1
|
Liu J, Yao H, Zhang X, Chai X, Fu J. Electrospun PVDF/PVP Fibrous Membrane with Photocatalytic and Superhydrophilic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23169-23177. [PMID: 39446625 DOI: 10.1021/acs.langmuir.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Membrane separation technology is used to treat environmental wastewater, but during the treatment process, the occurrence of membrane fouling greatly affects the treatment efficiency. To address this phenomenon, improve membrane antipollution capabilities, and treat organic wastewater, photocatalysis and membrane separation technology have been coupled, forming a suitable and promising treatment method. Here, we propose a simple strategy to prepare a polyvinylidene fluoride/polyvinyl pyrrolidone nitrogen-doped titanium dioxide fibrous membrane (PVDF/PVP N-doped TiO2 fibrous membrane). The experimental results showed that PVDF and PVP mixed spinning made the fibrous membrane have a unique microstructure, and the superhydrophobic PVDF fibrous membrane was changed into superhydrophilic. In addition, electrospraying technology was used to attach TiO2 nanoparticles (NPs) to the fiber, and nitrogen (N) was doped in this process to improve the photocatalytic activity of the fibrous membrane. Finally, methyl blue solution was used as the target organic pollutant. Under the irradiation of a xenon lamp, 90.05% of methyl blue was removed within 90 min, indicating that the membrane had good photocatalytic performance. In a water contact angle test, the PVDF/PVP N-doped TiO2 fibrous membrane showed superhydrophilicity. The design of a fibrous membrane with high photocatalytic activity and superhydrophilicity properties has great potential for practical application in the purification of industrial wastewater.
Collapse
Affiliation(s)
- Jianxin Liu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Hengzhe Yao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaolei Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Xuedi Chai
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junlin Fu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
2
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
3
|
Chen C, Lu L, Fei L, Xu J, Wang B, Li B, Shen L, Lin H. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166220. [PMID: 37591402 DOI: 10.1016/j.scitotenv.2023.166220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The integration of catalytic degradation and membrane separation processes not only enables continuous degradation of contaminants but also effectively alleviates inevitable membrane fouling, demonstrating fascinating practical value for efficient water purification. Such membrane-catalysis integrated system (MCIS) has attracted tremendous research interest from scientists in chemical engineering and environmental science recently. In this review, the advantages of MCIS are discussed, including the membrane structure regulation, stable catalyst loading, nano-confinement effect, and efficient natural organic matter (NOM) exclusion, highlighting the synergistic effect between membrane separation and catalytic process. Subsequently, the design considerations for the fabrication of catalytic membranes, including substrate membrane, catalytic material, and fabrication method, are comprehensively summarized. Afterward, the mechanisms and performance of MCIS based on different catalytic types, including liquid-phase oxidants/reductants involved MCIS, gas involved MCIS, photocatalysis involved MCIS, and electrocatalysis involved MCIS are reviewed in detail. Finally, the research direction and future perspectives of catalytic membranes for water purification are proposed. The current review provides an in-depth understanding of the design of catalytic membranes and facilitates their further development for practical applications in efficient water purification.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| |
Collapse
|
4
|
Moyer J, Wilson MW, Sorrentino TA, Santandreu A, Chen C, Hu D, Kerdok A, Porock E, Wright N, Ly J, Blaha C, Frassetto LA, Fissell WH, Vartanian SM, Roy S. Renal Embolization-Induced Uremic Swine Model for Assessment of Next-Generation Implantable Hemodialyzers. Toxins (Basel) 2023; 15:547. [PMID: 37755973 PMCID: PMC10536310 DOI: 10.3390/toxins15090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Reliable models of renal failure in large animals are critical to the successful translation of the next generation of renal replacement therapies (RRT) into humans. While models exist for the induction of renal failure, none are optimized for the implantation of devices to the retroperitoneal vasculature. We successfully piloted an embolization-to-implantation protocol enabling the first implant of a silicon nanopore membrane hemodialyzer (SNMHD) in a swine renal failure model. Renal arterial embolization is a non-invasive approach to near-total nephrectomy that preserves retroperitoneal anatomy for device implants. Silicon nanopore membranes (SNM) are efficient blood-compatible membranes that enable novel approaches to RRT. Yucatan minipigs underwent staged bilateral renal arterial embolization to induce renal failure, managed by intermittent hemodialysis. A small-scale arteriovenous SNMHD prototype was implanted into the retroperitoneum. Dialysate catheters were tunneled externally for connection to a dialysate recirculation pump. SNMHD clearance was determined by intermittent sampling of recirculating dialysate. Creatinine and urea clearance through the SNMHD were 76-105 mL/min/m2 and 140-165 mL/min/m2, respectively, without albumin leakage. Normalized creatinine and urea clearance measured in the SNMHD may translate to a fully implantable clinical-scale device. This pilot study establishes a path toward therapeutic testing of the clinical-scale SNMHD and other implantable RRT devices.
