1
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
2
|
Zhang X, Li T, Wang Z, Wang J, Zhao S. Polar aprotic solvent-resistant nanofiltration membranes generated by flexible-chain binding interfacial polymerization onto PTFE substrate. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zhang Y, Yang F, Qin S, Huang J, Yang X, Wang W, Li Y, Wu C, Shao L. Deprotonated tannic acid regulating pyrrole polymerization to enhance nanofiltration performance for molecular separations under both aqueous and organic solvent environments. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Kang J, Choi Y, Kim JP, Kim JH, Kim JY, Kwon O, Kim DI, Kim DW. Thermally-induced pore size tuning of multilayer nanoporous graphene for organic solvent nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Oh HS, Lee CH, Kim NK, An T, Kim GH. Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers (Basel) 2021; 13:2478. [PMID: 34372081 PMCID: PMC8347500 DOI: 10.3390/polym13152478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Skin is the largest sensory organ and receives information from external stimuli. Human body signals have been monitored using wearable devices, which are gradually being replaced by electronic skin (E-skin). We assessed the basic technologies from two points of view: sensing mechanism and material. Firstly, E-skins were fabricated using a tactile sensor. Secondly, E-skin sensors were composed of an active component performing actual functions and a flexible component that served as a substrate. Based on the above fabrication processes, the technologies that need more development were introduced. All of these techniques, which achieve high performance in different ways, are covered briefly in this paper. We expect that patients' quality of life can be improved by the application of E-skin devices, which represent an applied advanced technology for real-time bio- and health signal monitoring. The advanced E-skins are convenient and suitable to be applied in the fields of medicine, military and environmental monitoring.
Collapse
Affiliation(s)
- Hyeon Seok Oh
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Chung Hyeon Lee
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Na Kyoung Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Taechang An
- Department of Mechanical & Robotics Engineering, Andong National University (ANU), 1375, Gyeong-dong-ro, Andong-si 36729, Gyeongsangbuk-do, Korea;
| | - Geon Hwee Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| |
Collapse
|
8
|
Rasool MA, Vankelecom IFJ. γ-Valerolactone as Bio-Based Solvent for Nanofiltration Membrane Preparation. MEMBRANES 2021; 11:418. [PMID: 34072872 PMCID: PMC8228422 DOI: 10.3390/membranes11060418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
γ-Valerolactone (GVL) was selected as a renewable green solvent to prepare membranes via the process of phase inversion. Water and ethanol were screened as sustainable non-solvents to prepare membranes for nanofiltration (NF). Scanning electron microscopy was applied to check the membrane morphology, while aqueous rose Bengal (RB) and magnesium sulphate (MgSO4) feed solutions were used to screen performance. Cellulose acetate (CA), polyimide (PI), cellulose triacetate (CTA), polyethersulfone (PES) and polysulfone (PSU) membranes were fine-tuned as materials for preparation of NF-membranes, either by selecting a suitable non-solvent for phase inversion or by increasing the polymer concentration in the casting solution. The best membranes were prepared with CTA in GVL using water as non-solvent: with increasing CTA concentration (10 wt% to 17.5 wt%) in the casting solution, permeance decreased from 15.9 to 5.5 L/m2·h·bar while RB rejection remained higher than 94%. The polymer solubilities in GVL were rationalized using Hansen solubility parameters, while membrane performances and morphologies were linked to viscosity measurements and cloudpoint determination of the casting solutions to better understand the kinetic and thermodynamic aspects of the phase inversion process.
Collapse
Affiliation(s)
| | - Ivo F. J. Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium;
| |
Collapse
|
9
|
Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Sun Y, Zhou S, Qin G, Guo J, Zhang Q, Li S, Zhang S. A chemical-induced crystallization strategy to fabricate poly(ether ether ketone) asymmetric membranes for organic solvent nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Ramesh P, Xu WL, Sorci M, Trant C, Lee S, Kilduff J, Yu M, Belfort G. Organic solvent filtration by brush membranes: Permeability, selectivity and fouling correlate with degree of SET-LRP grafting. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115845] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Xu S, Wang ZY, Li S, Tian L, Su B. Fabrication of polyimide-based hollow fiber membrane by synergetic covalent-crosslinking strategy for organic solvent nanofiltration (OSN) application. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Aburabie JH, Puspasari T, Peinemann KV. Alginate-based membranes: Paving the way for green organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117615] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Rasool MA, Van Goethem C, Vankelecom IF. Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Van den Mooter PR, Daems N, Vankelecom IF. Preparation of solvent resistant supports through formation of a semi-interpenetrating polysulfone/polyacrylate network using UV cross-linking - Part 2: Optimization of synthesis parameters for UV-LED curing. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Wang Z, Si Z, Cai D, Li G, Li S, Qin P, Tan T. Improving ZIF-8 stability in the preparation process of polyimide-based organic solvent nanofiltration membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Das SK, Manchanda P, Peinemann KV. Solvent-resistant triazine-piperazine linked porous covalent organic polymer thin-film nanofiltration membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Van den Mooter PR, Daems N, Vankelecom IF. Preparation of solvent resistant supports through formation of a semi-interpenetrating polysulfone/polyacrylate network using UV cross-linking – Part 1: Selection of optimal UV curing conditions. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Yuan S, Swartenbroekx J, Li Y, Zhu J, Ceyssens F, Zhang R, Volodine A, Li J, Van Puyvelde P, Van der Bruggen B. Facile synthesis of Kevlar nanofibrous membranes via regeneration of hydrogen bonds for organic solvent nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Abdellah MH, Pérez-Manríquez L, Puspasari T, Scholes CA, Kentish SE, Peinemann KV. A catechin/cellulose composite membrane for organic solvent nanofiltration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Gao ZF, Shi GM, Cui Y, Chung TS. Organic solvent nanofiltration (OSN) membranes made from plasma grafting of polyethylene glycol on cross-linked polyimide ultrafiltration substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Polysulfone/Polyamide-SiO₂ Composite Membrane with High Permeance for Organic Solvent Nanofiltration. MEMBRANES 2018; 8:membranes8040089. [PMID: 30282935 PMCID: PMC6316106 DOI: 10.3390/membranes8040089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
