1
|
Wu T, Wu H, Wang Q, He X, Shi P, Yu B, Cong H, Shen Y. Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation. Adv Colloid Interface Sci 2024; 334:103317. [PMID: 39461111 DOI: 10.1016/j.cis.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
Collapse
Affiliation(s)
- Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Wang Y, Ren Z, Wu H, Cao Y, Yu B, Cong H, Shen Y. Immobilized Drugs on Dual-Mode Imaging Ag 2S/BaSO 4/PVA Embolic Microspheres for Precise Localization, Rapid Embolization, and Local Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43283-43301. [PMID: 39106313 DOI: 10.1021/acsami.4c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Transcatheter arterial embolization (TAE) in interventional therapy and tumor embolism therapy plays a significant role. The choice of embolic materials that have good biocompatibility is an essential component of TAE. For this study, we produced a multifunctional PVA embolization material that can simultaneously encapsulate Ag2S quantum dots (Ag2S QDs) and BaSO4 nanoparticles (BaSO4 NPs), exhibiting excellent second near-infrared window (NIR-II) fluorescence imaging and X-ray imaging, breaking through the limitations of traditional embolic microsphere X-ray imaging. To improve the therapeutic effectiveness against tumors, we doped the doxorubicin (DOX) antitumor drug into microspheres and combined it with a clotting peptide (RADA16-I) on the surface of microspheres. Thus, it not only embolizes rapidly during hemostasis but also continues to release and accelerate tumor necrosis. In addition, Ag2S/BaSO4/PVA microspheres (Ag2S/BaSO4/PVA Ms) exhibited good blood compatibility and biocompatibility, and the results of embolization experiments on renal arteries in rabbits revealed good embolic effects and bimodal imaging stability. Therefore, they could serve as a promising medication delivery embolic system and an efficient biomaterial for arterial embolization. Our research work achieves the applicability of NIR-II and X-ray dual-mode images for clinical embolization in biomedical imaging.
Collapse
Affiliation(s)
- Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
Condello A, Piacentini E, Giorno L. Insights into the preparation of zein nanoparticles by continuous membrane nanoprecipitation. Int J Biol Macromol 2024; 265:130935. [PMID: 38493815 DOI: 10.1016/j.ijbiomac.2024.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs. Inorganic membranes (pore size of 1 μm) were used to carry out membrane nanoprecipitation (MN) to form Zein nanoparticles (ZNPs) at pores level by non-solvent induced phase separation. A systematic study of the preparation of ZNPs in the ST and MN systems was carried out to establish the Ouzo diagram. The influence of zein concentration and solvent to non-solvent ratio on the size and size distribution of ZNPs was also investigated. A wider stable Ouzo zone was obtained with MN than with the ST process. ZNPs size increased from 100 nm up to 700 nm, while maintaining low polydispersity index (PDI < 0.2). The results demonstrate the suitability of MN for the continuous production of ZNPs and open the possibility of scaling up the nanoprecipitation process.
Collapse
Affiliation(s)
- A Condello
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy; Physics Department, University of Calabria, Ponte P. Bucci 33B, 87036 Rende, CS, Italy.
| | - E Piacentini
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| | - L Giorno
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| |
Collapse
|
4
|
Huang Y, Chang Z, Gao Y, Ren C, Lin Y, Zhang X, Wu C, Pan X, Huang Z. Overcoming the Low-Stability Bottleneck in the Clinical Translation of Liposomal Pressurized Metered-Dose Inhalers: A Shell Stabilization Strategy Inspired by Biomineralization. Int J Mol Sci 2024; 25:3261. [PMID: 38542235 PMCID: PMC10970625 DOI: 10.3390/ijms25063261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.
