1
|
Wang L, Gao W, Li X, Zheng X, Li X, Sheng X, Liu Y, Song M. Aqueous high-energy-density capacitor with 2 V output voltage for alternating current line filtering. J Colloid Interface Sci 2025; 692:137496. [PMID: 40187137 DOI: 10.1016/j.jcis.2025.137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
High-energy-density aqueous filtering capacitors are essential for the conversion of alternating current to direct current in contemporary integrated circuits. Yet their energy density is limited by the 1.23 V decomposition voltage of water. Here, we report an asymmetric electrolyte configuration to effectively suppress water decomposition activity, enabling the development of an aqueous filtering capacitor with a 2 V operating voltage, as well as an ultrahigh areal specific energy density of 4.51 ± 0.26 mF V2 cm-2 (1.25 ± 0.07 μWh cm-2) at 120 Hz. This significant energy density value surpasses most reported filtering capacitors with a comparable phase angle of -(75.0 ± 1.0)° (Chi et al., 2017; Park et al., 2021; Zhang et al., 2022). Additionally, the capacitor presents outstanding cycling stability with a capacitance retention of 97.9 % after 200,000 cycles. Furthermore, we employ an alternatingly stacked assembly technique to conveniently construct compact and lossless integrated filtering capacitors, enabling efficient alternating current output smoothing from wind generator and ensuring stable power supply for light-controlled circuit. This work substantially advances line filtering electrochemical capacitors toward application in modern circuits.
Collapse
Affiliation(s)
- Lixia Wang
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China.
| | - Wenbo Gao
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xiangrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003 Henan, China
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xin Li
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Xia Sheng
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China
| | - Meirong Song
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, China.
| |
Collapse
|
2
|
Chen J, Tang Z, Sheng L, Li Z, Zhu D, Wang J, Tang Y, He X, Xu H. 3D Covalent Organic Framework Membrane with Interactive Ion Nanochannels for Hydroxide Conduction. J Am Chem Soc 2025; 147:3714-3723. [PMID: 39815605 DOI: 10.1021/jacs.4c16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Crystalline porous materials, known for their ordered structures, hold promise for efficient hydroxide conductivity in alkaline fuel cells with limited ionic densities. However, the rigid cross-linking of porous materials precludes their processing into membranes, while composite membranes diminish materials' conductivity advantage due to the interrupted phases. Here, we report a self-standing three-dimensional covalent organic framework (3D COF) membrane with efficient OH-transport through its interconnected 3D ionic nanochannels. The large-area, homogeneously connected COF membrane, with an 8 cm diameter and 20 μm thickness, was prepared using an interface polymerization strategy assisted by sacrificial templates of a polyacrylonitrile membrane. At the microscopic level, the introduction of imidazolium salt-building units resulted in a noninterpenetrated structure of 3D COF, creating a 3D interactive continuous hydrophilic channel for OH--conduction. The 3D COF membrane demonstrated high conductivity (169 mS/cm at 80 °C, 100% humidity) and achieved a peak power density of 160 mW/cm2 in H2/O2 single-cell tests. This COF interface polymerization strategy brings new possibilities to address the challenges of porous material membrane formation and is expected to advance their practical applications in the field of ion transport.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhuozhuo Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Li Sheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zonglong Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Da Zhu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Chaudhary CK, Dasgupta PK. Forbidden ion transport through cation exchange membranes. Talanta 2024; 279:126581. [PMID: 39032459 DOI: 10.1016/j.talanta.2024.126581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Cation exchange membranes (CEMs) are widely used in many applications. The fixed anionic groups e.g., COO-, -SO3-, etc. in the polymer matrix ideally allows the passage only of oppositely charged cations, driven by a potential or a concentration gradient. Anions, charged negative, the same as the membrane matrix, cannot pass through the membrane due to electrostatic repulsion. Such "Donnan-forbidden" passage can, however, occur to some degree, if the electrical or concentration gradient is high enough to overcome the "Donnan barrier". Except for salt uptake/transport in concentrated salt solutions, the factors that govern such Forbidden Ion Transport (FIT) have rarely been studied. In most applications of transmembrane ion transport, whether electrically driven as in electrodialysis, or concentration-driven, it is the transport of the counterion to the fixed charged groups, such as that of the proton through a CEM, that is usually of interest. Nevertheless, CEMs are also of interest in analytical chemistry, specifically in suppressed ion chromatography. As used in membrane suppressors, both transport of permitted ions and rejection of forbidden ions are important. If the latter is indeed governed by electrostatic factors, other things being equal, the primary governing factor should be the charge density of the membrane, tantamount to its ion exchange capacity (IEC). In fabricating microscale suppressors, we found useful to synthesize a new ion exchange polymer that can be easily molded to make tubular microconduits. Despite a high IEC of this material, FIT was also found to be surprisingly high. We measured several relevant properties for thirteen commercial and four custom-made membranes to discover that while FIT is indeed linearly related to 1/IEC for a significant number of these membranes, for very high water-content membranes, FIT may be overwhelmingly governed by the water content of the membrane. In addition, FIT through all CEMs differ greatly among strong acids, they may still be transported as the molecular acids and the extent is in the same order as the expected activity of the molecular acid in the CEM. These results are discussed with the perspective that even for strong acids, the transport does take place as un-ionized molecular acids.
Collapse
Affiliation(s)
- Chandan K Chaudhary
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, USA
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, USA.
| |
Collapse
|
4
|
Ludlam GH, Gnaniah SJP, Degl’Innocenti R, Gupta G, Wain AJ, Lin H. Measurement of Water Uptake and States in Nafion Membranes Using Humidity-Controlled Terahertz Time-Domain Spectroscopy. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7924-7934. [PMID: 38783844 PMCID: PMC11110106 DOI: 10.1021/acssuschemeng.4c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Perfluorinated sulfonic acid ionomers are well known for their unique water uptake properties and chemical/mechanical stability. Understanding their performance-stability trade-offs is key to realizing membranes with optimal properties. Terahertz time-domain spectroscopy has been demonstrated to resolve water states inside industrially relevant membranes, producing qualitatively agreeable results to conventional gravimetric analysis and prior demonstrations. Using the proposed humidity-controlled terahertz time-domain spectroscopy, here we quantify this detailed water information inside commercially available Nafion membranes at various humidities for direct comparison against literature values from dynamic vapor sorption, differential scanning calorimetry, and Fourier transform infrared spectroscopy on selected samples. Using this technique therefore opens up opportunities for rapid future parameter space investigation for membrane optimization.
Collapse
Affiliation(s)
| | - Sam J. P. Gnaniah
- National
Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.
| | - Riccardo Degl’Innocenti
- Department
of Engineering, Lancaster University, Lancaster LA1 4YW, U.K.
- School
of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS, U.K.
| | - Gaurav Gupta
- Department
of Engineering, Lancaster University, Lancaster LA1 4YW, U.K.
| | - Andrew J. Wain
- National
Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.
| | - Hungyen Lin
- Department
of Engineering, Lancaster University, Lancaster LA1 4YW, U.K.
| |
Collapse
|
5
|
Pimlott DJD, Kim Y, Berlinguette CP. Reactive Carbon Capture Enables CO 2 Electrolysis with Liquid Feedstocks. Acc Chem Res 2024; 57:1007-1018. [PMID: 38526508 DOI: 10.1021/acs.accounts.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ConspectusThe electrochemical reduction of carbon dioxide (CO2RR) is a promising strategy for mitigating global CO2 emissions while simultaneously yielding valuable chemicals and fuels, such as CO, HCOO-, and C2H4. This approach becomes especially appealing when integrated with surplus renewable electricity, as the ensuing production of fuels could facilitate the closure of the carbon cycle. Despite these advantages, the realization of industrial-scale electrolyzers fed with CO2 will be challenged by the substantial energy inputs required to isolate, pressurize, and purify CO2 prior to electrolysis.To address these challenges, we devised an electrolyzer capable of directly converting reactive carbon solutions (e.g., a bicarbonate-rich eluent that exits a carbon capture unit) into higher value products. This "reactive carbon electrolyzer" operates by reacting (bi)carbonate with acid generated within the electrolyzer to produce CO2 in situ, thereby facilitating CO2RR at the cathode. This approach eliminates the need for expensive CO2 recovery and compression steps, as the electrolyzer can then then coupled directly to the CO2 capture unit.This Account outlines our endeavors in developing this type of electrolyzer, focusing on the design and implementation of materials for electrocatalytic (bi)carbonate conversion. We highlight the necessity for a permeable cathode that allows the efficient transport of (bi)carbonate ions while maintaining a sufficiently high catalytic surface area. We address the importance of the supporting electrolyte, detailing how (bi)carbonate concentration, counter cations, and ionic impurities impact selectivity for products formed in the electrolyzer. We also catalog state-of-the-art performance metrics for reactive carbon electrolyzers (i.e., Faradaic efficiency, full cell voltage, CO2 utilization efficiency) and outline strategies to bridge the gap between these values and those required for commercial operation Collectively, these findings contribute to the ongoing efforts to realize industrial-scale electrochemical reactors for CO2 conversion, bringing us closer to a sustainable and closed-loop carbon cycle.
