1
|
Czerwinska N, Giosuè C, Matos I, Sabbatini S, Ruello ML, Bernardo M. Development of activated carbons derived from wastes: coffee grounds and olive stones as potential porous materials for air depollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169898. [PMID: 38184266 DOI: 10.1016/j.scitotenv.2024.169898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Agro-industrial byproducts and food waste necessitate an environmentally friendly way of reducing issues related to their disposal; it is also necessary to recover as much new raw material from these resources as possible, especially when we consider their potential usage as a precursor for preparing depolluting materials, such as activated carbon. In this work, coffee grounds and olive stones were chosen as precursors and the adsorption capacity of the obtained porous carbons for volatile organic compounds (VOCs) was studied. Microporous activated carbons (ACs) were prepared using chemical (K2CO3) and physical (CO2) activation. The influence of the activation process, type, and time of activation was also investigated. Measurements of VOCs adsorption were performed, and methyl-ethyl-ketone (MEK) and toluene were chosen as the model pollutants. The surface areas and total pore volumes of 1487 m2/g and 0.53 cm3/g and 870 m2/g and 0.22 cm3/g for coffee ground carbons and olive stone carbons, respectively, were obtained via chemical activation, whereas physical activation yielded values of 716 m2/g and 0.184 cm3/g and 778 cm2 g-1 and 0.205 cm3/g, respectively. As expected, carbons without activation (biochars) showed the smallest surface area, equal to 331 m2/g and 251 m2/g, and, hence, the lowest adsorption capacity. The highest adsorption capacity of MEK (3210 mg/g) and toluene (2618 mg/g) was recorded for chemically activated coffee grounds. Additionally, from the CO2 isotherms recorded at a low pressure (0.03 bar) and 0 °C, the maximum CO2 adsorption capacity was equal to 253 mg/g.
Collapse
Affiliation(s)
- Natalia Czerwinska
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy.
| | - Chiara Giosuè
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy.
| | - Ines Matos
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Simona Sabbatini
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy
| | - Maria Letizia Ruello
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy
| | - Maria Bernardo
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Raman RK, Ganesan S, Alagumalai A, Sudhakaran Menon V, Gurusamy Thangavelu SA, Krishnamoorthy A. Rational Design, Synthesis, and Structure-Property Relationship Studies of a Library of Thermoplastic Polyurethane Films as an Effective and Scalable Encapsulation Material for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53935-53950. [PMID: 37935023 DOI: 10.1021/acsami.3c12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hybrid organic-inorganic metal halide perovskite solar cell (PSC) technology is experiencing rapid growth due to its simple solution chemistry, high power conversion efficiency (PCE), and potential for low-cost mass production. Nevertheless, the primary obstacle preventing the upscaling and widespread outdoor deployment of PSC technology is the poor long-term device stability, which stems from the inherent instability of perovskite materials in the presence of oxygen and moisture. To address this issue, in this work, we have synthesized a series of thermoplastic polyurethanes (TPUs) through a rational design by utilizing polyols having different molecular weights and diverse isocyanates (aromatic and aliphatic). Thorough characterization of these TPUs (ASTM and ISO standards) along with structure-property relationship studies were carried out for the first time and were then used as the encapsulation material for PSCs. The prepared TPUs were robust and adhered well with the glass substrate, and the use of low temperature during the encapsulation process avoided the degradation of the perovskite absorber and other organic layers in the device stack. The encapsulated devices retained more than 93% of their initial power conversion efficiency (PCE) for over 1000 h after exposure to harsh environmental conditions such as high relative humidity (80 ± 5% RH). Furthermore, the encapsulated perovskite absorbers showed remarkable stability when they were soaked in water. This article demonstrates the potential of TPU as a suitable and easily scalable encapsulant for PSCs and pave the way for extending the lifetime and commercialization of PSCs.