Collapse
Affiliation(s)
- Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Yuxin Lin
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| |
Collapse
|
5
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
6
|
Wang H, Wang J, Lv T, Cao S, Tong X, Song L, Zou Y. Loadability and Releasing Profiles In Vitro and Pharmacokinetics In Vivo of Vinorelbine and Raltitrexed by CalliSpheres Beads. Cancer Biother Radiopharm 2023; 38:536-542. [PMID: 32614660 DOI: 10.1089/cbr.2019.3360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: This study investigated the loadability and releasing profiles of vinorelbine and raltitrexed from CalliSpheres® Beads (CB) in vitro, and further explored the pharmacokinetic features of vinorelbine and raltitrexed eluting CB in vivo. Materials and Methods: Ten milligrams vinorelbine and 0.2 mg raltitrexed were mixed with 0.15 g CB at two sizes (100-300 and 300-500 μm) for 24 h, respectively, to measure the loadability. Then vinorelbine/raltitrexed loading CBs were placed in 20% phosphate-buffered saline for 24 h to measure the release profiles. Transcatheter arterial chemoembolization (TACE) with 1 mg vinorelbine eluting CBs (two sizes respectively) and transcatheter arterial hepatic infusion (TAI) with 1 mg vinorelbine were performed in 9 rabbits (3 rabbits in each group). The above experiments were repeated with 0.2 mg raltitrexed. Results: Vinorelbine loading efficiency quickly reached 90% within 10 min with maximum loadability >90% by CB with both two sizes, and vinorelbine release rate gradually increased to ∼100% within 1 h. Raltitrexed loading efficiency gradually increased to >40% within 15 min, then slowly increased to >60% within 24 h, with maximum loadability <70% by CB with both sizes, and raltitrexed release rate gradually increased to >90% within 1 h. Besides, vinorelbine/raltitrexed eluting CB showed greatly decreased maximum serum concentration (Cmax) of the drug compared with TAI in rabbits with similar area under the curve (0-t), mean residence time (0-t), and half-time (T1/2). Conclusion: CB exhibits good loadability and an acceptable releasing profile for eluting vinorelbine and raltitrexed, and shows lower Cmax and numerically stable concentration than TAI.
Collapse
Affiliation(s)
- Haochen Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Jian Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Tianshi Lv
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Shoujin Cao
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaoqiang Tong
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Li Song
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
8
|
Guajardo N. Immobilization of Lipases Using Poly(vinyl) Alcohol. Polymers (Basel) 2023; 15:polym15092021. [PMID: 37177168 PMCID: PMC10181104 DOI: 10.3390/polym15092021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Lipases are very versatile enzymes because they catalyze various hydrolysis and synthesis reactions in a chemo-, regio-, and stereoselective manner. From a practical point of view, immobilization allows the recovery and stabilization of the biocatalyst for its application in different types of bioreactors. Among the various support options for immobilizing lipases is polyvinyl alcohol (PVA), which, when functionalized or combined with other materials, provides different characteristics and properties to the biocatalyst. This review analyzes the multiple possibilities that PVA offers as a material to immobilize lipases when combined with alginate, chitosan, and hydroxypropylmethylcellulose (HPMC), incorporating magnetic properties together with the formation of fibers and microspheres. The articles analyzed in this review were selected using the Scopus database in a range of years from 1999 to 2023, finding a total of 42 articles. The need to expand knowledge in this area is due to the great versatility and scaling possibilities that PVA has as a support for lipase immobilization and its application in different bioreactor configurations.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| |
Collapse
|
9
|
Konovalova V, Kolesnyk I, Savchenko M, Marynin A, Bubela H, Kujawa J, Knozowska K, Kujawski W. Preparation of Chitosan Water-In-Oil Emulsions by Stirred Cell Membrane Emulsification. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Pectin as a non-toxic crosslinker for durable and water-resistant biopolymer-based membranes with improved mechanical and functional properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
|
12
|
Nauman N, Boyer C, Zetterlund PB. Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
14
|