Collapse
Affiliation(s)
- Douglas J D Pimlott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
6
|
Kodir A, Woo S, Shin SH, So S, Man Yu D, Lee H, Shin D, Lee JY, Park SH, Bae B. Poly(p-phenylene)-based membranes with cerium for chemically durable polymer electrolyte fuel cell membranes. Heliyon 2024; 10:e26680. [PMID: 38434046 PMCID: PMC10906415 DOI: 10.1016/j.heliyon.2024.e26680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
A poly(p-phenylene)-based multiblock polymer is developed with an oligomeric chain extender and cerium (CE-sPP-PPES + Ce3+) to realize better performance and durability in proton exchange membrane fuel cells. The membrane performance is evaluated in single cells at 80 °C and at 100% and 50% relative humidity (RH). The accelerated stability test is conducted 90 °C and 30% RH, during which linear sweep voltammetry and hydrogen permeation detection are monitored periodically. Results demonstrate that the proton conductivity of the pristine hydrocarbon membranes is superior to that of PFSA membranes, and the hydrogen crossover is significantly lower. In addition, a composite membrane containing cerium performs similarly to a pristine membrane, particularly at low RH levels. Adding cerium to CE-sPP-PPES + Ce3+ membranes improves their chemical durability significantly, with an open circuit voltage decay rate of only 89 μV/h for 1000 h. The hydrogen crossover is maintained across accelerated stability tests, as confirmed by hydrogen detection and crossover current density. The short-circuit resistance indicates that membrane thinning is less likely to occur. Collectively, these results demonstrate that a hydrocarbon membrane with cerium is a potential alternative for fuel cell applications.
Collapse
Affiliation(s)
- Abdul Kodir
- Department of Renewable Energy Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
| | - Seunghee Woo
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
| | - Sang-Hun Shin
- Energy Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Soonyong So
- Energy Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Duk Man Yu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hyejin Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
| | - Dongwon Shin
- Department of Renewable Energy Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
| | - Jang Yong Lee
- Energy Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Seok-Hee Park
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
| | - Byungchan Bae
- Department of Renewable Energy Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea
| |
Collapse
|
7
|
Kutagulla S, Le NH, Caldino Bohn IT, Stacy BJ, Favela CS, Slack JJ, Baker AM, Kim H, Shin HS, Korgel BA, Akinwande D. Comparative Studies of Atomically Thin Proton Conductive Films to Reduce Crossover in Hydrogen Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59358-59369. [PMID: 38103256 DOI: 10.1021/acsami.3c12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H2 barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing. The barrier layers studied include graphene, hexagonal boron nitride (hBN), amorphous boron nitride (aBN), and varying thicknesses of molybdenum disulfide (MoS2), all chosen due to their expected stability in a fuel cell environment. Crossover mitigation in the materials studied ranges from 4.4% (1 nm MoS2) to 46.1% (graphene) as compared to Nafion 211. Effects on proton conductivity are also studied, suggesting high areal proton transport in materials previously thought to be effectively nonconductive, such as 2 nm MoS2 and amorphous boron nitride under the conditions studied. The results indicate that a number of 2D materials are able to improve crossover effects, with those coated with 8 nm MoS2 and 1 L graphene able to achieve greater crossover reduction while minimizing conductivity penalty.
Collapse
Affiliation(s)
- Shanmukh Kutagulla
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Nam Hoang Le
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Isabel Terry Caldino Bohn
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Benjamin J Stacy
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Christopher S Favela
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - John J Slack
- Nikola Corporation, Phoenix, Arizona 85040-8803, United States
| | - Andrew M Baker
- Nikola Corporation, Phoenix, Arizona 85040-8803, United States
| | - Hyeongjoon Kim
- Department of Chemistry and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Hyeon Suk Shin
- Department of Chemistry and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Brian A Korgel
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
8
|
Skupov KM, Ponomarev II, Vtyurina ES, Volkova YA, Ponomarev II, Zhigalina OM, Khmelenin DN, Cherkovskiy EN, Modestov AD. Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell. MEMBRANES 2023; 13:membranes13050479. [PMID: 37233540 DOI: 10.3390/membranes13050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150-200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance.
Collapse
Affiliation(s)
- Kirill M Skupov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Igor I Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Elizaveta S Vtyurina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Yulia A Volkova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Ivan I Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Olga M Zhigalina
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Dmitry N Khmelenin
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Evgeny N Cherkovskiy
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Alexander D Modestov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Av. 31, bld. 4., 119071 Moscow, Russia
| |
Collapse
|
9
|
Wang L, He J, Heiranian M, Fan H, Song L, Li Y, Elimelech M. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. SCIENCE ADVANCES 2023; 9:eadf8488. [PMID: 37058571 PMCID: PMC10104469 DOI: 10.1126/sciadv.adf8488] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
We performed nonequilibrium molecular dynamics (NEMD) simulations and solvent permeation experiments to unravel the mechanism of water transport in reverse osmosis (RO) membranes. The NEMD simulations reveal that water transport is driven by a pressure gradient within the membranes, not by a water concentration gradient, in marked contrast to the classic solution-diffusion model. We further show that water molecules travel as clusters through a network of pores that are transiently connected. Permeation experiments with water and organic solvents using polyamide and cellulose triacetate RO membranes showed that solvent permeance depends on the membrane pore size, kinetic diameter of solvent molecules, and solvent viscosity. This observation is not consistent with the solution-diffusion model, where permeance depends on the solvent solubility. Motivated by these observations, we demonstrate that the solution-friction model, in which transport is driven by a pressure gradient, can describe water and solvent transport in RO membranes.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Jinlong He
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA
| | - Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Lianfa Song
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| |
Collapse
|
10
|
Theerthagiri S, Krishnan S, Deivanayagam P, Muthiah C, Kannaiyan D.
TiO
2
‐
graphene dispersed sulfonated polyphenylenesulfide sulfone nanocomposites for medium temperature
PEMFCs. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | | | - Paradesi Deivanayagam
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur 603203 India
| | - Chandran Muthiah
- Department of Zoology Thiruvalluvar University Vellore 632115 India
| | | |
Collapse
|
11
|
Maier M, Abbas D, Komma M, Mu'min MS, Thiele S, Böhm T. A comprehensive study on the ionomer properties of PFSA membranes with confocal Raman microscopy. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Bao Z, Xie B, Li W, Zhong S, Fan L, Tongsh C, Gao F, Du Q, Benbouzid M, Jiao K. High-consistency proton exchange membrane fuel cells enabled by oxygen-electron mixed-pathway electrodes via digitalization design. Sci Bull (Beijing) 2023; 68:266-275. [PMID: 36710149 DOI: 10.1016/j.scib.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Proton exchange membrane (PEM) fuel cell has been regarded as a promising approach to the decarbonization and diversification of energy sources. In recent years, durability and cost issues of PEM fuel cells are increasingly significant with the rapid increase of power density. However, the failure to maintain the cell consistency, as one major cause of the above issue, has attracted little attention. Therefore, this study intends to figure out the underlying cause of cell inconsistency and provide solutions to it from the perspective of multi-physics transport coupled with electrochemical reactions. The PEM fuel cells with electrodes under two compression modes are firstly discussed to fully explain the relationship of cell performance and consistency to electrode structure and multi-physics transport. The result indicates that one main cause of cell inconsistency is the intrinsic conflict between the separated transport and cooperated consumption of oxygen and electron throughout the active area. Then, a mixed-pathway electrode design is proposed to reduce the cell inconsistency by enhancing the mixed transport of oxygen and electron in the electrode. It is found that the mixing of pathways in electrodes at under-rib region is more effective than that at the under-channel region, and can achieve an up to 40% reduction of the cell inconsistency with little (3.3%) sacrificed performance. In addition, all the investigations are implemented based on a self-developed digitalization platform that reconstructs the complex physical-chemical system of PEM fuel cells. The fully observable physical information of the digitalized cells provides strong support to the related analysis.
