is critical for improved prognostic tools and innovative therapeutics.
Collapse
Affiliation(s)
- Zafer Yildirim
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Oyku Semahat Sahin
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Seyhan Yazar
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | | |
Collapse
|
6
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
7
|
Satarker S, Nampoothiri M. Involvement of the nervous system in COVID-19: The bell should toll in the brain. Life Sci 2020; 262:118568. [PMID: 33035589 PMCID: PMC7537730 DOI: 10.1016/j.lfs.2020.118568] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
The world is fuming at SARS-CoV-2 for being the culprit for causing the devastating COVID-19, claiming millions of lives across the globe in the form of respiratory disorders. But lesser known are its effects on the CNS that are slowly surfacing in the worldwide population. Our review illustrates findings that claim SARS-CoV-2's arrival onto the ACE2 receptors of neuronal and glial cells mainly via CSF, olfactory nerve, trigeminal nerve, neuronal dissemination, and hematogenous pathways. The role of SARS-CoV-2 structural proteins in its smooth viral infectivity of the host cannot be ignored, especially the spike proteins that mediate spike attachment and host membrane fusion. Worth mentioning the nucleocapsid, envelope, and membrane proteins make the proliferation of SARS-CoV-2 much simpler than expected in spreading infection. This has led to catastrophic conditions like seizures, Guillain-Barré syndrome, viral encephalitis, meningoencephalitis, acute cerebrovascular disease, and respiratory failures. Placing a magnifying lens on the lesser-explored CNS consequences of COVID-19, we attempt to shift the focus of our readers onto the new supporting threats to which further studies are needed.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
8
|
González Devia JL, Torres Pérez ML, Cuartas Méndez DM. SARS-CoV-2 en el adulto mayor con enfermedad neurodegenerativa. NOVA 2020. [DOI: 10.22490/24629448.4196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A pesar de la gran cantidad de complicaciones neurológicas relacionadas con la infección por SARS-CoV-2, aún no está claro si estos síntomas son el resultado de una lesión neural directa o se deben a alguna otra razón. Actualmente, parece que la mayoría de los síntomas neurológicos del COVID-19 son inespecíficos y secundarios a la enfermedad sistémica.
Hasta la fecha no se cuenta con suficiente evidencia científica que confirme que el virus del SARS-CoV-2 afecta de forma directa al sistema nervioso central o periférico en los seres humanos. En el presente artículo corto se presentan las implicaciones de SARS-CoV-2 en el adulto mayor con enfermedad neurodegenerativa, así como los mecanismos de acción relacionados en sistema nervioso.
Collapse
|