Kim HU, Roh YH, Mun SJ, Bong KW. Discontinuous Dewetting in a Degassed Mold for Fabrication of Homogeneous Polymeric Microparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53318-53327. [PMID: 33196158 DOI: 10.1021/acsami.0c15944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Discontinuous dewetting (DD) is an attractive technique that enables the production of large liquid arrays in microwells and is applicable to the synthesis of anisotropic microparticles with complex morphologies. However, such loading of liquids into microwells presents a significant challenge, as the liquids used in this technique should exhibit low mold surface wettability. This study introduces DD in a degassed mold (DM), a simple yet powerful technique that achieves uniform loading of microparticle precursors into large microwell arrays within 1 min. Using this technique, hydrogel microparticles are produced by different polymerization mechanisms with various shapes and sizes, ranging from a few micrometers to hundreds of micrometers. Hydrophobic oil microparticles are produced by the simple plasma treatment of the DM, and agarose microparticles encapsulating bovine serum albumin (in a well-dispersed state) are produced by submerging the DM in fluorinated oil. To demonstrate additional functionality of microparticles using this technique, high concentrations of magnetic nanoparticles are loaded into microparticles for particle-based immunoassays performed in a microwell plate, and the immunoassay performance is comparable to that of ELISA.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
15
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 2020; 323:189-202. [PMID: 32861701 DOI: 10.1016/j.jbiotec.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In this study, the factors affecting lipase adsorption onto SiO2 nanoparticles including SiO2 nanoparticles amounts (8, 19 and 30 mg/mL), lipase concentrations (30, 90 and 150 μg/mL), adsorption temperatures (5, 20 and 35 °C) and adsorption times (1, 12.5 and 24 h) were optimized using central composite design. The optimal conditions were determined as a SiO2 nanoparticles amount of 8.5-14 mg/ml, a lipase concentration of 106-116 μg/mL, an adsorption temperature of 20 °C and an adsorption time of 12.5 h, which resulted in a specific activity and immobilization efficiency of 20,000 (U/g protein) and 60 %, respectively. The lipase adsorbed under optimal conditions (SiO2-lipase) was entrapped in a PVA/Alg hydrogel, successfully. FESEM and FTIR confirmed the two-step method of lipase immobilization. The entrapped SiO2-lipase retained 76.5 % of its initial activity after 30 days of storage at 4 °C while adsorbed and free lipase retained only 43.4 % and 13.7 %, respectively. SiO2-lipase activity decreased to 34.43 % after 10 cycles of use, while the entrapped SiO2-lipase retained about 64.59 % of its initial activity. Compared to free lipase, the Km values increased and decreased for SiO2-lipase and entrapped SiO2-lipase, respectively. Vmax value increased for both SiO2-lipase and entrapped SiO2-lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
16
|
Shao H, Cheng J, Kang D, Qin S. Fabrication of a novel hollow fiber composite membrane with a double-layer structure for enhanced water treatment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Ma G, Yue H. Advances in Uniform Polymer Microspheres and Microcapsules: Preparation and Biomedical Applications. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science Beijing 100190 China
| |
Collapse
|
18
|
Han X, Chen Q, Sun Y, Han L, Sha X. Morphology, Loadability, and Releasing Profiles of CalliSpheres Microspheres in Delivering Oxaliplatin: An In Vitro Study. Technol Cancer Res Treat 2020; 18:1533033819877989. [PMID: 31630671 PMCID: PMC6801889 DOI: 10.1177/1533033819877989] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objectives: This study aimed to explore the morphology, loadability, and releasing profiles of
CalliSpheres microspheres in delivering oxaliplatin. Methods: Varied amount (20, 40, 60, and 80 mg oxaliplatin) and concentration (1.25, 2.5, 5.0
mg/mL oxaliplatin) of oxaliplatin were mixed with CalliSpheres microspheres with 3 sizes
(50-150 μm, 100-300 μm, and 300-500 μm) to measure the loadability. Of all, 20 mg
oxaliplatin-loaded CalliSpheres microspheres with 3 sizes was prepared to measure the
releasing profiles, meanwhile, fetal bovine serum was added to determine the effect of
serum on oxaliplatin releasing. The morphology and size distribution of CalliSpheres
microspheres with 3 sizes before and after 20 mg oxaliplatin loading were detected. Results: Oxaliplatin amount was negatively correlated with loading efficiency with highest
loadability in 20 mg oxaliplatin group (maximum 40% in 50-100 µm CalliSpheres
microspheres, 52% in 100-300 µm CalliSpheres microspheres, and 52% in 300-500 µm
CalliSpheres microspheres), while oxaliplatin concentration was positively associated
with loading efficiency. Similar drug-releasing profiles were observed among
oxaliplatin-loaded CalliSpheres microspheres with 3 sizes, and a rapid drug release was
discovered in CalliSpheres microspheres with 3 sizes as well. We also found that fetal
bovine serum did not affect the drug-releasing profiles of oxaliplatin-loaded
CalliSpheres microspheres. In addition, CalliSpheres microspheres was modified a little
to ellipse shape and less smooth after oxaliplatin loading, and it was enlarged to some
extent. Conclusion: This study discloses drug loadability, releasing profiles, and morphology change of
CalliSpheres microspheres for delivering oxaliplatin, which provides potential evidences
for application of oxaliplatin-loaded drug-eluting beads in clinical practice.