Collapse
Affiliation(s)
- Zhiming Bao
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; INSA Rennes, Rennes 35700, France
| | - Biao Xie
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Weizhuo Li
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Shenghui Zhong
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Linhao Fan
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chasen Tongsh
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Fei Gao
- FEMTO-ST Institute, University of Technology of Belfort-Montbeliard, National Center for Scientific Research, Belfort F-90010, France.
| | - Qing Du
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Mohamed Benbouzid
- UMR 6027 IRDL, Brest University, National Center for Scientific Research, Brest 29238, France; Shanghai Marine University, Shanghai 201306, China
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
13
|
Heizmann PA, Nguyen H, von Holst M, Fischbach A, Kostelec M, Gonzalez Lopez FJ, Bele M, Pavko L, Đukić T, Šala M, Ruiz-Zepeda F, Klose C, Gatalo M, Hodnik N, Vierrath S, Breitwieser M. Alternative and facile production pathway towards obtaining high surface area PtCo/C intermetallic catalysts for improved PEM fuel cell performance. RSC Adv 2023; 13:4601-4611. [PMID: 36760270 PMCID: PMC9900476 DOI: 10.1039/d2ra07780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The design of catalysts with stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is key in controlling the performance of proton exchange membrane (PEM) fuel cells. In the present work, an intermetallic PtCo/C catalyst is synthesized via double-passivation galvanic displacement. TEM and XRD confirm a significantly narrowed particle size distribution for the catalyst particles compared to commercial benchmark catalysts (Umicore PtCo/C). Only about 10% of the mass fraction of PtCo particles show a diameter larger than 8 nm, whereas this is up to or even more than 35% for the reference systems. This directly results in a considerable increase in electrochemically active surface area (96 m2 g-1 vs. >70 m2 g-1), which confirms the more efficient usage of precious catalyst metal in the novel catalyst. Single-cell tests validate this finding by improved PEM fuel cell performance. Reducing the cathode catalyst loading from 0.4 mg cm-2 to 0.25 mg cm-2 resulted in a power density drop at an application-relevant 0.7 V of only 4% for the novel catalyst, compared to the 10% and 20% for the commercial benchmarks reference catalysts.
Collapse
Affiliation(s)
- Philipp A. Heizmann
- Electrochemical Energy Systems, IMTEK – Department of Microsystems Engineering, University of FreiburgGeorges-Koehler-Allee 10379110 FreiburgGermany,Institute and FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of FreiburgGeorges-Köhler-Allee 10579110 FreiburgGermany
| | - Hien Nguyen
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Miriam von Holst
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Andreas Fischbach
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Mitja Kostelec
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Francisco Javier Gonzalez Lopez
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia,ReCatalyst d.o.o.Hajdrihova ulica 19Ljubljana1000Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Tina Đukić
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Carolin Klose
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia,ReCatalyst d.o.o.Hajdrihova ulica 19Ljubljana1000Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of ChemistryHajdrihova ulica 191000 LjubljanaSlovenia
| | - Severin Vierrath
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Institute and FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany.,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Matthias Breitwieser
- Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany .,Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany
| |
Collapse
|
14
|
Wu X, Chen N, Hu C, Klok HA, Lee YM, Hu X. Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210432. [PMID: 36642967 DOI: 10.1002/adma.202210432] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Indexed: 05/13/2023]
Abstract
Anion-exchange-membrane fuel cells (AEMFCs) are a cost-effective alternative to proton-exchange-membrane fuel cells (PEMFCs). The development of high-performance and durable AEMFCs requires highly conductive and robust anion-exchange membranes (AEMs). However, AEMs generally exhibit a trade-off between conductivity and dimensional stability. Here, a fluorination strategy to create a phase-separated morphological structure in poly(aryl piperidinium) AEMs is reported. The highly hydrophobic perfluoroalkyl side chains augment phase separation to construct interconnected hydrophilic channels for anion transport. As a result, these fluorinated PAP (FPAP) AEMs simultaneously possess high conductivity (>150 mS cm-1 at 80 °C) and high dimensional stability (swelling ratio <20% at 80 °C), excellent mechanical properties (tensile strength >80 MPa and elongation at break >40%) and chemical stability (>2000 h in 3 m KOH at 80 °C). AEMFCs with a non-precious Co-Mn spinel cathode using the present FPAP AEMs achieve an outstanding peak power density of 1.31 W cm-2 . The AEMs remain stable over 500 h of fuel cell operation at a constant current density of 0.2 A cm-2 .
Collapse
Affiliation(s)
- Xingyu Wu
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nanjun Chen
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Harm-Anton Klok
- Laboratoire des Polymères, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
15
|
Kajita T, Tanaka H, Ohtsuka Y, Orido T, Takano A, Iwamoto H, Mufundirwa A, Imai H, Noro A. Effects of a Nanophase-Separated Structure on Mechanical Properties and Proton Conductivity of Acid-Infiltrated Block Polymer Electrolyte Membranes under Non-Humidification. ACS OMEGA 2023; 8:1121-1130. [PMID: 36643438 PMCID: PMC9835166 DOI: 10.1021/acsomega.2c06514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Acid-infiltrated block polymer electrolyte membranes adopting a spherical or lamellar nanophase-separated structure were prepared by infiltrating sulfuric acid (H2SO4) into polystyrene-b-poly(4-vinylpyridine)-b-polystyrene (S-P-S) triblock copolymers to investigate the effects of its nanophase-separated structure on mechanical properties and proton conductivities under non-humidification. Lamellae-forming S-P-S/H2SO4 membranes with a continuous hard phase generally exhibited higher tensile strength than sphere-forming S-P-S/H2SO4 membranes with a discontinuous hard phase even if the same amount of Sa was infiltrated into each neat S-P-S film. Meanwhile, the conductivities of lamellae-forming S-P-S/H2SO4 membranes under non-humidification were comparable or superior to those of sphere-forming S-P-S/H2SO4 membranes, even though they were infiltrated by the same weight fraction of H2SO4. This result is attributed to the conductivities of S-P-S/H2SO4 membranes being greatly influenced by the acid/base stoichiometry associated with acid-base complex formation rather than the nanophase-separated structure adopted in the membranes. Namely, there are more free H2SO4 moieties that can release free protons contributing to the conductivity in lamellae-forming S-P-S/H2SO4 membranes than sphere-forming S-P-S/H2SO4, even when the same amount of H2SO4 was infiltrated into the S-P-S.