Collapse
Affiliation(s)
- Rohith Kumar Raman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Saraswathi Ganesan
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ananthan Alagumalai
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vidya Sudhakaran Menon
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Senthil A Gurusamy Thangavelu
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ananthanarayanan Krishnamoorthy
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
3
|
Fakhar A, Zarabadipoor M, Talakesh MM, Sadeghi M. Gas permeation through polyethylene glycol/polytetramethylene glycol based polyurethane–silica mixed matrix membranes and interfacial morphology study via modeling approach. J Appl Polym Sci 2023. [DOI: 10.1002/app.53831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Afsaneh Fakhar
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | | | | | - Morteza Sadeghi
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
- Department of Science and Engineering Macquarie University Macquarie Park New South Wales Australia
| |
Collapse
|
4
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
5
|
Yu S, An SJ, Kim KJ, Lee JH, Chi WS. High-Loading Poly(ethylene glycol)-Blended Poly(acrylic acid) Membranes for CO 2 Separation. ACS OMEGA 2023; 8:2119-2127. [PMID: 36687074 PMCID: PMC9850465 DOI: 10.1021/acsomega.2c06143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Poly(ethylene glycol) (PEG) is an amorphous material of interest owing to its high CO2 affinity and potential usage in CO2 separation applications. However, amorphous PEG often has a low molecular weight, making it challenging to form into the membrane. The crystalline high average molar mass poly(ethylene oxide) (PEO) cannot exhibit CO2 separation characteristics. Thus, it is crucial to employ low molecular weight PEG in high molecular weight polymers to increase the CO2 affinity for CO2 separation membranes. In this work, poly(acrylic acid) (PAA)/PEG blend membranes with a PEG-rich phase were simply fabricated by physical mixing with an ethanol solvent. The carbonyl group of the PAA and the hydroxyl group of the PEG formed a hydrogen bond. Furthermore, the thermal stability, glass transition temperature, and surface hydrophilicity of PAA/PEG blend membranes with various PEG concentrations were further characterized. The PAA/PEG(1:9) blend membrane exhibited an improved CO2 permeability of 51 Barrer with high selectivities relative to the other gas species (H2, N2, and CH4; CO2/H2 = 6, CO2/N2 = 63, CO2/CH4 = 21) at 35 °C and 150 psi owing to the enhanced CO2 affinity with the amorphous PEG-rich phase. These PAA/PEG blend membrane permeation characteristics indicate a promising prospect for CO2 capture applications.
Collapse
Affiliation(s)
- Somi Yu
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
| | - Seong Jin An
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
| | - Ki Jung Kim
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
| | - Jae Hun Lee
- Hydrogen
Research Department, Korea Institute of
Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon34129, Republic of Korea
| | - Won Seok Chi
- Department
of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic
of Korea
- School
of Polymer Science and Engineering, Chonnam
National University, 77 Yongbong-ro, Buk-gu, Gwangju61186, Republic of Korea
| |
Collapse
|
6
|
Cai LM, Surve K, Yun J, Zolfaghari A, Chen X, Bhowmick AK, Krishnamoorti R. Effect of Pressure and Temperature on the Sorption of Gases by Fluoroelastomers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Le Michael Cai
- Department of Chemical and Biomolecular Engineering, The University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas77204-4004, United States
| | - Kapil Surve
- Department of Chemical and Biomolecular Engineering, The University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas77204-4004, United States
| | - Jushik Yun
- Houston Enabling Technology Group, 3MT Materials CPE, Schlumberger, 200 Gillingham, Sugar Land, Texas77479, United States
| | - Alireza Zolfaghari
- Houston Enabling Technology Group, 3MT Materials CPE, Schlumberger, 200 Gillingham, Sugar Land, Texas77479, United States
| | - Xuming Chen
- Brookshire Elastomer R&D, Schlumberger, 29501 Katy Freeway, Katy, Texas77494, United States
| | - Anil K. Bhowmick
- Department of Chemical and Biomolecular Engineering, The University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas77204-4004, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering, The University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas77204-4004, United States
| |
Collapse
|
7
|
Hong T, Li Y, Wang S, Li Y, Jing X. Polyurethane-based gas separation membranes: A review and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
da Luz M, Dias G, Zimmer H, Bernard FL, do Nascimento JF, Einloft S. Poly(ionic liquid)s-based polyurethane blends: effect of polyols structure and ILs counter cations in CO2 sorption performance of PILs physical blends. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Kiani S, Raisi A. Evaluation of polyurethane/nylon 6(3) blend membranes for enhanced
