1
|
Lin Z, Zhang D, Liu Y, Zhang Z, Zhao Z, Shao B, Wu R, Fang R, Yao J. CO 2/CH 4 separation performance of SiO 2/PES composite membrane prepared by gas phase hydrolysis and grafting coating in gas-liquid membrane contactor: A comparative study. Heliyon 2023; 9:e18760. [PMID: 37560639 PMCID: PMC10407752 DOI: 10.1016/j.heliyon.2023.e18760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The gas-liquid membrane contactor (GLMC) is a new and promising kind of gas separation technique, but still exhibits limitations, especially in membrane performance. In order to solve the above problems, we fabricated and characterized novel OH/SiO2/PES composite membranes using gas phase hydrolysis and graft coating methods, respectively. In the preparation process, whether to use alkali to pretreat the membrane was used as an evaluation index. The CO2/CH4 separation performance was tested using the modified OH/SiO2/PES hollow fiber membrane as the membrane contactor in GLMC. In the experiment, we conducted a single factor experiment with diethanolamine (DEA) as the adsorbent to analyze the effect of the flow rate and concentration of DEA on the separation of CO2/CH4. The collected gas had a CH4 content of 99.92% and a CO2 flux of 10.1059 × 10-3 mol m-2 s-1 while DEA at a concentration of 1 mol/L was flowing at a rate of 16 L/h. The highest separation factor occurred at this moment, which was 833.67. Overall, the CO2/CH4 separation performance in GLMC was enhanced with the use of the fluorinated OH/SiO2/PES composite membrane.
Collapse
Affiliation(s)
- Zhengda Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dandan Zhang
- Harbin Institute of Technology Hospital, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yijun Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhongming Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiying Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bo Shao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rui Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, PR China
| | - Rui Fang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| | - Jie Yao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| |
Collapse
|
2
|
Pang H, Qiu Y, Sheng W. Long-term stability of PVDF-SiO 2-HDTMS composite hollow fiber membrane for carbon dioxide absorption in gas-liquid contacting process. Sci Rep 2023; 13:5531. [PMID: 37015966 PMCID: PMC10073106 DOI: 10.1038/s41598-023-31428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/11/2023] [Indexed: 04/06/2023] Open
Abstract
Hybrid polyvinylidene fluoride-silica-hexadecyltrimethoxysilane (PVDF-SiO2-HDTMS) membranes were fabricated via a non-solvent-induced phase-inversion method to create stable hollow-fiber membranes for use in the membrane contact absorption of carbon dioxide (CO2). The surface properties, performance characteristics, and long-term performance stability of the prepared membranes were compared and analyzed. The outer surfaces of the prepared membranes were superhydrophobic because of the formation of rough nanoscale microstructures on the surfaces and their low surface free energy. The addition of inorganic nanoparticles improved the mechanical strength of the PVDF-SiO2-HDTMS. Long-term stable operation experiments were carried out with a mixed inlet gas (CO2/N2 = 19/81, v/v) at a flow rate of 20 mL/min. The absorbent liquid in these experiments was 1 mol/L diethanolamine (DEA) at a flow rate of 50 mL/min. The mass transfer flux of CO2 through the PVDF-SiO2-HDTMS membrane decreased from an initial value of 2.39 × 10-3 mol/m2s to 2.31 × 10-3 mol/m2s, a decrease of 3% after 20 days. The addition of highly stable and hydrophobic inorganic nanoparticles prevented pore wetting and structural damage to the membrane. The PVDF-SiO2-HDTMS membrane was found to have excellent long-term stable performance in absorbing CO2.