Collapse
Affiliation(s)
- Takato Kajita
- Department
of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603, Japan
| | - Haruka Tanaka
- Department
of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603, Japan
| | - Yumiko Ohtsuka
- Department
of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603, Japan
| | - Tsuyoshi Orido
- Department
of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603, Japan
| | - Atsushi Takano
- Department
of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603, Japan
| | - Hiroyuki Iwamoto
- Japan
Synchrotron Radiation Research Institute (JASRI), Spring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| | - Albert Mufundirwa
- Japan
Synchrotron Radiation Research Institute (JASRI), Spring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| | - Hideto Imai
- NISSAN
ARC LTD., 1 Natsushima, Yokosuka, Kanagawa237-0061, Japan
| | - Atsushi Noro
- Department
of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603, Japan
- Research
Center for Net-Zero Carbon Society, Institutes of Innovation for Future
Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8601, Japan
| |
Collapse
|
16
|
Kausar A, Ahmad I, Maaza M, Eisa MH. State-of-the-Art of Polymer/Fullerene C 60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies. MEMBRANES 2022; 13:27. [PMID: 36676834 PMCID: PMC9864887 DOI: 10.3390/membranes13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
17
|
Motoishi Y, Tanaka N, Fujigaya T. Postmodification of highly delocalized cations in an azide-based polymer via copper-catalyzed cycloaddition for anion exchange membranes. Polym J 2022. [DOI: 10.1038/s41428-022-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Khalid H, Najibah M, Park HS, Bae C, Henkensmeier D. Properties of Anion Exchange Membranes with a Focus on Water Electrolysis. MEMBRANES 2022; 12:membranes12100989. [PMID: 36295748 PMCID: PMC9609780 DOI: 10.3390/membranes12100989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/09/2023]
Abstract
Recently, alkaline membrane water electrolysis, in which membranes are in direct contact with water or alkaline solutions, has gained attention. This necessitates new approaches to membrane characterization. We show how the mechanical properties of FAA3, PiperION, Nafion 212 and reinforced FAA3-PK-75 and PiperION PI-15 change when stress−strain curves are measured in temperature-controlled water. Since membranes show dimensional changes when the temperature changes and, therefore, may experience stresses in the application, we investigated seven different membrane types to determine if they follow the expected spring-like behavior or show hysteresis. By using a very simple setup which can be implemented in most laboratories, we measured the “true hydroxide conductivity” of membranes in temperature-controlled water and found that PI-15 and mTPN had higher conductivity at 60 °C than Nafion 212. The same setup was used to monitor the alkaline stability of membranes, and it was found that stability decreased in the order mTPN > PiperION > FAA3. XPS analysis showed that FAA3 was degraded by the attack of hydroxide ions on the benzylic position. Water permeability was analyzed, and mTPN had approximately two times higher permeability than PiperION and 50% higher permeability than FAA3.
Collapse
Affiliation(s)
- Hamza Khalid
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Malikah Najibah
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Hyun S. Park
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Chulsung Bae
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Dirk Henkensmeier
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Green School, Korea University, Seoul 02841, Korea
- Correspondence:
| |
Collapse
|
19
|
Crothers AR, Kusoglu A, Radke CJ, Weber AZ. Influence of Mesoscale Interactions on Proton, Water, and Electrokinetic Transport in Solvent-Filled Membranes: Theory and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10362-10374. [PMID: 35969508 DOI: 10.1021/acs.langmuir.2c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transport of protons and water through water-filled, phase-separated cation-exchange membranes occurs through a network of interconnected nanoscale hydrophilic aqueous domains. This paper uses numerical simulations and theory to explore the role of the mesoscale network on water, proton, and electrokinetic transport in perfluorinated sulfonic acid (PFSA) membranes, pertinent to electrochemical energy-conversion devices. Concentrated-solution theory describes microscale transport. Network simulations model mesoscale effects and ascertain macroscopic properties. An experimentally consistent 3D Voronoi-network topology characterizes the interconnected channels in the membrane. Measured water, proton, and electrokinetic transport properties from literature validate calculations of macroscopic properties from network simulations and from effective-medium theory. The results demonstrate that the hydrophilic domain size affects the various microscale, domain-level transport modes dissimilarly, resulting in different distributions of microscale coefficients for each mode of transport. As a result, the network mediates the transport of species nonuniformly with dissimilar calculated tortuosities for water, proton, and electrokinetic transport coefficients (i.e., 4.7, 3.0, and 6.1, respectively, at a water content of 8 H2O molecules per polymer charge equivalent). The dominant water-transport pathways across the membrane are different than those taken by the proton cation. Finally, the distribution of transport properties across the network induces local electrokinetic flows that couple water and proton transport; specifically, local electrokinetic transport induces water chemical-potential gradients that decrease macroscopic conductivity by up to a factor of 3. Macroscopic proton, water, and electrokinetic transport coefficients depend on the collective microscale transport properties of all modes of transport and their distribution across the hydrophilic domain network.
Collapse
Affiliation(s)
- Andrew R Crothers
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Ahmet Kusoglu
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Adam Z Weber
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
20
|
Abstract
Fuel cells (FCs) have received huge attention for development from lab and pilot scales to full commercial scale. This is mainly due to their inherent advantage of direct conversion of chemical energy to electrical energy as a high-quality energy supply and, hence, higher conversion efficiency. Additionally, FCs have been produced at a wide range of capacities with high flexibility due to modularity characteristics. Using the right materials and efficient manufacturing processes is directly proportional to the total production cost. This work explored the different components of proton exchange membrane fuel cells (PEMFCs) and their manufacturing processes. The challenges associated with these manufacturing processes were critically analyzed, and possible mitigation strategies were proposed. The PEMFC is a relatively new and developing technology so there is a need for a thorough analysis to comprehend the current state of fuel cell operational characteristics and discover new areas for development. It is hoped that the view discussed in this paper will be a means for improved fuel cell development.
Collapse
|
21
|
Petrovick JG, Radke CJ, Weber AZ. Gas Mass-Transport Coefficients in Ionomer Membranes Using a Microelectrode. ACS MEASUREMENT SCIENCE AU 2022; 2:208-218. [PMID: 36785864 PMCID: PMC9838820 DOI: 10.1021/acsmeasuresciau.1c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gas permeability, the product of gas diffusivity and Henry's gas-absorption constant, of ionomer membranes is an important transport parameter in fuel cell and electrolyzer research as it governs gas crossover between electrodes and perhaps in the catalyst layers as well. During transient operation, it is important to divide the gas permeability into its constituent properties as they are individually important. Although transient microelectrode measurements have been used previously to separate the gas permeability into these two parameters, inconsistencies remain in the interpretation of the experimental techniques. In this work, a new interpretation methodology is introduced for determining independently diffusivity and Henry's constant of hydrogen and oxygen gases in ionomer membranes (Nafion 211 and Nafion XL) as a function of relative humidity using microelectrodes. Two time regimes are accounted for. At long times, gas permeability is determined from a two-dimensional numerical model that calculates the solubilized-gas concentration profiles at a steady state. At short times, permeability is deconvoluted into diffusivity and Henry's constant by analyzing transient data with an extended Cottrell equation that corrects for actual electrode surface area. Gas permeability and diffusivity increase as relative humidity increases for both gases in both membranes, whereas Henry's constants for both gases decrease with increasing relative humidity. In addition, results for Nafion 211 membranes are compared to a simple phase-separated parallel-diffusion transport theory with good agreement. The two-time-regime analysis and the experimental methodology can be applied to other electrochemical systems to enable greater precision in the calculation of transport parameters and to further understanding of gas transport in fuel cells and electrolyzers.
Collapse
Affiliation(s)
- John G. Petrovick
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Energy
Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Clayton J. Radke
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Adam Z. Weber
- Energy
Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Huang TS, Wen HY, Chen YY, Hung PH, Hsieh TL, Huang WY, Chang MY. Ionomer Membranes Produced from Hexaarylbenzene-Based Partially Fluorinated Poly(arylene ether) Blends for Proton Exchange Membrane Fuel Cells. MEMBRANES 2022; 12:membranes12060582. [PMID: 35736289 PMCID: PMC9231265 DOI: 10.3390/membranes12060582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
In this study, a series of high molecular weight ionomers of hexaarylbenzene- and fluorene-based poly(arylene ether)s were synthesized conveniently through condensation and post-sulfonation modification. The use a of blending method might increase the stacking density of chains and affect the formation both of interchain and intrachain proton transfer clusters. Multiscale phase separation caused by the dissolution and compatibility differences of blend ionomer in high-boiling-point solvents was examined through analysis and simulations. The blend membranes produced in this study exhibited a high proton conductivity of 206.4 mS cm−1 at 80 °C (increased from 182.6 mS cm−1 for precursor membranes), excellent thermal resistance (decomposition temperature > 200 °C), and suitable mechanical properties with a tensile strength of 73.8−77.4 MPa. As a proton exchange membrane for fuel cell applications, it exhibits an excellent power efficiency of approximately 1.3 W cm−2. Thus, the ionomer membranes have strong potential for use in proton exchange membrane fuel cells and other electrochemical applications.