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sahar Kiani
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ahmadreza Raisi
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
10
|
Pakdel S, Erfan-Niya H, Azamat J. Efficient separation of He/CH4 mixture by functionalized graphenylene membranes: A theoretical study. J Mol Graph Model 2022; 115:108211. [DOI: 10.1016/j.jmgm.2022.108211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/19/2023]
|
11
|
Barooah M, Mandal B, Su B. Enhanced
CO
2
separation performance of mixed matrix membrane by incorporating amine‐functionalized silica filler. J Appl Polym Sci 2021. [DOI: 10.1002/app.51438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati Assam India
| | - Bishnupada Mandal
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati Assam India
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology Ocean University of China, Ministry of Education Qingdao China
| |
Collapse
|
12
|
Davletbaeva IM, Alentiev AY, Faizulina ZZ, Zaripov II, Nikiforov RY, Parfenov VV, Arkhipov AV. Organosilica-Modified Multiblock Copolymers for Membrane Gas Separation. Polymers (Basel) 2021; 13:3579. [PMID: 34685339 PMCID: PMC8537929 DOI: 10.3390/polym13203579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Organosubstituted silica derivatives were synthesized and investigated as modifiers of block copolymers based on macroinitiator and 2,4-toluene diisocyanate. A peculiarity of the modified block copolymers is the existence in their structure of coplanar rigid polyisocyanate blocks of acetal nature (O-polyisocyanates). Organosubstituted silica derivatives have a non-additive effect on high-temperature relaxation and α-transitions of modified polymers and exhibit the ability to influence the supramolecular structure of block copolymers. The use of the developed modifiers leads to a change in the gas transport properties of block copolymers. The increase of the permeability coefficients is due to the increase of the diffusion coefficients. At the same time, the gas solubility coefficients do not change. An increase in the ideal selectivity for a number of gas pairs is observed. An increase in the selectivity for the CO2/N2 gas pair (from 25 to 39) by 1.5 times demonstrates the promising use of this material for flue gases separation.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Department of Technology of Synthetic Rubber, Kazan National Research Technological University, 68 Karl Marx str, 420015 Kazan, Russia; (Z.Z.F.); (I.I.Z.)
| | - Alexander Yu. Alentiev
- A.V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia; (A.Y.A.); (R.Y.N.)
| | - Zulfiya Z. Faizulina
- Department of Technology of Synthetic Rubber, Kazan National Research Technological University, 68 Karl Marx str, 420015 Kazan, Russia; (Z.Z.F.); (I.I.Z.)
| | - Ilnaz I. Zaripov
- Department of Technology of Synthetic Rubber, Kazan National Research Technological University, 68 Karl Marx str, 420015 Kazan, Russia; (Z.Z.F.); (I.I.Z.)
- SIBUR LLC, 16, bld.3, Krzhizhanovskogo Str., GSP-7, 117997 Moscow, Russia
| | - Roman Yu. Nikiforov
- A.V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia; (A.Y.A.); (R.Y.N.)
| | - Victor V. Parfenov
- Department of Solid State Physics, Kazan Federal University, 18 Kremlyovskaya Str, 420008 Kazan, Russia;
| | - Alexander V. Arkhipov
- Institute of Electronics and Telecommunications, Peter the Great St.Petersburg Polytechnic University, 29 Polytechnicheskaya st., 195251 St. Petersburg, Russia;
| |
Collapse
|
13
|
Assis Silva FC, da Costa Lourenço T, van der Spoel D, Aparicio S, Azevedo Dos Reis R, Costa LT. The structure of CO 2 and CH 4 at the interface of a poly(urethane urea) oligomer model from the microscopic point of view. J Chem Phys 2021; 155:044704. [PMID: 34340392 DOI: 10.1063/5.0049007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world desperately needs new technologies and solutions for gas capture and separation. To make this possible, molecular modeling is applied here to investigate the structural, thermodynamic, and dynamical properties of a model for the poly(urethane urea) (PUU) oligomer model to selectively capture CO2 in the presence of CH4. In this work, we applied a well-known approach to derive atomic partial charges for atoms in a polymer chain based on self-consistent sampling using quantum chemistry and stochastic dynamics. The interactions of the gases with the PUU model were studied in a pure gas based system as well as in a gas mixture. A detailed structure characterization revealed high interaction of CO2 molecules with the hard segments of the PUU. Therefore, the structural and energy properties explain the reasons for the greater CO2 sorption than CH4. We find that the CO2 sorption is higher than the CH4 with a selectivity of 7.5 at 298 K for the gas mixture. We characterized the Gibbs dividing surface for each system, and the CO2 is confined for a long time at the gas-oligomer model interface. The simulated oligomer model showed performance above the 2008 Robeson's upper bound and may be a potential material for CO2/CH4 separation. Further computational and experimental studies are needed to evaluate the material.