Collapse
Affiliation(s)
- Jarrett Moyer
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Mark W. Wilson
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Thomas A. Sorrentino
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Ana Santandreu
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Caressa Chen
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Dean Hu
- Outset Medical, San Jose, CA 95134, USA
| | | | - Edward Porock
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Nathan Wright
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Jimmy Ly
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Charles Blaha
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Lynda A. Frassetto
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - William H. Fissell
- Silicon Kidney, San Ramon, CA 94583, USA
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shant M. Vartanian
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Shuvo Roy
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| |
Collapse
|
5
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
6
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
7
|
Mohanadas D, Nordin PMI, Rohani R, Dzulkharnien NSF, Mohammad AW, Mohamed Abdul P, Abu Bakar S. A Comparison between Various Polymeric Membranes for Oily Wastewater Treatment via Membrane Distillation Process. MEMBRANES 2022; 13:46. [PMID: 36676853 PMCID: PMC9864798 DOI: 10.3390/membranes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Oily wastewater (OW) is detrimental towards the environment and human health. The complex composition of OW needs an advanced treatment, such as membrane technology. Membrane distillation (MD) gives the highest rejection percentage of pollutants in wastewater, as the membrane only allows the vapor to pass its microporous membrane. However, the commercial membranes on the market are less efficient in treating OW, as they are prone to fouling. Thus, the best membrane must be identified to treat OW effectively. This study tested and compared the separation performance of different membranes, comparing the pressure-driven performance between the membrane filtration and MD. In this study, several ultrafiltration (UF) and nanofiltration (NF) membranes (NFS, NFX, XT, MT, GC and FILMTEC) were tested for their performance in treating OW (100 ppm). The XT and MT membranes (UF membrane) with contact angles of 70.4 ± 0.2° and 69.6 ± 0.26°, respectively, showed the best performance with high flux and oil removal rate. The two membranes were then tested for long-term performance for two hours with 5000 ppm oil concentration using membrane pressure-filtration and MD. The XT membrane displayed a better oil removal percentage of >99%. MD demonstrated a better removal percentage; the flux reduction was high, with average flux reduction of 82% compared to the membrane pressure-filtration method, which experienced a lower flux reduction of 25%. The hydrophilic MT and XT membranes have the tendency to overcome fouling in both methods. However, for the MD method, wetting occurred due to the feed penetrating the membrane pores, causing flux reduction. Therefore, it is important to identify the performance and characteristics of the prepared membrane, including the best membrane treatment method. To ensure that the MD membrane has good anti-fouling and anti-wetting properties, a simple and reliable membrane surface modification technique is required to be explored. The modified dual layer membrane with hydrophobic/hydrophilic properties is expected to produce effective separation in MD for future study.
Collapse
Affiliation(s)
- Dharshini Mohanadas
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Puteri Mimie Isma Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Peer Mohamed Abdul
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| |
Collapse
|
8
|
Membrane fouling behavior and its control in a vibration membrane filtration system related to EOM secreted by microalgae. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Zeng B, Pan Z, Xu Y, Long Y, Lin H, Zhang J, Shen L, Li R, Hong H, Zhang H. Molecular insights into membrane fouling caused by polysaccharides with different structures in polyaluminum chloride coagulation-ultrafiltration process. CHEMOSPHERE 2022; 307:135849. [PMID: 35948096 DOI: 10.1016/j.chemosphere.2022.135849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, mechanisms of membrane fouling caused by polysaccharides with different molecular structures in polyaluminum chloride (PACl) coagulation-ultrafiltration (C-UF) process were explored. Carrageenan and xanthan gum were chosen for model foulants of straight chain and branched chain polysaccharides, respectively. Filtration experiments showed that, with PACl dosage of 0-5 mM, specific filtration resistance (SFR) of carrageenan and xanthan solution showed a unimodal pattern and a continuous decrease pattern, respectively. A series of experimental characterizations indicated that the different SFR pattern was closely related to structure of foulants layer. Density functional theory (DFT) calculation suggested that Al3+ preferentially coordinating with the terminal sulfonyl groups of carrageenan chains to promote gel layer formation at low PACl concentration (0.15 mM). There existed a chemical potential gap between bound water in gel layer and free water in the permeate, so that, filtration through gel layer corresponded to rather high SFR for overcoming this gap. In contrast, Al3+ coordinating with the non-terminal sulfonyl groups of carrageenan at high PACl concentration caused transition from gel layer to cake layer, leading to SFR decrease. However, xanthan gum itself can form a dense gel layer with a complex polymer network by virtue of the interlacing of main chains and branches. Al3+ coordinating with the carboxyl groups on branched chains of xanthan gum resulted in clusters of polymer chains and flocculation, corresponding to the reduced SFR. This proposed molecular-level mechanism well explained membrane fouling behaviors of polysaccharides with different molecular structure, and also facilitated to optimize C-UF process for water treatment.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ying Long