Collapse
Affiliation(s)
- Tzu-Sheng Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
| | - Hsin-Yi Wen
- Department of Green Energy and Environmental Resources, Chang Jung Christian University, Tainan City 71101, Taiwan;
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yi-Yin Chen
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
| | - Po-Hao Hung
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
| | - Tung-Li Hsieh
- General Education Center, Wenzao Ursuline University of Languages, Kaohsiung 80793, Taiwan;
| | - Wen-Yao Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
- Correspondence: (W.-Y.H.); (M.-Y.C.)
| | - Mei-Ying Chang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (Y.-Y.C.); (P.-H.H.)
- Correspondence: (W.-Y.H.); (M.-Y.C.)
| |
Collapse
|
23
|
Bentley CL, Kang M, Bukola S, Creager SE, Unwin PR. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes. ACS NANO 2022; 16:5233-5245. [PMID: 35286810 PMCID: PMC9047657 DOI: 10.1021/acsnano.1c05872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
Collapse
Affiliation(s)
- Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saheed Bukola
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen E. Creager
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
24
|
Intermediate Temperature PEFC's with Nafion ® 211 Membrane Electrolytes: An Experimental and Numerical Study. MEMBRANES 2022; 12:membranes12040430. [PMID: 35448400 PMCID: PMC9028467 DOI: 10.3390/membranes12040430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023]
Abstract
This paper evaluates the performance of Nafion 211 at elevated temperatures up to 120 °C using an experimentally validated model. Increasing the fuel cell operating temperature could have many key benefits at the cell and system levels. However, current research excludes this due to issues with membrane durability. Modelling is used to investigate complex systems to gain further information that is challenging to obtain experimentally. Nafion 211 is shown to have some interesting characteristics at elevated temperatures previously unreported, the first of which is that the highest performance reported is at 100 °C and 100% relative humidity. The model was trained on the experimental data and then used to predict the behaviour in the membrane region to understand how the fuel cell performs at varying temperatures and pressures. The model showed that the best membrane performance comes from a 100 °C operating temperature, with much better performance yielded from a higher pressure of 3 bar.
Collapse
|
25
|
Simulation of Mass and Heat Transfer in an Evaporatively Cooled PEM Fuel Cell. ENERGIES 2022. [DOI: 10.3390/en15082734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evaporative cooling is a promising concept to improve proton exchange membrane fuel cells. While the particular concept based on gas diffusion layers (GDLs) modified with hydrophilic lines (HPILs) has recently been demonstrated, there is a lack in the understanding of the mass and heat transport processes. We have developed a 3-D, non-isothermal, macro-homogeneous numerical model focusing on one interface between a HPIL and an anode gas flow channel (AGFC). In the base case model, water evaporates within a thin film adjacent to the interfaces of the HPIL with the AGFC and with the hydrophobic anode GDL. The largest part of the generated water vapor leaves the cell via the AGFC. The transport to the cathode side is shown to be partly limited by the ab-/desorption into/from the membrane. The cooling due to the latent heat has a strong effect on the local evaporation rate. An increase of the mass transfer coefficient for evaporation leads to a transport limited regime inside the MEA while the transport via the AGFC is limited by evaporation kinetics.
Collapse
|
26
|
Wijaya F, Woo S, Lee H, Nugraha AF, Shin D, Bae B. Sulfonated poly(phenylene-co-arylene ether sulfone) multiblock membranes for application in high-performance fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Lindquist GA, Oener SZ, Krivina R, Motz AR, Keane A, Capuano C, Ayers KE, Boettcher SW. Performance and Durability of Pure-Water-Fed Anion Exchange Membrane Electrolyzers Using Baseline Materials and Operation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51917-51924. [PMID: 34374278 DOI: 10.1021/acsami.1c06053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Water electrolysis powered by renewable electricity produces green hydrogen and oxygen gas, which can be used for energy, fertilizer, and industrial applications and thus displace fossil fuels. Pure-water anion-exchange-membrane (AEM) electrolyzers in principle offer the advantages of commercialized proton-exchange-membrane systems (high current density, low cross over, output gas compression, etc.) while enabling the use of less-expensive steel components and nonprecious metal catalysts. AEM electrolyzer research and development, however, has been limited by the lack of broadly accessible materials that provide consistent cell performance, making it difficult to compare results across studies. Further, even when the same materials are used, different pretreatments and electrochemical analysis techniques can produce different results. Here, we report an AEM electrolyzer comprising commercially available catalysts, membrane, ionomer, and gas-diffusion layers operating near 1.9 V at 1 A cm-2 in pure water. After the initial break in, the performance degraded by 0.67 mV h-1 at 0.5 A cm-2 at 55 °C. We detail the key preparation, assembly, and operation techniques employed and show further performance improvements using advanced materials as a proof-of-concept for future AEM-electrolyzer development. The data thus provide an easily reproducible and comparatively high-performance baseline that can be used by other laboratories to calibrate the performance of improved cell components, nonprecious metal oxygen evolution, and hydrogen evolution catalysts and learn how to mitigate degradation pathways.
Collapse
Affiliation(s)
- Grace A Lindquist
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Sebastian Z Oener
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Raina Krivina
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrew R Motz
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Alex Keane
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | | | | | - Shannon W Boettcher
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
28
|
Jo S, Yoon KR, Lim Y, Kwon T, Kang YS, Sohn H, Choi SH, Son HJ, Kwon SH, Lee SG, Jang SS, Lee SY, Kim HJ, Kim JY. Single-Step Fabrication of Polymeric Composite Membrane via Centrifugal Colloidal Casting for Fuel Cell Applications. SMALL METHODS 2021; 5:e2100285. [PMID: 34927860 DOI: 10.1002/smtd.202100285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Indexed: 06/14/2023]
Abstract
Recent interest in polymer electrolyte membranes (PEMs) for fuel cell systems has spurred the development of infiltration technology by which to insert ionomers into mechanically robust reinforcement structures by solution casting in order to produce a cost effective and highly efficient electrolyte. However, the results of the fabrication process often continue to present challenges related to the structural complexity and self-assembly dynamics between the hydrophobic and hydrophilic parts of the constituents which in turn, necessitates additional processing steps and increases production costs. Here, a single-step process is reported for highly compact polymeric composite membranes (PCMs), fabricated using a centrifugal colloidal casting (C3) method. Combined structural analyses as well as coarse-grained molecular dynamics simulations are employed to determine the micro-/macroscopic structural characteristics of the fabricated PCMs. These findings indicate that the C3 method is capable of forming highly dense ionomer matrix-reinforcement composites consisting of microphase-separated ionomer structures with tailored crystallinity and ionic cluster sizes. An outcome that is very unlikely with the single-step coating steps in conventional methods. These structural attributes ensure PCMs with better proton conductivity, greater strain stability, and lower gas crossover properties compared to commercial pristine membranes, expanding their possible range of applicability to PEMs.