Collapse
Affiliation(s)
| | | | - David van der Spoel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-75124 Uppsala, Sweden
| | | | - Rodrigo Azevedo Dos Reis
- Departamento de Operações e Projetos Industriais, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano T Costa
- MolMod-CS, Departamento de Físico-Química, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
14
|
Haider B, Dilshad MR, Akram MS, Islam A, Kaspereit M. Novel Polydimethylsiloxane membranes impregnated with SAPO-34 zeolite particles for gas separation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01790-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Controlling tackiness of shape memory polyurethanes for textile applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Salahshoori I, Seyfaee A, Babapoor A, Neville F, Moreno-Atanasio R. Evaluation of the effect of silica nanoparticles, temperature and pressure on the performance of PSF/PEG/SiO2 mixed matrix membranes: A molecular dynamics simulation (MD) and design of experiments (DOE) study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Zhang Q, Wen Y, Liu K, Liu N, Du Y, Ma C, Zhou L, Liang Y, Jin Y. Study of solid polyurethane electrolytes synthesized from HDI and PEO of different molecular weight. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Davletbaeva IM, Dzhabbarov IM, Gumerov AM, Zaripov II, Davletbaev RS, Atlaskin AA, Sazanova TS, Vorotyntsev IV. Amphiphilic Poly(dimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate Cross-Linked Block Copolymers in a Membrane Gas Separation. MEMBRANES 2021; 11:94. [PMID: 33572853 PMCID: PMC7912301 DOI: 10.3390/membranes11020094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
Amphiphilic poly(dimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate cross-linked block copolymers based on triblock copolymers of propylene and ethylene oxides with terminal potassium-alcoholate groups (PPEG), octamethylcyclotetrasiloxane (D4) and 2,4-toluene diisocyanate (TDI) were synthesized and investigated. In the first stage of the polymerization process, a multiblock copolymer (MBC) was previously synthesized by polyaddition of D4 to PPEG. The usage of the amphiphilic branched silica derivatives associated with oligomeric medium (ASiP) leads to the structuring of block copolymers via the transetherification reaction of the terminal silanol groups of MBC with ASiP. The molar ratio of PPEG, D4, and TDI, where the polymer chains are packed in the "core-shell" supramolecular structure with microphase separation of the polyoxyethylene, polyoxypropylene and polydimethylsiloxane segments as the shell, was established. Polyisocyanurates build the "core" of the described macromolecular structure. The obtained polymers were studied as membrane materials for the separation of gas mixtures CO2/CH4 and CO2/N2. It was found that obtained polymers are promising as highly selective and productive membrane materials for the separation of gas mixtures containing CO2, CH4 and N2.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Department of Synthetic Rubber, Kazan National Research Technological University, 68 Karl Marks str, 420015 Kazan, Russia; (I.M.D); (A.M.G.)
| | - Ilgiz M. Dzhabbarov
- Department of Synthetic Rubber, Kazan National Research Technological University, 68 Karl Marks str, 420015 Kazan, Russia; (I.M.D); (A.M.G.)
| | - Askhat M. Gumerov
- Department of Synthetic Rubber, Kazan National Research Technological University, 68 Karl Marks str, 420015 Kazan, Russia; (I.M.D); (A.M.G.)
| | - Ilnaz I. Zaripov
- SIBUR LLC, 16, bld.3, Krzhizhanovskogo str., GSP-7, 117997 Moscow, Russia;
| | - Ruslan S. Davletbaev
- Kazan National Research Technical University n.a. A.N. Tupolev—KAI, 10 Karl Marks str., 420111 Kazan, Republic of Tatarstan, Russia;
| | - Artem A. Atlaskin
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950 Nizhny Novgorod, Russia; (A.A.A.); (T.S.S.); (I.V.V.)
| | - Tatyana S. Sazanova
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950 Nizhny Novgorod, Russia; (A.A.A.); (T.S.S.); (I.V.V.)
| | - Ilya V. Vorotyntsev
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950 Nizhny Novgorod, Russia; (A.A.A.); (T.S.S.); (I.V.V.)
- Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| |
Collapse
|
19
|
Mansouri M, Ghadimi A, Gharibi R, Norouzbahari S. Gas permeation properties of highly cross-linked castor oil-based polyurethane membranes synthesized through thiol-yne click polymerization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Haider B, Dilshad MR, Atiq Ur Rehman M, Schmitz JV, Kaspereit M. Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeolite for carbon dioxide separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Imidazole-functionalized hydrophilic rubbery comb copolymers: Microphase-separation and good gas separation properties. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Norouzbahari S, Gharibi R. An investigation on structural and gas transport properties of modified cross-linked PEG-PU membranes for CO2 separation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Mehmood O, Farrukh S, Hussain A, Rehman A, Liu Y, Butt S, Pervaiz E. Optimization analysis of polyurethane based mixed matrix gas separation membranes by incorporation of gamma-cyclodextrin metal organic frame work. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01179-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Babaei S, Nematollahi MH, Abedini R. Pure and mixed gas permeation study of silica incorporated polyurethane‐urea membrane modified by MOCA chain extender. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shahryar Babaei
- Department of Chemical Engineering, Faculty of EngineeringShiraz Branch, Islamic Azad University Shiraz Iran
| | | | - Reza Abedini
- Faculty of Chemical EngineeringBabol Noshirvani University of Technology Babol Iran
| |
Collapse
|
25
|
Ahmad M, Qaiser AA, Huda NU, Saeed A. Heterogeneous ion exchange membranes based on thermoplastic polyurethane (TPU): effect of PSS/DVB resin on morphology and electrodialysis. RSC Adv 2020; 10:3029-3039. [PMID: 35497712 PMCID: PMC9048409 DOI: 10.1039/c9ra06178a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022] Open
Abstract
In this research, novel heterogeneous cation exchange membranes based on thermoplastic polyurethane (TPU) have been prepared by the solution casting technique. The effects of incorporation level of sulfonated polystyrene divinyl-benzene (PSS/DVB) resin on water uptake, ion exchange capacity, membrane potential and salt extraction have been elucidated. Morphological and water uptake studies suggested a two-phase heterogeneous membrane morphology owing to the presence of hard and soft segments in the TPU backbone and swelling of PSS/DVB particles. This morphology was shifted to a semi-gelled morphology throughout the membrane bulk when resin loading exceeded 50 wt%. The physically cross-linked hard segments in the TPU backbone ensured a compact membrane morphology and prevented the formation of water channels. The membrane potential showed that increasing the resin content increased the membrane transport number (max. 0.95) up to 50 wt% resin loading and beyond this, the transport number started decreasing showing a pronounced effect of voids and water flow channels developing on excessive swelling. The permselectivity reached a maximum (up to 0.92) and salt extraction values also increased (by varying voltage) up to 50 wt% loading and started decreasing beyond this optimum content. This study shows successful development of low-cost heterogeneous cation exchange membranes based on TPU with acceptable electrochemical properties.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Polymer and Process Engineering, University of Engineering and Technology Lahore 54890 Pakistan +92 306 3798 108
| | - Asif Ali Qaiser
- Department of Polymer and Process Engineering, University of Engineering and Technology Lahore 54890 Pakistan +92 306 3798 108
| | - Noor Ul Huda
- Department of Polymer and Process Engineering, University of Engineering and Technology Lahore 54890 Pakistan +92 306 3798 108
| | - Anem Saeed
- Department of Polymer and Process Engineering, University of Engineering and Technology Lahore 54890 Pakistan +92 306 3798 108
| |
Collapse
|
26
|
Molavi H, Shojaei A, Mousavi SA, Ahmadi SA. Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.48293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Molavi
- Institute for Nanoscience and Nanotechnology (INST)Sharif University of Technology, P.O. Box 11155‐8639 Tehran Iran
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST)Sharif University of Technology, P.O. Box 11155‐8639 Tehran Iran
- Department of Chemical and Petroleum EngineeringSharif University of Technology, P.O. Box 11155‐9465 Tehran Iran
| | - Seyyed Abbas Mousavi
- Department of Chemical and Petroleum EngineeringSharif University of Technology, P.O. Box 11155‐9465 Tehran Iran
| | | |
Collapse
|
27
|
Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Sadeghi M, Isfahani AP, Shamsabadi AA, Favakeh S, Soroush M. Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmium‐based metal organic framework. J Appl Polym Sci 2019. [DOI: 10.1002/app.48704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Morteza Sadeghi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | | | | | - Sahar Favakeh
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Masoud Soroush
- Department of Chemical and Biological EngineeringDrexel University Philadelphia USA
| |
Collapse
|
29
|
Synthesis, structure and gas separation properties of ethanol-soluble, amphiphilic POM-PBHP comb copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Ghadimi A, Gharibi R, Yeganeh H, Sadatnia B. Ionic liquid tethered PEG-based polyurethane-siloxane membranes for efficient CO 2/CH 4 separation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:524-535. [PMID: 31147023 DOI: 10.1016/j.msec.2019.04.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/23/2019] [Accepted: 04/20/2019] [Indexed: 10/27/2022]
Abstract
This study introduces a new polyethylene glycol (PEG) based polyurethane-siloxane membrane containing a quaternary ammonium ionic liquid for CO2/CH4 separation. The designed ionic liquid was prepared in two steps: (i) (3-chloropropyl)triethoxysilane (CPS) and N,N-dimethylpropyl amine (NDPA) were reacted with each other to form the methoxysilane-functionalized quaternary ammonium component, then (ii) chloride ion (Cl-) of the product was exchanged with tetrafluoroborate ion (BF4-). The resulting compound, a reactive methoxysilane-functionalized ionic liquid (Si-IL) was chemically anchored to the polymer backbone through the sol-gel hydrolysis and condensation reaction. Based on the permeation tests, the IL containing PEG-based polyurethane-siloxane membranes at different concentration of Si-IL (XSi-PPUIL) were found to be potential candidates for CO2 removal from CH4. For instance, the CO2/CH4 selectivity of XSi-PPUIL membranes with the Si-IL content of 10 wt% was 3.3-fold greater than the Si-IL free membranes; while, the CO2 permeability for IL tethered membranes was 9.7% higher than the corresponding IL-free membrane.