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
10
|
Xiong S, Qian X, Zhong Z, Wang Y. Atomic layer deposition for membrane modification, functionalization and preparation: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Kim TN, Lee J, Choi JH, Ahn JH, Yang E, Hwang MH, Chae KJ. Tunable atomic level surface functionalization of a multi-layered graphene oxide membrane to break the permeability-selectivity trade-off in salt removal of brackish water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Qian X, Ravindran T, Lounder SJ, Asatekin A, McCutcheon JR. Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Park KH, Sun PF, Kang EH, Han GD, Kim BJ, Jang Y, Lee SH, Shim JH, Park HD. Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Li N, Lu X, He M, Duan X, Yan B, Chen G, Wang S. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125478. [PMID: 33652213 DOI: 10.1016/j.jhazmat.2021.125478] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Catalytic membranes can simultaneously realize physical separation and chemical oxidation in one integrated system, which is the frontier technology for effective removal of organic containments in wastewater treatment. The catalytic membrane coupled with advanced oxidation processes (AOPs) not only significantly enhances the pollutant removal efficiency but also inhibits the fouling of the membrane via self-cleaning. In this review, the preparation approaches of catalytic membranes including blending, surface coating, and bottom-up synthesis are comprehensively summarized. The different integrated catalytic membrane systems coupled with photocatalysis, Fenton oxidation, persulfate activations, ozonation and electrocatalytic oxidation are discussed in terms of mechanisms and performance. Besides, the principles, influencing factors, advantages and issues of the different catalytic membrane/oxidation systems are outlined comparatively. Finally, the future challenges, and research directions are suggested, which is conducive to the design and development of catalytic membrane-oxidation systems for practical remediation of organic containing wastewater.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Mengting He
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
16
|
Zhuang L, Corkery P, Lee DT, Lee S, Kooshkbaghi M, Xu Z, Dai G, Kevrekidis IG, Tsapatsis M. Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate. AIChE J 2021. [DOI: 10.1002/aic.17305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Liwei Zhuang
- School of Chemical Engineering East China University of Science and Technology Shanghai China
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Dennis T. Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Seungjoon Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Mahdi Kooshkbaghi
- Program in Applied and Computational Mathematics Princeton University Princeton New Jersey USA
| | - Zhen‐liang Xu
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Gance Dai
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
- Applied Physics Laboratory Johns Hopkins University Laurel Maryland USA
| |
Collapse
|
17
|
Ni L, Shi Q, Wu M, Ma J, Wang Y. Fouling behavior and mechanism of hydrophilic modified membrane in anammox membrane bioreactor: Role of gel layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Li R, Li N, Hou J, Yu Y, Liang L, Yan B, Chen G. Aquatic environment remediation by atomic layer deposition-based multi-functional materials: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123513. [PMID: 32717545 DOI: 10.1016/j.jhazmat.2020.123513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Water pollution still poses significant threats to the ecosystem and human health today. The adsorption, advanced oxidation and membranes filtration have been extensively investigated and utilized for aquatic contaminants remediation, and their efficiency is closely correlated with the advanced materials design and fabrication (e.g. adsorbents, catalysts and membranes). Thanks to uniform deposition, three-dimensional conformity and process controllability, the atomic layer deposition (ALD) has emerged as a promising strategy for fabrication of these multifunctional materials, arising their successful application in aquatic contaminants remediation. Therefore, a timely review on ALD-based water treatment materials is highly important to summarize the current opportunity and elucidate unaddressed problems in this field. Herein, in this review, the advantages of ALD process, the superiority of ALD-based materials and the corresponding decontamination performance were analyzed comprehensively, highlighting key advantages offered by this technology.