Collapse
Affiliation(s)
- Sunhee Jo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ki Ro Yoon
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), 143, Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Youngjoon Lim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Taehyun Kwon
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yun Sik Kang
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 3429, Republic of Korea
| | - Hyuntae Sohn
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun Hee Choi
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hae Jung Son
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Hyun Kwon
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seung Geol Lee
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - So Young Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyoung-Juhn Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
29
|
Enhanced self-humidification and proton conductivity in magnetically aligned NiO-Co3O4/chitosan nanocomposite membranes for high-temperature PEMFCs. Polym J 2021. [DOI: 10.1038/s41428-021-00466-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
|
31
|
Domhoff A, Martin TB, Silva MS, Saberi M, Creager S, Davis EM. Enhanced Proton Selectivity in Ionomer Nanocomposites Containing Hydrophobically Functionalized Silica Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Allison Domhoff
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Tyler B. Martin
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Mayura S. Silva
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Mansour Saberi
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen Creager
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Eric M. Davis
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
32
|
Kajita T, Noro A, Seki T, Matsushita Y, Nakamura N. Acidity effects of medium fluids on anhydrous proton conductivity of acid-swollen block polymer electrolyte membranes. RSC Adv 2021; 11:19012-19020. [PMID: 35478621 PMCID: PMC9033556 DOI: 10.1039/d1ra01211h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023] Open
Abstract
Proton-conductive polymer electrolyte membranes (PEMs) were prepared by infiltrating sulfuric acid (Sa) or phosphoric acid (Pa) into a polystyrene-b-poly(4-vinylpyridine)-b-polystyrene (S–P–S) triblock copolymer. When the molar ratio of acid to pyridyl groups in S–P–S, i.e., the acid doping level (ADL), is below unity, the P-block/acid phase in the PEMs exhibited a moderately high glass transition temperature (Tg) of ∼140 °C because of consumption of acids for forming the acid–base complexes between the pyridyl groups and the acids, also resulting in almost no free protons in the PEMs; therefore, the PEMs were totally glassy and exhibited almost no anhydrous conductivity. In contrast, when ADL is larger than unity, the Tgs of the phase composed of acid and P blocks were lower than room temperature, due to the excessive molar amount of acid serving as a plasticizer. Such swollen PEMs with excessive amounts of acid releasing free protons were soft and exhibited high conductivities even without humidification. In particular, an S–P–S/Sa membrane with ADL of 4.6 exhibited a very high anhydrous conductivity of 1.4 × 10−1 S cm−1 at 95 °C, which is comparable to that of humidified Nafion membranes. Furthermore, S–P–S/Sa membranes with lower Tgs exhibited higher conductivities than S–P–S/Pa membranes, whereas the temperature dependence of the conductivities for S–P–S/Pa is stronger than that for S–P–S/Sa, suggesting Pa with a lower acidity would not be effectively dissociated into a dihydrogen phosphate anion and a free proton in the PEMs at lower temperatures. Sulfuric acid-swollen block polymer membranes exhibit anhydrous conductivities of ∼0.1 S cm−1 that is higher than those of phosphoric acid-swollen membranes, whereas temperature dependence of conductivities of the latter is stronger than the former.![]()
Collapse
Affiliation(s)
- Takato Kajita
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Atsushi Noro
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yushu Matsushita
- Department of Molecular & Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Naoki Nakamura
- FC Material Development Dept., Electrification & Environment Material Engineering Div
- Advanced R&D and Engineering Company
- Higashifuji Technical Center
- TOYOTA Motor Corporation
- Shizuoka
| |
Collapse
|
33
|
Primachenko ON, Marinenko EA, Odinokov AS, Kononova SV, Kulvelis YV, Lebedev VT. State of the art and prospects in the development of proton‐conducting perfluorinated membranes with short side chains: A review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Oleg N. Primachenko
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
| | - Elena A. Marinenko
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
| | - Alexey S. Odinokov
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
- Russian Research Center of Applied Chemistry Saint Petersburg Russia
| | - Svetlana V. Kononova
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
| | - Yuri V. Kulvelis
- Neutron research department Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute” Gatchina Russia
| | - Vasily T. Lebedev
- Neutron research department Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute” Gatchina Russia
| |
Collapse
|
34
|
Chen Y, Wrubel JA, Klein WE, Kabir S, Smith WA, Neyerlin KC, Deutsch TG. High-Performance Bipolar Membrane Development for Improved Water Dissociation. ACS APPLIED POLYMER MATERIALS 2020; 2:4559-4569. [PMID: 38434177 PMCID: PMC10906946 DOI: 10.1021/acsapm.0c00653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Bipolar membranes (BPMs) are the enabling component of many promising electrochemical devices used for separation and energy conversion. Here, we describe the development of high-performance BPMs, including two-dimensional BPMs (2D BPMs) prepared by hot-pressing two preformed membranes and three-dimensional BPMs (3D BPMs) prepared by electrospinning ionomer solutions and polyethylene oxide. Graphene oxide (GOx) was introduced into the BPM junction as a water-dissociation catalyst. We assessed electrochemical performance of the prepared BPMs by voltage-current (V-I) curves and galvanostatic electrochemical impedance spectroscopy. We found the optimal GOx loading in 2D BPMs to be 100 μg cm-2, which led to complete coverage of GOx at the interface. The integration of GOx beyond this loading moderately improved electrochemical performance but significantly compromised mechanical strength. GOx-catalyzed 2D BPMs showed comparable performance with a commercially available Fumasep BPM at current densities up to 500 mA cm-2. The 3D BPMs exhibited even better performance: lower resistance and higher efficiency for water dissociation and substantially higher stability under repeated cycling up to high current densities. The improved electrochemical performance and mechanical stability of the 3D BPMs make them suitable for incorporation into CO2 electrolysis devices where high current densities are necessary.
Collapse
Affiliation(s)
- Yingying Chen
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob A. Wrubel
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - W. Ellis Klein
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sadia Kabir
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Wilson A. Smith
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable
and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - K. C. Neyerlin
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Todd G. Deutsch
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
35
|
Begum S, Hassan Z, Bräse S, Tsotsalas M. Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10657-10673. [PMID: 32787055 DOI: 10.1021/acs.langmuir.0c01832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This feature article describes recent trends and advances in structuring network polymers using a coordination-driven metal-organic framework (MOF)-based template approach to demonstrate the concept of crystal-controlled polymerization in confined nanospaces, forming tailored architectures ranging from simple linear one-dimensional macromolecules to tunable three-dimensional cross-linked network polymers and interwoven molecular architectures. MOF-templated network polymers combine the characteristics and advantages of crystalline MOFs (high porosity, structural regularity, and designability) with the intrinsic behaviors of soft polymers (flexibility, processability, stability, or biocompatibility) with widespread application possibilities and tunable properties. The article ends with a summary of the remaining challenges to be addressed, and future research opportunities in this field are discussed.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Kosakian A, Urbina LP, Heaman A, Secanell M. Understanding single-phase water-management signatures in fuel-cell impedance spectra: A numerical study. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Mechanical Properties and Chemical Durability of Nafion/Sulfonated Graphene Oxide/Cerium Oxide Composite Membranes for Fuel-Cell Applications. Polymers (Basel) 2020; 12:polym12061375. [PMID: 32570993 PMCID: PMC7362198 DOI: 10.3390/polym12061375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/17/2022] Open
Abstract
To improve both the mechanical and chemical durability of Nafion membranes for polymer electrolyte membrane fuel-cells (PEMFCs), Nafion composite membranes containing sulfonated graphene oxide (SGO) and cerium oxide (CeO2; ceria) were prepared by solution casting. The structure and chemical composition of SGO were investigated by FT-IR and XPS. The effect of the sulfonation, addition of SGO and ceria on the mechanical properties, proton conductivity, and chemical stability were evaluated. The addition of SGO gave rise to an increase in the number of sulfonic acid groups in Nafion, resulting in a higher tensile strength and proton conductivity compared to that of graphene oxide (GO). Although the addition of ceria was found to decrease the tensile strength and proton conductivity, Nafion/SGO/ceria composite membranes exhibited a higher tensile strength and proton conductivity than recast Nafion. Measurement of the weight loss and SEM observations of the composite membranes after immersing in Fenton's reagent indicate an excellent radical scavenging ability of ceria under radical degradation conditions.