Collapse
Affiliation(s)
- Honglei Pang
- Nanjing Vocational University of Industry Technology, Nanjing, 210023, People's Republic of China.
| | - Yayu Qiu
- Nanjing Vocational College of Information Technology, Nanjing, 210023, People's Republic of China
| | - Weipeng Sheng
- Zhejiang Xinchai CO., LTD, Shaoxing, 312500, People's Republic of China
| |
Collapse
|
3
|
Lin Z, Liu Y, Zhang Z, Wu R, Fang R, Zhao Z, Shao B, Yao J. Preparation of OH/TiO2/PES Composite Membrane by a Novel Gas-Phase Hydrolysis Method in Gas-Liquid Membrane Contactor to Improve the Separation Efficiency of CO2 and CH4. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Saeid Hosseini S, Azadi Tabar M, F. J. Vankelecom I, F. M. Denayer J. Progress in High Performance Membrane Materials and Processes for Biogas Production, Upgrading and Conversion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Saleem M, Albaqami MD, Bahajjaj AAA, Ahmed F, Din E, Arifeen WU, Ali S. Wet-Chemical Synthesis of TiO 2/PVDF Membrane for Energy Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010285. [PMID: 36615478 PMCID: PMC9822136 DOI: 10.3390/molecules28010285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
To satisfy the ever-increasing energy demands, it is of the utmost importance to develop electrochemical materials capable of producing and storing energy in a highly efficient manner. Titanium dioxide (TiO2) has recently emerged as a promising choice in this field due to its non-toxicity, low cost, and eco-friendliness, in addition to its porosity, large surface area, good mechanical strength, and remarkable transport properties. Here, we present titanium dioxide nanoplates/polyvinylidene fluoride (TiO2/PVDF) membranes prepared by a straightforward hydrothermal strategy and vacuum filtration process. The as-synthesized TiO2/PVDF membrane was applied for energy storage applications. The fabricated TiO2/PVDF membrane served as the negative electrode for supercapacitors (SCs). The electrochemical properties of a TiO2/PVDF membrane were explored in an aqueous 6 M KOH electrolyte that exhibited good energy storage performance. Precisely, the TiO2/PVDF membrane delivered a high specific capacitance of 283.74 F/g at 1 A/g and maintained capacitance retention of 91% after 8000 cycles. Thanks to the synergistic effect of TiO2 and PVDF, the TiO2/PVDF membrane provided superior electrochemical performance as an electrode for a supercapacitor. These superior properties will likely be used in next-generation energy storage technologies.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Fahim Ahmed
- Department of Physics, Division of Science and Technology, University of Education, Lahore 54000, Pakistan
| | - ElSayed Din
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea
- Correspondence: (W.U.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (W.U.A.); (S.A.)
| |
Collapse
|
6
|
Hollow TiO 2/Poly (Vinyl Pyrrolidone) Fibers Obtained via Coaxial Electrospinning as Easy-to-Handle Photocatalysts for Effective Nitrogen Oxide Removal. Polymers (Basel) 2022; 14:polym14224942. [PMID: 36433070 PMCID: PMC9696604 DOI: 10.3390/polym14224942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Herein, we present a method for fabricating hollow TiO2 microfibers from Ti (OBu)4/poly (vinyl pyrrolidone) sol-gel precursors and their effects on denitrification as a photocatalyst for air purification. Various sizes of hollow TiO2 fibers were developed using coaxial electrospinning by controlling the core flow rate from 0 to 3 mL h-1. At higher flow rates, the wall layer was thinner, and outer and core diameters were larger. These features are correlated with physical properties, including specific surface area, average pore diameter, and crystalline structure. The increase in the core flow rate from 0 to 3 mL h-1 leads to a corresponding increase in the specific surface area from 1.81 to 3.95 µm and a decrease in the average pore diameter from 28.9 to 11.1 nm. Furthermore, the increased core flow rate results in a high anatase and rutile phase content in the structure. Herein, hollow TiO2 was produced with an approximately equal content of anatase/rutile phases with few impurities. A flow rate of 3 mL h-1 resulted in the highest specific surface area of 51.28 m2 g-1 and smallest pore diameter size of ~11 nm, offering more active sites at the fiber surface for nitrogen oxide removal of up to 66.2% from the atmosphere.