Collapse
Affiliation(s)
- Rui Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Yang Yu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Lan Liang
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| |
Collapse
|
19
|
Chen L, Zhang Y, Li R, Zhang H, Zhang M, Zhang H. Light sheet fluorescence microscopy applied for in situ membrane fouling characterization: The microscopic events of hydrophilic membrane in resisting DEX fouling. WATER RESEARCH 2020; 185:116240. [PMID: 32798888 DOI: 10.1016/j.watres.2020.116240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling restricts the wide applications of membrane technology and therefore, it is essential to develop novel analytical techniques to characterize membrane fouling and to further understand the mechanism behind it. In this work, we demonstrate a capability of high-resolution large-scale 3D visualization and quantification of the foulants on/in membranes during fouling process based on light sheet fluorescence microscopy as a noninvasive reproducible optical approach. The adsorption processes of dextran (DEX) on/in two polyvinylidene fluoride membranes with similar pore structure but distinct surface hydrophilicity were clearly observed. For a hydrophilic polyvinylidene fluoride (PVDF) membrane, the diffusion and adsorption of the DEX in membrane matrix were much slower compared to that for a hydrophobic membrane. A concentrated foulant layer was observed in the superficial potion of the hydrophilic membrane matrix while the foulants were observed quickly penetrating across the overall hydrophobic PVDF membrane during a short adsorption process. Both the inner concentrated fouling layer (in membrane superficial portion) and the foulant penetration (in membrane asymmetric structure) presented correlations with membrane fouling irreversibility, which could elucidate the microscopic events of hydrophilic membrane in resisting fouling. In addition, the imaging results could be correlated with the XDLVO analysis, suggesting how the membrane-foulant and foulant-foulant interfacial interactions resulted in a time-dependent membrane fouling process. This work provides a fast, highly-sensitive and noninvasive imaging platform for in situ characterization of membrane fouling evolution and should be useful for a wide range of membrane-based process explorations.
Collapse
Affiliation(s)
- Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yang Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Renjian Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Haoquan Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| | - Hongwei Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Li M, Wen Q, Chen Z, Tang Y, Yang B. Comparison of ozonation and UV based oxidation as pre-treatment process for ultrafiltration in wastewater reuse: Simultaneous water risks reduction and membrane fouling mitigation. CHEMOSPHERE 2020; 244:125449. [PMID: 31809924 DOI: 10.1016/j.chemosphere.2019.125449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Wastewater reuse risk and membrane fouling are two concerns in ultrafiltration (UF) of secondary effluent (SE) for wastewater reuse. In this work, several wastewater reuse risk issues, such as dissolved effluent organic matters (dEfOM), organic micro-pollutants (OMPs) and bio-toxicity of SE, as well as membrane fouling were comprehensively investigated when ozonation, UV/H2O2 and UV/persulfate (UV/PS) were used as the pre-treatments for UF process. To be specific, individual UF could remove DOC and UV254 by only 7.5% and 19.8%, respectively, however, humics were largely degraded during the pre-oxidation processes revealed by molecular weight and fluorescence analysis. UF and ozonation showed limited removal of OMPs, however, UV/H2O2 and UV/PS dramatically degraded all the OMPs by more than 80%. Genotoxicity were not detected after the oxidation treatment. Membrane fouling may result from the collaborative effect of organic components, such as humic and protein like substances. Fourier transform infrared spectra of the fouled membranes showed that aromatic CC group and polysaccharides group in dEfOM were largely reduced after the oxidation pre-treatments, resulting in the improved membrane flux sustaining. Increased roughness of the membranes in the combined process supported that the less organics content after the oxidation pre-treatment contributed to improve the performance of the UF process. For the excellent organics degradation in UV/PS pre-treatment process, membrane fouling of subsequent UF process showed maximum mitigation.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environmental and Geography Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
| | - Yingcai Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Boxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| |
Collapse
|
21
|
Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117341] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Ji H, Xu H, Jin L, Song X, He C, Liu X, Xiong L, Zhao W, Zhao C. Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Yang HC, Waldman RZ, Chen Z, Darling SB. Atomic layer deposition for membrane interface engineering. NANOSCALE 2018; 10:20505-20513. [PMID: 30397691 DOI: 10.1039/c8nr08114j] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In many applications, interfaces govern the performance of membranes. Structure, chemistry, electrostatics, and other properties of interfaces can dominate the selectivity, flux, fouling resistance, and other critical aspects of membrane functionality. Control over membrane interfacial properties, therefore, is a powerful means of tailoring performance. In this Minireview, we discuss the application of atomic layer deposition (ALD) and related techniques in the design of novel membrane interfaces. We discuss recent literature in which ALD is used to (1) modify the surface chemistry and interfacial properties of membranes, (2) tailor the pore sizes and separation characteristics of membranes, and (3) enable novel advanced functional membranes.
Collapse
Affiliation(s)
- Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ruben Z Waldman
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Seth B Darling
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. and Institute for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA and Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
25
|
|
26
|
Synthesizing a flower-like NiO and ZnO composite for supercapacitor applications. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3441-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|