Collapse
|
38
|
Peressin N, Adamski M, Schibli EM, Ye E, Frisken BJ, Holdcroft S. Structure–Property Relationships in Sterically Congested Proton-Conducting Poly(phenylene)s: the Impact of Biphenyl Linearity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00310] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- N. Peressin
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - M. Adamski
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - E. M. Schibli
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - E. Ye
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - B. J. Frisken
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - S. Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
39
|
Adamski M, Skalski TJ, Schibli EM, Killer M, Wu Y, Peressin N, Frisken BJ, Holdcroft S. Molecular branching as a simple approach to improving polymer electrolyte membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Dual exchange membrane fuel cell with sequentially aligned cation and anion exchange membranes for non-humidified operation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Shin SH, Nur PJ, Kodir A, Kwak DH, Lee H, Shin D, Bae B. Improving the Mechanical Durability of Short-Side-Chain Perfluorinated Polymer Electrolyte Membranes by Annealing and Physical Reinforcement. ACS OMEGA 2019; 4:19153-19163. [PMID: 31763538 PMCID: PMC6868593 DOI: 10.1021/acsomega.9b02436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 06/07/2023]
Abstract
Physically reinforced short-side-chain perfluorinated sulfonic acid electrolyte membranes were fabricated by annealing and using a porous support. Five types of solution-cast membranes were produced from commercial perfluorinated ionomers (3M and Aquivion (AQ)) with different equivalent weights, annealed at different temperatures, and characterized in terms of ion conductivity, water uptake, and in-plane/through-plane swelling, while the effect of annealing on physical structure of membranes was evaluated by small-angle X-ray scattering and dynamic mechanical analysis. To create a reinforced composite membrane (RCM), we impregnated a polytetrafluoroethylene porous support with 3M 729 and AQ 720 electrolytes exhibiting excellent proton conductivity and water uptake. The electrolyte impregnation stability for the porous support was evaluated using a solvent resistance test, and the best performance was observed for the 3M 729 RCM annealed at 200 °C. Both annealed and nonannealed 3M 729 RCMs were used to produce membrane electrode assemblies, the durability of which was evaluated by open-circuit voltage combined wet-dry cycling tests. The nonannealed 3M 729 RCM survived 5800 cycles, while the 3M 729 RCM annealed at 200 °C survived 16 600 cycles and thus exhibited improved mechanical durability.
Collapse
Affiliation(s)
- Sung-Hee Shin
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Pratama Juniko Nur
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- Renewable
Energy Engineering, University of Science
& Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic
of Korea
| | - Abdul Kodir
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- Renewable
Energy Engineering, University of Science
& Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic
of Korea
| | - Da-Hee Kwak
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hyejin Lee
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Dongwon Shin
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Byungchan Bae
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), 152,
Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- Renewable
Energy Engineering, University of Science
& Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic
of Korea
| |
Collapse
|
42
|
Kuroki H, Onishi K, Asami K, Yamaguchi T. Catalyst Slurry Preparation Using a Hydrodynamic Cavitation Dispersion Method for Polymer Electrolyte Fuel Cells. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hidenori Kuroki
- Kanagawa Institute of Industrial Science and Technology (KISTEC), R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency (JST-CREST), R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keiichiro Onishi
- Nihon Spindle Manufacturing Co., Ltd., 4-2-30 Shioe, Amagasaki, Hyogo 661-8510, Japan
| | - Keiichi Asami
- Nihon Spindle Manufacturing Co., Ltd., 4-2-30 Shioe, Amagasaki, Hyogo 661-8510, Japan
| | - Takeo Yamaguchi
- Kanagawa Institute of Industrial Science and Technology (KISTEC), R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency (JST-CREST), R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
43
|
Characterization and evaluation of Nafion HP JP as proton exchange membrane: transport properties, nanostructure, morphology, and cell performance. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04366-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Davletbaeva IM, Sazonov OO, Fazlyev AR, Davletbaev RS, Efimov SV, Klochkov VV. Polyurethane ionomers based on amino ethers of ortho-phosphoric acid. RSC Adv 2019; 9:18599-18608. [PMID: 35515218 PMCID: PMC9064824 DOI: 10.1039/c9ra03636a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022] Open
Abstract
The etherification of ortho-phosphoric acid with triethanolamine and polyoxypropylene glycol is studied. The reaction process is accompanied by the formation of hyperbranched amino ethers of ortho-phosphoric acid terminated by hydroxyl groups. A specific feature of the chemical structure of the compounds obtained is the existence of ion pairs in their structure separated in space. The reaction of the etherification of ortho-phosphoric acid with glycols becomes possible through the use of tertiary amines. The amino ethers of ortho-phosphoric acid are investigated as a polyol component for the synthesis of polyurethanes with high adhesion characteristics and strength properties. The experimental results presented allow us to relate polyurethanes obtained on the basis of ortho-phosphoric acid amino ethers to polymers of ionomeric nature. The etherification of ortho-phosphoric acid with triethanolamine and polyoxypropylene glycol is studied.![]()
Collapse
Affiliation(s)
- I M Davletbaeva
- Kazan National Research Technological University 68 Karl Marx Str. Kazan Republic of Tatarstan 420015 Russian Federation
| | - O O Sazonov
- Kazan National Research Technological University 68 Karl Marx Str. Kazan Republic of Tatarstan 420015 Russian Federation
| | - A R Fazlyev
- Kazan National Research Technological University 68 Karl Marx Str. Kazan Republic of Tatarstan 420015 Russian Federation
| | - R S Davletbaev
- Kazan National Research Technical University named after A. N. Tupolev-KAI 10 Karl Marx Str. Kazan Republic of Tatarstan 420111 Russian Federation
| | - S V Efimov
- Kazan Federal University 18 Kremlyovskaya Str. Kazan Republic of Tatarstan 420008 Russian Federation
| | - V V Klochkov
- Kazan Federal University 18 Kremlyovskaya Str. Kazan Republic of Tatarstan 420008 Russian Federation
| |
Collapse
|
45
|
Melo LGA, Hitchcock AP. Electron beam damage of perfluorosulfonic acid studied by soft X-ray spectromicroscopy. Micron 2019; 121:8-20. [PMID: 30875488 DOI: 10.1016/j.micron.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Scanning transmission X-ray microscopy (STXM) was used to study chemical changes to perfluorosulfonic acid (PFSA) spun cast thin films as a function of dose imparted by exposure of a 200 kV electron beam in a Transmission Electron Microscope (TEM). The relationship between electron beam fluence and absorbed dose was calibrated using a modified version of a protocol based on the positive to negative lithography transition in PMMA [Leontowich et al, J. Synchrotron Rad. 19 (2012) 976]. STXM was used to characterize and quantify the chemical changes caused by electron irradiation of PFSA under several different conditions. The critical dose for CF2-CF2 amorphization was used to explore the effects of the sample environment on electron beam damage. Use of a silicon nitride substrate was found to increase the CF2-CF2 amorphization critical dose by ∼x2 from that for free-standing PFSA films. Freestanding PFSA and PMMA films were damaged by 200 kV electrons at ∼100 K and then the damage was measured by STXM at 300 K (RT). The lithography cross-over dose for PMMA was found to be ∼2x higher when the PMMA thin film was electron irradiated at 120 K rather than at 300 K. The critical dose for CF2-CF2 amorphization in PFSA irradiated at 120 K followed by warming and delayed measurement by STXM at 300 K was found to be ∼2x larger than at 300 K. To place these results in the context of the use of electron microscopy to study PFSA ionomer in fuel cell systems, an exposure of 300 e-/nm2 at 300 K (which corresponds to an absorbed dose of ∼20 MGy) amorphizes ∼10% of the CF2-CF2 bonds in PFSA. At this dose level, the spatial resolution for TEM imaging of PFSA is limited to 3.5 nm by radiation damage, if one is using a direct electron detector with DQE = 1. This work recommends caution about 2D and 3D morphological information of PFSA materials based on TEM studies which use fluences higher than 300 e-/nm2.