Collapse
Affiliation(s)
- Ali Ghadimi
- Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran.
| | - Hamid Yeganeh
- Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran
| | - Behrouz Sadatnia
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran
| |
Collapse
|
31
|
Zhao H, Zhao S, Hu G, Zhang Q, Liu Y, Huang C, Li W, Jiang T, Wang S. Synthesis and characterization of waterborne polyurethane/polyhedral oligomeric silsesquioxane composites with low dielectric constants. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hui Zhao
- College of Light Industry and Food EngineeringGuangxi University Nanning China
- School of Materials Science & EngineeringHubei University Wuhan China
| | - Si‐Qi Zhao
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Guo‐Hua Hu
- School of Materials Science & EngineeringHubei University Wuhan China
- Laboratory of Reactions and Process Engineering (LRGP CNRS UMR 7274)CNRS‐University of Lorraine Nancy France
| | - Qun‐Chao Zhang
- School of Materials Science & EngineeringHubei University Wuhan China
| | - Yang Liu
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Chong‐Xing Huang
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Wei Li
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Tao Jiang
- School of Materials Science & EngineeringHubei University Wuhan China
| | - Shuang‐Fei Wang
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| |
Collapse
|
32
|
Nematollahi MH, Babaei S, Abedini R. CO2 separation over light gases for nano-composite membrane comprising modified polyurethane with SiO2 nanoparticles. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0251-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1777-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Xueyan Y, Xiaofang L, Pengju P, Tungalag D. Nanostructured poly(l-lactic acid)-poly(ethylene glycol)-poly(l-lactic acid) triblock copolymers and their CO 2/O 2 permselectivity. RSC Adv 2019; 9:12354-12364. [PMID: 35515833 PMCID: PMC9063651 DOI: 10.1039/c9ra00656g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
Biodegradable poly(l-lactic acid)-poly(ethylene glycol)-poly(l-lactic acid) (PLLA-PEG-PLLA) copolymers were synthesized by ring-opening polymerization of l-lactide using dihydroxy PEG as the initiator. The effects of different PEG segments in the copolymers on the mechanical and permeative properties were investigated. It was determined that certain additions of PEG result in composition-dependent microphase separation structures with both PLLA and PEG blocks in the amorphous state. Amorphous PEGs with high CO2 affinity form gas passages that provide excellent CO2/O2 permselectivity in such a nanostructure morphology. The gas permeability and permselectivity depend on the molecular weight and content of the PEG and are influenced by the temperature. Copolymers that have a higher molecular weight and content of PEG present better CO2 permeability at higher temperatures but provide better CO2/O2 permselectivity at lower temperatures. In addition, the hydrophilic PEG segments improve the water vapor permeability of PLLA. Such biodegradable copolymers have great potential for use as fresh product packaging.