To improve the filtration performance and properties of organic solvent nanofiltration (OSN) membranes, we firstly introduce nanoporous silica (SiO2) particles into the polyamide (PA) active layer of polysulfone (PSf) membrane via an interfacial polymerization process. Results from the study revealed that introduction of SiO2 influenced the properties of PSf/PA-SiO2 composite membranes by changing the surface roughness and hydrophilicity. Moreover, results also indicated that nanoporous SiO2 modified membranes showed an improved performance of alcohols solvent permeance. The PSf/PA-SiO2 composite membrane modified by 0.025 wt % of SiO2 reached a permeance of 3.29 L m−2 h−1 bar−1 for methanol and 0.42 L m−2 h−1 bar−1 for ethanol, which were 20.0% and 13.5% higher than the control PSf membrane (permeance of 2.74 L m−2 h−1 bar−1 for methanol and 0.37 L m−2 h−1 bar−1 for ethanol). Conclusively, we demonstrated that the increase of membrane hydrophilicity and roughness were major factors contributing to the improved alcohols solvent permeance of the membranes.
Collapse
|
25
|
Wei C, He Z, Lin L, Cheng Q, Huang K, Ma S, Chen L. Negatively charged polyimide nanofiltration membranes with high selectivity and performance stability by optimization of synergistic imidization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Duong PH, Anjum DH, Peinemann KV, Nunes SP. Thin porphyrin composite membranes with enhanced organic solvent transport. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
High conductive PPy–CNT surface-modified PES membrane with anti-fouling property. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0826-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Chau J, Basak P, Kaur J, Hu Y, Sirkar KK. Performance of a composite membrane of a perfluorodioxole copolymer in organic solvent nanofiltration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Cheng X, Jiang X, Zhang Y, Lau CH, Xie Z, Ng D, Smith SJD, Hill MR, Shao L. Building Additional Passageways in Polyamide Membranes with Hydrostable Metal Organic Frameworks To Recycle and Remove Organic Solutes from Various Solvents. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38877-38886. [PMID: 29022696 DOI: 10.1021/acsami.7b07373] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Membrane separation is a promising technology for extracting temperature-sensitive organic molecules from solvents. However, a lack of membrane materials that are permeable toward organic solvents yet highly selective curtails large-scale membrane applications. To overcome the trade-off between flux and selectivity, additional molecular transportation pathways are constructed in ultrathin polyamide membranes using highly hydrostable metal organic frameworks with diverse functional surface architectures. Additional passageways enhance water permeance by 84% (15.4 L m-2 h-1 bar-1) with nearly 100% rose bengal rejection and 97.6% azithromycin rejection, while showing excellent separation performance in ethyl acetate, ketones, and alcohols. These unique composite membranes remain stable in both aqueous and organic solvent environments. This immediately finds application in the purification of aqueous mixtures containing organic soluble compounds, such as antibiotics, during pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Xiquan Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P.R. China
- CSIRO Manufacturing , Private Bag 10, Clayton South, Victoria 3169, Australia
- School of Marine Science and Technology, Sino-Europe Membrane Technology Research Institute, Harbin Institute of Technology , Weihai 264209, P.R. China
| | - Xu Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P.R. China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P.R. China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh , The King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, U.K
| | - Zongli Xie
- CSIRO Manufacturing , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Derrick Ng
- CSIRO Manufacturing , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Stefan J D Smith
- CSIRO Manufacturing , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Matthew R Hill
- CSIRO Manufacturing , Private Bag 10, Clayton South, Victoria 3169, Australia
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P.R. China
| |
Collapse
|
30
|
Lim SK, Goh K, Bae TH, Wang R. Polymer-based membranes for solvent-resistant nanofiltration: A review. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Sontakke SM, Awate V. The effect of synthesis parameters on the conductivity of PSf/PANI and PSf/PPy composite membranes. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sharad M. Sontakke
- Department of Chemical Engineering; Institute of Chemical Technology; Mumbai-400019 India
| | - Vedraj Awate
- Department of Chemical Engineering; Institute of Chemical Technology; Mumbai-400019 India
| |
Collapse
|
32
|
Mahdavi MR, Delnavaz M, Vatanpour V, Farahbakhsh J. Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Cheng X, Ding S, Guo J, Zhang C, Guo Z, Shao L. In-situ interfacial formation of TiO 2 /polypyrrole selective layer for improving the separation efficiency towards molecular separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Marchetti P, Peeva L, Livingston A. The Selectivity Challenge in Organic Solvent Nanofiltration: Membrane and Process Solutions. Annu Rev Chem Biomol Eng 2017; 8:473-497. [PMID: 28511021 DOI: 10.1146/annurev-chembioeng-060816-101325] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent development of organic solvent nanofiltration (OSN) materials has been overwhelmingly directed toward tight membranes with ultrahigh permeance. However, emerging research into OSN applications is suggesting that improved separation selectivity is at least as important as further increases in membrane permeance. Membrane solutions are being proposed to improve selectivity, mostly by exploiting solute/solvent/membrane interactions and by fabricating tailored membranes. Because achieving a perfect separation with a single membrane stage is difficult, process engineering solutions, such as membrane cascades, are also being advocated. Here we review these approaches to the selectivity challenge, and to clarify our analysis, we propose a selectivity figure of merit that is based on the permselectivity between the two solutes undergoing separation as well as the ratio of their molecular weights.
