1
|
Chen Z, Yuan P, Chen C, Wang X, Wang J, Jia J, Davaasuren B, Lai Z, Khashab NM, Huang KW, Bakr OM, Yin J, Salama KN. Balancing Pd-H Interactions: Thiolate-Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404291. [PMID: 38975670 DOI: 10.1002/adma.202404291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.
Collapse
Affiliation(s)
- Zhuo Chen
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xinhuilan Wang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jinrong Wang
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bambar Davaasuren
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Khaled N Salama
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Sweeney DM, Alves V, Sakhai S, Dinh S, Lima FV. Techno-economic Analysis and Optimization of Intensified, Large-Scale Hydrogen Production with Membrane Reactors. Ind Eng Chem Res 2023; 62:19740-19751. [PMID: 38037623 PMCID: PMC10682983 DOI: 10.1021/acs.iecr.3c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/26/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Steam methane reforming (SMR) currently supplies 76% of the world's hydrogen (H2) demand, totaling ∼70 million tonnes per year. Developments in H2 production technologies are required to meet the rising demand for cleaner, less costly H2. Therefore, palladium membrane reactors (Pd-MR) have received significant attention for their ability to increase the efficiency of traditional SMR. This study performs novel economic analyses and constrained, nonlinear optimizations on an intensified SMR process with a Pd-MR. The optimization extends beyond the membrane's operation to present process set points for both the conventional and intensified H2 processes. Despite increased compressor and membrane capital costs along with electric utility costs, the SMR-MR design offers reductions in the natural gas usage and annual costs. Economic comparisons between each plant show Pd membrane costs greater than $25 000/m2 are required to break even with the conventional design for membrane lifetimes of 1-3 years. Based on the optimized SMR-MR process, this study concludes with sensitivity analyses on the design, operational, and cost parameters for the intensified SMR-MR process. Overall, with further developments of Pd membranes for increased stability and lifetime, the proposed SMR-MR design is thus profitable and suitable for intensification of H2 production.
Collapse
Affiliation(s)
- Dean M. Sweeney
- Department of Chemical and Biomedical
Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Victor Alves
- Department of Chemical and Biomedical
Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Savannah Sakhai
- Department of Chemical and Biomedical
Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - San Dinh
- Department of Chemical and Biomedical
Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Fernando V. Lima
- Department of Chemical and Biomedical
Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
3
|
Kilic S, Dogan M, Cetinyokus S. Effects of Osmotic Flux on PdCu Alloy Membrane Structure. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Effect of annealing process on the hydrogen permeation through Pd–Ru membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yin Y, Ying Y, Liu G, Chen H, Fan J, Li Z, Wang C, Guo Z, Zeng G. High Proton-Conductive and Temperature-Tolerant PVC-P4VP Membranes towards Medium-Temperature Water Electrolysis. MEMBRANES 2022; 12:membranes12040363. [PMID: 35448332 PMCID: PMC9027779 DOI: 10.3390/membranes12040363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100–350 °C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore, a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here, we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid, which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10−2 S cm−1 at 180 °C and a reliable conductivity stability in 200 h at 160 °C. The PVC-P4VP membrane electrode is covered by an IrO2 anode, and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100–180 °C but also the stable WE stability at 180 °C.
Collapse
Affiliation(s)
- Yichen Yin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Ying
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guojuan Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingrui Fan
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chuhao Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhuangyan Guo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Y.Y.); (Y.Y.); (G.L.); (H.C.); (J.F.); (Z.L.); (C.W.); (Z.G.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
6
|
Alrashed F, Zahid U. Comparative analysis of conventional steam methane reforming and PdAu membrane reactor for the hydrogen production. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Assessment of Sieverts Law Assumptions and ' n' Values in Palladium Membranes: Experimental and Theoretical Analyses. MEMBRANES 2021; 11:membranes11100778. [PMID: 34677544 PMCID: PMC8540459 DOI: 10.3390/membranes11100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
Palladium and palladium alloy membranes are superior materials for hydrogen purification, removal, or reaction processes. Sieverts’ Law suggests that the flux of hydrogen through such membranes is proportional to the difference between the feed and permeate side partial pressures, each raised to the 0.5 power (n = 0.5). Sieverts’ Law is widely applied in analyzing the steady state hydrogen permeation through Pd-based membranes, even in some cases where the assumptions made in deriving Sieverts’ Law do not apply. Often permeation data are fit to the model allowing the pressure exponent (n) to vary. This study experimentally assessed the validity of Sieverts’ Law as hydrogen was separated from other gases and theoretically modelled the effects of pressure and temperature on the assumptions and hence the accuracy of the 0.5-power law even with pure hydrogen feed. Hydrogen fluxes through Pd and Pd-Ag alloy foils from feed mixtures (5–83% helium in hydrogen; 473–573 K; with and without a sweep gas) were measured to study the effect of concentration polarization (CP) on hydrogen permeance and the applicability of Sieverts’ Law under such conditions. Concentration polarization was found to dominate hydrogen transport under some experimental conditions, particularly when feed concentrations of hydrogen were low. All mixture feed experiments showed deviation from Sieverts’ Law. For example, the hydrogen flux through Pd foil was found to be proportional to the partial pressure difference (n ≈ 1) rather than being proportional to the difference in the square root of the partial pressures (n = 0.5), as suggested by Sieverts’ Law, indicating the high degree of concentration polarization. A theoretical model accounting for Langmuir adsorption with temperature dependent adsorption equilibrium coefficient was made and used to assess the effect of varying feed pressure from 1–136 atm at fixed temperature, and of varying temperature from 298 to 1273 K at fixed pressure. Adsorption effects, which dominate at high pressure and at low temperature, result in pressure exponents (n) values less than 0.5. With better understanding of the transport steps, a qualitative analysis of literature (n) values of 0.5, 0.5 < n < 1, and n > 1, was conducted suggesting the role of each condition or step on the hydrogen transport based on the empirically fit exponent value.