Collapse
Affiliation(s)
- Xiaoli Han
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Qinyue Chen
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yali Sun
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Limei Han
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xianyi Sha
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zhang L, Ma J, Lyu B, Zhang Y, Gao D, Liu C, Li X. Mitochondrial structure-inspired high specific surface area polymer microspheres by encapsulating modified graphene oxide nanosheets. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Yuan H, Chen L, Cao Z, Hong FF. Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107501] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
21
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase. World J Microbiol Biotechnol 2020; 36:45. [PMID: 32130535 DOI: 10.1007/s11274-020-02817-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
Entrapment of halloysite nanotubes (HNTs) loaded with enzyme, into a polymer matrix (PVA/Alg), is a way to produce an environment surrounding the adsorbed enzyme molecules which improves the enzyme properties such as storage and operational stability. Hence, in this study, we optimised the factors affecting lipase adsorption onto halloysite nanotubes including halloysite amounts (5, 42.5 and 80 mg), lipase concentrations (30, 90 and 150 µg/ml), temperatures (5, 20 and 35 °C) and adsorption times (30, 165 and 300 min). The optimal conditions were determined as an halloysite amount of 50 to 80 mg, a lipase concentration of 30 to 57 μg/ml, an adsorption temperature of 20 °C and an adsorption time of 165 min, which resulted in a specific activity and adsorption efficiency of 15,000 (U/g protein) and 70%, respectively. Then, lipase adsorbed under optimal conditions was entrapped in a PVA/Alg hydrogel. The formation mechanism of immobilized lipase was investigated by FESEM and FTIR. Subsequent entrapment of adsorbed lipase improved the lipase storage and operational stability. Km, Vmax, Kcat and Kcat/Km values showed an increase in the entrapped HNT-lipase performance in comparison with the free and adsorbed lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.,Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
22
|
dos Santos JP, Dittgen CL, El Halal SLM, Vanier NL. Catalytic Efficiency, Structure, and Recycling Behavior of Electrospun Polyvinyl Alcohol-Xylanase Fibers Cross-Linked by Glutaraldehyde. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09618-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Wang PH, Chang YR, Lee DJ. Structure for shape stable poly(vinyl alcohol) hydrogel under pH shock. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Wang PH, Chang YR, Lee DJ. Shape stable poly(vinyl alcohol) and alginate cross-linked hydrogel with borate anions under dry–rewet cycles. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Shao H, Qi Y, Cheng J, Qin S. Fabrication of superhydrophilic PVDF hollow fiber membranes with a fish-scale surface for water treatment. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Niu R, Yang Y, Wang S, Zhou X, Luo S, Zhang C, Wang Y. Chitosan microparticle-based immunoaffinity chromatography supports prepared by membrane emulsification technique: Characterization and application. Int J Biol Macromol 2019; 131:1147-1154. [DOI: 10.1016/j.ijbiomac.2019.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
|
27
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
28
|
Zoalfakar SH, Mohamed MA, El-Hamid MA, Ali AA. Electrospun EGNPs reinforced precursor carbon nanofibril composites by using RSM. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Said H. Zoalfakar
- Department of Mechanical Engineering; Higher Technological Institute; 10 th of Ramadan City Egypt
| | - Mostafa A. Mohamed
- Department of Mechanical Engineering; Higher Technological Institute; 10 th of Ramadan City Egypt
| | - Mohamed A. El-Hamid
- Mechanical Design and Production Engineering Department, Faculty of Engineering; Zagazig University; Egypt PO Box: 44519
| | - Ashraf A. Ali
- Mechanical Design and Production Engineering Department, Faculty of Engineering; Zagazig University; Egypt PO Box: 44519
- College of Engineering; University of Bisha (UB); Kingdom of Saudi Arabia (KSA) PO Box: 551:61922
| |
Collapse
|
29
|
Tsai CJ, Chang YR, Lee DJ. Shape Stable Poly(vinyl alcohol) and Alginate Cross-Linked Hydrogel under Drying-Rewetting Cycles: Boron Substitution. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yin-Ru Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
30
|