Collapse
Affiliation(s)
- Yun Xueyan
- College of Food Science and Engineering, Inner Mongolia Agricultural University 306 Zhaowuda Road Hohhot Inner Mongolia 010018 China
| | - Li Xiaofang
- College of Food Science and Engineering, Inner Mongolia Agricultural University 306 Zhaowuda Road Hohhot Inner Mongolia 010018 China
| | - Pan Pengju
- College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Dong Tungalag
- College of Food Science and Engineering, Inner Mongolia Agricultural University 306 Zhaowuda Road Hohhot Inner Mongolia 010018 China
| |
Collapse
|
35
|
Zheng Y, Hu Y, Yang X, Yuan M, Zhang J, Zhang Y, Luo J. Synthesis and CO
2
separation of novel polyurethane membranes containing urea linkages. J Appl Polym Sci 2019. [DOI: 10.1002/app.47723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yayun Zheng
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Yaofang Hu
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xing Yang
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Meng Yuan
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Jie Zhang
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Yaodong Zhang
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Jujie Luo
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| |
Collapse
|
36
|
Davletbaeva IM, Zaripov II, Mazilnikov AI, Davletbaev RS, Sharifullin RR, Atlaskin AA, Sazanova TS, Vorotyntsev IV. Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate. MEMBRANES 2019; 9:membranes9030042. [PMID: 30897854 PMCID: PMC6468502 DOI: 10.3390/membranes9030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 11/27/2022]
Abstract
Nowadays, block copolymers hold great promise for the design of novel membranes to be applied for the membrane gas separation. In this regard, microporous block copolymers based on a macroinitiator with an anionic nature, such as potassium-substituted block copolymers of propylene oxide and ethylene oxide (PPEG) and 2,4-toluene diisocyanate (TDI), were obtained and investigated as effective gas separation membranes. The key element of the macromolecular structure that determines the supramolecular organization of the studied polymers is the coplanar blocks of polyisocyanates with an acetal nature (O-polyisocyanate). In the present research, the influence of the content of peripheral polyoxyethylene (POE) blocks in PPEG on the supramolecular structure processes and gas transport characteristics of the obtained polymers based on PPEG and TDI was investigated. According to the study of polymers if the POE block content is 15 wt %, the polyoxypropylene segments are located in the internal cavity of voids formed by O-polyisocyanate blocks. When the POE block content is 30 wt %, the flexible chain component forms its own microphase outside the segregation zone of the rigid O-polyisocyanate blocks. The permeability for polar molecules, such as ammonia or hydrogen sulfide, significantly exceeds the permeability values obtained for non-polar molecules He, N2 and CH4. A relatively high permeability is also observed for carbon dioxide. At the same time, the content of POE blocks has a small effect on the permeability for all studied gases. The diffusion coefficient increases with an increase in the POE block content in PPEG for all studied gases.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Department of Synthetic rubber, Kazan National Research Technological University, 68 K. Marx str., 420015 Kazan, Russia.
| | - Ilnaz I Zaripov
- Department for Materials Science, Welding and Industrial Safety, Kazan National Research Technical University, n.a. A.N. Tupolev, 10 K. Marx str., 420111 Kazan, Russia.
| | - Alexander I Mazilnikov
- Department of Synthetic rubber, Kazan National Research Technological University, 68 K. Marx str., 420015 Kazan, Russia.
| | - Ruslan S Davletbaev
- Department for Materials Science, Welding and Industrial Safety, Kazan National Research Technical University, n.a. A.N. Tupolev, 10 K. Marx str., 420111 Kazan, Russia.
| | - Raphael R Sharifullin
- Laboratory of Scientific and Research Center, PJSC Nizhnekamskneftekhim, 23 Sobolekovskaya str., 423574 Nizhnekamsk, Russia.
| | - Artem A Atlaskin
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950 Nizhny Novgorod, Russia.
| | - Tatyana S Sazanova
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950 Nizhny Novgorod, Russia.
| | - Ilya V Vorotyntsev
- Laboratory of Membrane and Catalytic Processes, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950 Nizhny Novgorod, Russia.
| |
Collapse
|
37
|
Fakhar A, Sadeghi M, Dinari M, Lammertink R. Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenders. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Optimization of the gas separation performance of polyurethane–zeolite 3A and ZSM-5 mixed matrix membranes using response surface methodology. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Sadeghi M, Arabi Shamsabadi A, Ronasi A, Isfahani AP, Dinari M, Soroush M. Engineering the dispersion of nanoparticles in polyurethane membranes to control membrane physical and transport properties. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Borandeh S, Abdolmaleki A, Zamani nekuabadi S, Sadeghi M. Poly(vinyl alcohol)/methoxy poly(ethylene glycol) methacrylate-TiO2 nanocomposite as a novel polymeric membrane for enhanced gas separation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1529-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Borandeh S, Abdolmaleki A, Zamani Nekuabadi S, Sadeghi M. Methoxy poly (ethylene glycol) methacrylate-TiO2/poly (methyl methacrylate) nanocomposite: an efficient membrane for gas separation. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1520255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abdolmaleki
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
- Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, Iran
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | | | - Morteza Sadeghi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
42
|
Marcano A, Fatyeyeva K, Koun M, Dubuis P, Grimme M, Marais S. Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Polyurethane (PU) elastomers represent an important class of segmented copolymers. Thanks to many available chemical compositions, a rather broad range of chemical, physical, and biocompatible properties of PU can be obtained. These polymers are often characterized by high tensile and tear strength, elongation, fatigue life, and wear resistance. However, their relatively high permeability towards gases and water as well as their biocompatibility still limits the PU’s practical application, especially for biomedical use, for example, in implants and medical devices. In this review, the barrier and permeability properties of segmented PUs related to their chemical structure and physical and chemical properties have been discussed, including the latest developments and different approaches to improve the PU barrier properties.