Collapse
|
8
|
Liu LC, Gong HR. Hydrogen solubility and diffusivity at Σ3 grain boundary of PdCu. RSC Adv 2021; 11:13644-13652. [PMID: 35423865 PMCID: PMC8697505 DOI: 10.1039/d0ra10133h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
First principles calculations have been performed to comparatively reveal hydrogen solubility and diffusivity at grain boundaries of BCC and FCC PdCu phases. It is found that the temperature-dependent hydrogen solubility at BCC Σ3 (112) GB of PdCu seems much higher than that in BCC PdCu bulk, while hydrogen solubility in FCC Σ3 (111) GB of PdCu is much lower than that in its corresponding FCC bulk. Calculations also reveal that grain boundary has an important effect on hydrogen diffusion of BCC and FCC PdCu, i.e., hydrogen diffusivities of BCC Σ3 (112) and FCC Σ3 (111) grain boundaries of PdCu seem much smaller and bigger than those of its corresponding bulks, respectively. The predicted results could deepen the comprehension of hydrogen solubility and diffusion of PdCu phases.
Collapse
Affiliation(s)
- L C Liu
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 China .,College of Physics and Electronics, Gannan Normal University Ganzhou Jiangxi 341000 China
| | - H R Gong
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 China
| |
Collapse
|
9
|
|
10
|
Microstructural Investigation and On-Site Repair of Thin Pd-Ag Alloy Membranes. MEMBRANES 2020; 10:membranes10120384. [PMID: 33266176 PMCID: PMC7760571 DOI: 10.3390/membranes10120384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Pd membranes act in an important role in H2 purification and H2 production in membrane reactors. Pd-Ag alloy membranes fabricated by consecutive electroless- and electroplating process on alumina tubes exhibited good stability under stringent heating/cooling cycles at a ramp rate of 10 K/min, imitating practical fast initiation or emergency shutdown conditions. Bilayer Pd-Ag membranes can form dense and uniform alloy after thermal treatment for 24 h at 823 K under H2 atmosphere, despite a porous structure due to the development of liquid-like properties above Tamman temperature to enforce the migrativity. On the contrary, alloying under N2 atmosphere resulted in a Pd-enriched layer. This led to a lower H2 flux but superior thermal stability compared to that alloying under H2 atmosphere. The trilayer approach of electroless-plated Pd, electro-polated Ag and electroless-plated Pd is not suitable to achieve homogeneous Pd-Ag alloys, which, on the other hand, presented the occurrence of a small gap between top Pd layer and middle Ag layer, probably due to insufficient wetting during plating process. An on-site repair treatment in analogous to MOCVD (Metal-organic Chemical Vapor Deposition) process was first proposed to extend the lifetime of Pd-Ag membrane, i.e., by vaporizing, and subsequent decomposition of Ag(OOCC2F5) powders to "preferentially" block the pinholes under vacuum and at working temperature of ca. 473-673 K, which effectively reduced the N2 flux by 57.4% compared to the initial value. The H2 flux, however, declined by 16.7% due to carbon deposition on the membrane surface, which requires further investigation. This approach shows some potential for on-site repair without disassembly or cooling to room temperature.
Collapse
|
11
|
|
12
|
Yan E, Min R, Zhao P, Misra R, Huang P, Zou Y, Chu H, Zhang H, Xu F, Sun L. Design of Nb-based multi-phase alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
|
14
|
Preliminary Equipment Design for On-Board Hydrogen Production by Steam Reforming in Palladium Membrane Reactors. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hydrogen, as an energy carrier, can take the main role in the transition to a new energy model based on renewable sources. However, its application in the transport sector is limited by its difficult storage and the lack of infrastructure for its distribution. On-board H2 production is proposed as a possible solution to these problems, especially in the case of considering renewable feedstocks such as bio-ethanol or bio-methane. This work addresses a first approach for analyzing the viability of these alternatives by using Pd-membrane reactors in polymer electrolyte membrane fuel cell (PEM-FC) vehicles. It has been demonstrated that the use of Pd-based membrane reactors enhances hydrogen productivity and provides enough pure hydrogen to feed the PEM-FC requirements in one single step. Both alternatives seem to be feasible, although the methane-based on-board hydrogen production offers some additional advantages. For this case, it is possible to generate 1.82 kmol h−1 of pure H2 to feed the PEM-FC while minimizing the CO2 emissions to 71 g CO2/100 km. This value would be under the future emissions limits proposed by the European Union (EU) for year 2020. In this case, the operating conditions of the on-board reformer are T = 650 °C, Pret = 10 bar and H2O/CH4 = 2.25, requiring 1 kg of catalyst load and a membrane area of 1.76 m2.
Collapse
|
15
|
Anzelmo B, Wilcox J, Liguori S. Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Investigation of reaction temperature and GHSV effects and long-term stability. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production. MEMBRANES 2018; 8:membranes8010005. [PMID: 29360777 PMCID: PMC5872187 DOI: 10.3390/membranes8010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022]
Abstract
In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in preparation of Pd-based alloys, and, finally; (v) some essential concluding remarks in addition to futures perspectives.
Collapse
|