Collapse
Affiliation(s)
- Lis G A Melo
- Dept. Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S4M1, Canada.
| | - Adam P Hitchcock
- Dept. Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S4M1, Canada
| |
Collapse
|
46
|
Raja M, Shelton JC, Salamat-Zadeh F, Tavakoli M, Donell S, Watts G, Vadgama P. An electrochemical study of acrylate bone adhesive permeability and selectivity change during in vitro ageing: A model approach to the study of biomaterials and membrane barriers. Anal Chim Acta X 2019; 2:100009. [PMID: 33117976 PMCID: PMC7587029 DOI: 10.1016/j.acax.2019.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/02/2022] Open
Abstract
This study assessed the solute permeability of a family of UV and moisture cured acrylates-based adhesives during in vitro ageing in pH 7.4 buffer. Acrylates have a potential role in bone fracture fixation, but their inability to allow microsolute exchange between the fractured bone surfaces may contribute to ineffective healing. Cyclic voltammetry and chronoamperometry were used to determine the diffusion coefficients for various electrochemically active probe molecules (O2, H2O2, acetaminophen, catechol, uric acid and ascorbic acid) at proprietary acrylic, urethane – acrylate and cyanoacrylate adhesives. All adhesives proved to be impermeable for up to 9 days ageing, following which a near-exponential increase in permeability resulted for all solutes. At 18 days, the diffusion coefficients were in the range of 10−5 cm2s−1 for O2 and H2O2 and 10−6 cm2s−1 for the organic solutes; no transport selectivity was seen between the latter. Adhesive joint strength showed a direct, inverse, correlation with permeability, with the more hydrophilic cyanoacrylates showing the greatest loss of strength. Adhesive permeabilisation does not appear to be compatible with the retention of bonding strength, but it serves as a new non-destructive predictor of adhesion strength change during ageing and practical use.
Collapse
Affiliation(s)
- M Raja
- School of Materials and Engineering Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J C Shelton
- School of Materials and Engineering Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | - M Tavakoli
- KTN LTD, Suite 220 Business Design Centre, 52 Upper Street, London, N1 0QH, UK
| | - S Donell
- University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - G Watts
- Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - P Vadgama
- School of Materials and Engineering Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
47
|
Lee Y, Kim S, Hempelmann R, Jang JH, Kim HJ, Han J, Kim J, Henkensmeier D. Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries. J Appl Polym Sci 2019. [DOI: 10.1002/app.47547] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yona Lee
- Fuel Cell Research Center; Korea Institute of Science and Technology; Seongbukgu, Seoul 02792, Seoul Republic of Korea
- Green School, Korea University; 145 Anamro, Seongbukgu, Seoul 02841 Republic of Korea
| | - Sangwon Kim
- Transfercenter Sustainable Electrochemistry; Saarland University; 66125 Saarbrücken Germany
- Korea Institute of Science and Technology (KIST) Europe; Campus E7 1, 66123 Saarbrücken Germany
| | - Rolf Hempelmann
- Transfercenter Sustainable Electrochemistry; Saarland University; 66125 Saarbrücken Germany
- Korea Institute of Science and Technology (KIST) Europe; Campus E7 1, 66123 Saarbrücken Germany
| | - Jong Hyun Jang
- Fuel Cell Research Center; Korea Institute of Science and Technology; Seongbukgu, Seoul 02792, Seoul Republic of Korea
- Green School, Korea University; 145 Anamro, Seongbukgu, Seoul 02841 Republic of Korea
| | - Hyoung-Juhn Kim
- Fuel Cell Research Center; Korea Institute of Science and Technology; Seongbukgu, Seoul 02792, Seoul Republic of Korea
| | - Jonghee Han
- Fuel Cell Research Center; Korea Institute of Science and Technology; Seongbukgu, Seoul 02792, Seoul Republic of Korea
| | - Jihyun Kim
- Department of Chemical and Biological Engineering; Korea University; 145 Anamro, Seongbukgu, Seoul 02841 Republic of Korea
| | - Dirk Henkensmeier
- Fuel Cell Research Center; Korea Institute of Science and Technology; Seongbukgu, Seoul 02792, Seoul Republic of Korea
- Green School, Korea University; 145 Anamro, Seongbukgu, Seoul 02841 Republic of Korea
- Division of Energy and Environment Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| |
Collapse
|
48
|
Adamski M, Skalski TJG, Xu S, Killer M, Schibli EM, Frisken BJ, Holdcroft S. Microwave-assisted Diels–Alder polycondensation of proton conducting poly(phenylene)s. Polym Chem 2019. [DOI: 10.1039/c8py01804a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 24-fold reduction in reaction time is achieved in the preparation of sulfonated poly(polyphenylene)s using microwave synthesis.
Collapse
Affiliation(s)
| | | | - Shaoyi Xu
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| | - Miho Killer
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| | | | | | | |
Collapse
|
49
|
Skalski TJG, Adamski M, Britton B, Schibli EM, Peckham TJ, Weissbach T, Moshisuki T, Lyonnard S, Frisken BJ, Holdcroft S. Sulfophenylated Terphenylene Copolymer Membranes and Ionomers. CHEMSUSCHEM 2018; 11:4033-4043. [PMID: 30251343 DOI: 10.1002/cssc.201801965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g-1 and exhibited proton conductivities of up to 338 mS cm-1 (80 °C, 95 % relative humidity). Small-angle X-ray scattering and small-angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm-2 ) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon-based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm-2 with oxygen and 456 mW cm-2 with air.
Collapse
Affiliation(s)
- Thomas J G Skalski
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael Adamski
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Benjamin Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Eric M Schibli
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Timothy J Peckham
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Thomas Weissbach
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Takashi Moshisuki
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Sandrine Lyonnard
- INAC, SPrAM, UMR 5819 CEA-CNRS-UJF, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble cedex 9, France
| | - Barbara J Frisken
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
50
|
Yoon SI, Seo DJ, Kim G, Kim M, Jung CY, Yoon YG, Joo SH, Kim TY, Shin HS. AA'-Stacked Trilayer Hexagonal Boron Nitride Membrane for Proton Exchange Membrane Fuel Cells. ACS NANO 2018; 12:10764-10771. [PMID: 30335961 DOI: 10.1021/acsnano.8b06268] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hexagonal boron nitride (h-BN) and graphene have emerged as promising materials for proton exchange membranes because of their high proton conductivity and chemical stability. However, the defects and grain boundaries generated during the growth and transfer of two-dimensional materials limit their practical applicability. Here, we report the fabrication of membrane electrode assemblies using large-area single-oriented AA'-stacked trilayer h-BN (3L-BN), which exhibits very few defects during the growth and transfer, as a proton exchange membrane for use in fuel cell systems. The fuel cell based on AA'-stacked 3L-BN showed a H2 permeation current density as low as 2.69 mA cm-2 and an open circuit voltage (OCV) as high as 0.958 V; this performance is much superior to those for cells based on Nafion (3.7 mA cm-2 and 0.942 V, respectively) and single-layer h-BN (10.08 mA cm-2 and 0.894 V, respectively). Furthermore, the fuel cell with the AA'-stacked 3L-BN membrane almost maintained its original performance (OCV, maximum power density, and H2 permeation current density) even after 100 h of an accelerated stress test at 30% RH and 90 °C, while the fuel cells with the Nafion and single-layer BN membranes exhibited severely deteriorated performances. The stability of the cell based on the AA'-stacked 3L-BN membrane was better because the membrane prevented gas crossover and suppressed the generation of reactive radicals during cell operation.
Collapse
Affiliation(s)
- Seong In Yoon
- Department of Chemistry, Department of Energy Engineering, Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Dong-Jun Seo
- Buan Fuel Cell Center , Korea Institute of Energy Research (KIER) , Jellabuk-do 56332 , Republic of Korea
| | - Gwangwoo Kim
- Department of Chemistry, Department of Energy Engineering, Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Department of Energy Engineering, Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Chi-Young Jung
- Buan Fuel Cell Center , Korea Institute of Energy Research (KIER) , Jellabuk-do 56332 , Republic of Korea
| | - Young-Gi Yoon
- Buan Fuel Cell Center , Korea Institute of Energy Research (KIER) , Jellabuk-do 56332 , Republic of Korea
| | - Sang Hoon Joo
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Tae-Young Kim
- Buan Fuel Cell Center , Korea Institute of Energy Research (KIER) , Jellabuk-do 56332 , Republic of Korea
| | - Hyeon Suk Shin
- Department of Chemistry, Department of Energy Engineering, Low-Dimensional Carbon Materials Center , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|