Collapse
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| | - Ludmila Peeva
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| | - Andrew Livingston
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| |
Collapse
|
35
|
Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
|
37
|
Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration. Curr Opin Chem Eng 2015. [DOI: 10.1016/j.coche.2015.01.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Thin-film composite membranes for organophilic nanofiltration based on photo-cross-linkable polyimide. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2014.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 2014; 114:10735-806. [PMID: 25333504 DOI: 10.1021/cr500006j] [Citation(s) in RCA: 832] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering and Chemical Technology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
41
|
Cheng XQ, Zhang YL, Wang ZX, Guo ZH, Bai YP, Shao L. Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21455] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xi Quan Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Yong Ling Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
- AB InBev Sedrin (Zhangzhou) Brewery Co., Ltd; Zhang Zhou People's Republic of China
| | - Zhen Xing Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Zhan Hu Guo
- Integrated Composites Laboratory; Dan F. Smith Department of Chemical Engineering; Lamar University; Beaumont Texas 77710
| | - Yong Ping Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| |
Collapse
|
42
|
Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.10.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Mautner A, Lee KY, Lahtinen P, Hakalahti M, Tammelin T, Li K, Bismarck A. Nanopapers for organic solvent nanofiltration. Chem Commun (Camb) 2014; 50:5778-81. [DOI: 10.1039/c4cc00467a] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The production of nanopapers from nanocellulose suspensions by a papermaking-process and their utilization as organic solvent nanofiltration membranes is demonstrated.
Collapse
Affiliation(s)
- A. Mautner
- Department of Chemical Engineering
- Polymer & Composite Engineering (PaCE) Group
- Imperial College London
- SW7 2AZ London, UK
| | - K.-Y. Lee
- Department of Chemical Engineering
- University College London
- WC1E 7JE London, UK
- Polymer & Composite Engineering (PaCE) group
- Institute for Materials Chemistry and Research
| | - P. Lahtinen
- VTT Technical Research Centre of Finland
- FL-02044 Espoo, Finland
| | - M. Hakalahti
- VTT Technical Research Centre of Finland
- FL-02044 Espoo, Finland
| | - T. Tammelin
- VTT Technical Research Centre of Finland
- FL-02044 Espoo, Finland
| | - K. Li
- Department of Chemical Engineering
- Imperial College London
- SW7 2AZ London, UK
| | - A. Bismarck
- Department of Chemical Engineering
- Polymer & Composite Engineering (PaCE) Group
- Imperial College London
- SW7 2AZ London, UK
- Polymer & Composite Engineering (PaCE) group
| |
Collapse
|
44
|
Ahmadiannamini P, Li X, Goyens W, Meesschaert B, Vanderlinden W, De Feyter S, Vankelecom IF. Influence of polyanion type and cationic counter ion on the SRNF performance of polyelectrolyte membranes. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.02.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Multilayered polyelectrolyte complex based solvent resistant nanofiltration membranes prepared from weak polyacids. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2011.12.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
New express dynamic technique for liquid permeation measurements in a wide range of trans-membrane pressures. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2011.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
|
48
|
Xu D, Zhang G, Zhang N, Li H, Zhang Y, Shao K, Han M, Lew CM, Na H. Surface modification of heteropoly acid/SPEEK membranes by polypyrrole with a sandwich structure for direct methanol fuel cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm02167a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Loh XX, Sairam M, Steinke JHG, Livingston AG, Bismarck A, Li K. Polyaniline hollow fibres for organic solvent nanofiltration. Chem Commun (Camb) 2008:6324-6. [DOI: 10.1039/b815632h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|