Collapse
Affiliation(s)
- Aracelys Marcano
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
- CARMAT SA, 36 Avenue de l’Europe, Immeuble l’Etendard , 78140 Vélizy Villacoublay , France
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
| | - Malys Koun
- ALTEN, 221bis Bd. Jean Jaurès , 92100 Boulogne-Billancourt , France
| | - Pascal Dubuis
- INOPROD, 46 Rue de Sarlieve , 63800 Cournon D’Auvergne , France
| | - Marc Grimme
- CARMAT SA, 36 Avenue de l’Europe, Immeuble l’Etendard , 78140 Vélizy Villacoublay , France
| | - Stéphane Marais
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
| |
Collapse
|
43
|
Behniafar H, Yazdi M. Poly(tetramethylene oxide) (PTMO)-grafted carbon nanotubes for preparing PTMO-based polyurethane films with enhanced storage moduli. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mojtaba Yazdi
- School of Chemistry; Damghan University; Damghan Iran
| |
Collapse
|
44
|
Molavi H, Shojaei A, Mousavi SA. Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Pournaghshband Isfahani A, Sadeghi M, Wakimoto K, Shrestha BB, Bagheri R, Sivaniah E, Ghalei B. Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO 2-Plasticization Resistance for Thin Film Gas Separation Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17366-17374. [PMID: 29708720 DOI: 10.1021/acsami.7b18475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin-film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to the typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2 s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs result in high-performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a twofold enhanced plasticization resistance compared to non-pentiptycene-containing PU membranes.
Collapse
Affiliation(s)
| | - Morteza Sadeghi
- Department of Chemical Engineering , Isfahan University of Technology , Isfahan 84156-83111 , Isfahan , Iran
| | - Kazuki Wakimoto
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Binod Babu Shrestha
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Rouhollah Bagheri
- Department of Chemical Engineering , Isfahan University of Technology , Isfahan 84156-83111 , Isfahan , Iran
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| |
Collapse
|
46
|
Mohammad Gheimasi K, Bakhtiari O, Ahmadi M. Preparation and characterization of MWCNT-TEPA/polyurethane nanocomposite membranes for CO2/CH4 separation: Experimental and modeling. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Sadeghi M, Talakesh MM, Arabi Shamsabadi A, Soroush M. Novel Application of a Polyurethane Membrane for Efficient Separation of Hydrogen Sulfide from Binary and Ternary Gas Mixtures. ChemistrySelect 2018. [DOI: 10.1002/slct.201703170] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Morteza Sadeghi
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Mohammad Mehdi Talakesh
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | | | - Masoud Soroush
- Department of Chemical and Biological Engineering; Drexel University; Philadelphia USA
| |
Collapse
|
48
|
Gharibi R, Ghadimi A, Yeganeh H, Sadatnia B, Gharedaghi M. Preparation and evaluation of hybrid organic-inorganic poly(urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Reis RA, Pereira JHC, Campos ACC, Barboza EM, Delpech MC, Cesar DV, Dahmouche K, Bandeira CF. Waterborne poly(urethane-urea) gas permeation membranes for CO2/CH4separation. J Appl Polym Sci 2017. [DOI: 10.1002/app.46003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo A. Reis
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Juliana H. C. Pereira
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Antoniel C. C. Campos
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Elaine M. Barboza
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Marcia C. Delpech
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Deborah V. Cesar
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Karim Dahmouche
- Campus de Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Estrada de Xerém, 27, Xerém - Duque de Caxias; Brazil 25245-390
| | - Cirlene F. Bandeira
- Department of Materials and Technology; Universidade Estadual Paulista (UNESP), Dr. Ariberto Pereira da Cunha Ave., 333; Guaratinguetá Brazil 12516-410
| |
Collapse
|
50
|
Isfahani AP, Sadeghi M, Wakimoto K, Gibbons AH, Bagheri R, Sivaniah E, Ghalei B. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|