HAN XW, ZHANG HW, LUO HY, ZHENG XL, YANG Z, HU N, LIAO YJ, YANG J. Preparation of Poly(vinyl alcohol) Microspheres Based on Droplet Microfluidic Technology. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61105-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Chao C, Guan H, Zhang J, Liu Y, Zhao Y, Zhang B. Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:809-818. [PMID: 29431726 DOI: 10.2166/wst.2017.594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Laccase was immobilized in polyvinyl alcohol beads containing halloysite nanotubes (PVA/HNTs) to improve the stability and reusability of enzyme. The porous structure of PVA/HNTs beads facilitates the entrapment of enzyme and prevents the leaching of immobilized laccase as well. Halloysite nanotubes act as bridge to connect the adjacent pores, facilitating the electron transfer and enhancing the mechanical properties. PVA/HNTs beads have high laccase immobilization capacity (237.02 mg/g) and activity recovery yield (79.15%), indicating it can be used as potential support for laccase immobilization. Compared with free laccase, the immobilized laccase on hybrid beads exhibits enhanced pH tolerance (even at pH 8.0), good thermal stability (57.5% of the initial activity can be maintained at 75 °C), and excellent storage stability (81.17% of enzyme activity could be retained after storage at 4 °C for 5 weeks compared with that for free enzyme of 60%). Also, the removal efficiency for reactive blue can reach as high as 93.41% in the presence of redox mediator 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonate), in which adsorption and degradation exist simultaneously. The remarkable pH tolerance, thermal and storage stability, and reuse ability imply potential application of porous PVA/HNTs immobilized enzyme in environmental fields.
Collapse
Affiliation(s)
- Cong Chao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail: ; School of Energy and Environment Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Huijuan Guan
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Jun Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Yang Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Yafei Zhao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail: ; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| |
Collapse
|
32
|
Melo ADQ, Silva FFM, Dos Santos JCS, Fernández-Lafuente R, Lemos TLG, Dias Filho FA. Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads. Molecules 2017; 22:E2165. [PMID: 29215558 PMCID: PMC6149806 DOI: 10.3390/molecules22122165] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022] Open
Abstract
Enzymes serve as biocatalysts for innumerable important reactions, however, their application has limitations, which can in many cases be overcome by using appropriate immobilization strategies. Here, a new support for immobilizing enzymes is proposed. This hybrid organic-inorganic support is composed of chitosan-a natural, nontoxic, biodegradable, and edible biopolymer-and sodium polyphosphate as the inorganic component. Lipase B from Candida antarctica (CALB) was immobilized on microspheres by encapsulation using these polymers. The characterization of the composites (by infrared spectroscopy, thermogravimetric analysis, and confocal Raman microscopy) confirmed the hybrid nature of the support, whose external part consisted of polyphosphate and core was composed of chitosan. The immobilized enzyme had the following advantages: possibility of enzyme reuse, easy biocatalyst recovery, increased resistance to variations in temperature (activity declined from 60 °C and the enzyme was inactivated at 80 °C), and increased catalytic activity in the transesterification reactions. The encapsulated enzymes were utilized as biocatalysts for transesterification reactions to produce the compound responsible for the aroma of jasmine.
Collapse
Affiliation(s)
- Ana D Q Melo
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Rod. Pres. Juscelino Kubitschek, Boa Viagem CEP 63870-000, Ceará, Brazil.
| | - Francisco F M Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, RN 233, Km-02, Nº 999, Bairro Chapada do Apodi, Apodi CEP 59700-000, Rio Grande do Norte, Brazil.
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção CEP 62785-000, Ceará, Brazil.
| | | | - Telma L G Lemos
- Departamento de Química Orgânica e Inorgânica da Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza CEP 60455-760, Ceará, Brazil.
| | - Francisco A Dias Filho
- Departamento de Química Orgânica e Inorgânica da Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza CEP 60455-760, Ceará, Brazil.
| |
Collapse
|