Collapse
|
7
|
One-step sintering for anti-fouling piezoelectric α-quartz and thin layer of alumina membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Gan N, Lin Y, Zhang Y, Gitis V, Lin Q, Matsuyama H. Surface Mineralization of the TiO 2-SiO 2/PES Composite Membrane with Outstanding Separation Property via Facile Vapor-Ventilated In Situ Chemical Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12951-12960. [PMID: 36242562 DOI: 10.1021/acs.langmuir.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional polymeric membranes are broadly employed in water treatment processes; however, most of them suffer from relatively low water permeance and severe membrane fouling phenomena owing to their relatively hydrophobic nature. In this work, a novel class of inorganic-organic composite membranes was developed through a newly developed vapor-ventilated in situ chemical deposition method, where the Ti and Si precursors were first hydrolyzed and then conferred into metal oxides to form a continuous TiO2-SiO2 modification layer. Owing to the distinct physicochemical properties, the Ti and Si precursors were leveraged as quasi-molecular regulators to tune the membrane surface chemistry and pore aperture (within the nanoscale) to benefit highly efficient water purification by underpinning the rapid transport of water molecules and featuring an excellent fouling-resistant and fouling-releasing property against typical pollutants. The as-developed TiO2-SiO2/PES composite membrane showed a high water permeance of 187.4 L·m-2·h-1·bar-1, together with a relatively small mean pore aperture of 4.2 nm, showing an outstanding permeating efficiency among state-of-the-art membranes with a similar separation accuracy. This study provides a paradigm shift in membrane materials that could open avenues for developing high-performance inorganic-organic composite membranes for complex wastewater treatment.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, Guizhou, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yiren Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Vitaly Gitis
- Unit of Environmental Engineering, The Faculty of Engineering Science, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva84105, Israel
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, Guizhou, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
9
|
Thermally rearranged nanofibrous composite membranes for carbon dioxide absorption and stripping. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Zou D, Kim HW, Jeon SM, Lee YM. Robust PVDF/PSF hollow-fiber membranes modified with inorganic TiO2 particles for enhanced oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Zou D, Kim HW, Jeon SM, Lee YM. Fabrication and modification of PVDF/PSF hollow-fiber membranes for ginseng extract and saline water separations via direct contact membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Mao H, Fan W, Cao H, Chen X, Qiu M, Verweij H, Fan Y. Self-cleaning performance of in-situ ultrasound generated by quartz-based piezoelectric membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Lin Z, Liu Y, Zhang Z, Yao J. Preparation and Characterization of OH/SiO2-TiO2/PES Composite Hollow Fiber Membrane Using Gas-liquid Membrane Contactor for CO2/CH4 Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Dong G, Zhang Y, Sato T, Nagasawa H, Kanezashi M, Tsuru T. Reverse osmosis and pervaporation of organic liquids using organosilica membranes: Performance analysis and predictions. AIChE J 2022. [DOI: 10.1002/aic.17585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guanying Dong
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Yatao Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Takaaki Sato
- Department of Chemical Engineering Hiroshima University Hiroshima Japan
| | - Hiroki Nagasawa
- Department of Chemical Engineering Hiroshima University Hiroshima Japan
| | | | - Toshinori Tsuru
- Department of Chemical Engineering Hiroshima University Hiroshima Japan
| |
Collapse
|
16
|
In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Sobola D, Kaspar P, Částková K, Dallaev R, Papež N, Sedlák P, Trčka T, Orudzhev F, Kaštyl J, Weiser A, Knápek A, Holcman V. PVDF Fibers Modification by Nitrate Salts Doping. Polymers (Basel) 2021; 13:polym13152439. [PMID: 34372042 PMCID: PMC8347579 DOI: 10.3390/polym13152439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
The method of inclusion of various additives into a polymer depends highly on the material in question and the desired effect. In the case of this paper, nitride salts were introduced into polyvinylidene fluoride fibers prepared by electrospinning. The resulting changes in the structural, chemical and electrical properties of the samples were observed and compared using SEM-EDX, DSC, XPS, FTIR, Raman spectroscopy and electrical measurements. The observed results displayed a grouping of parameters by electronegativity and possibly the molecular mass of the additive salts. We virtually demonstrated elimination of the presence of the γ-phase by addition of Mg(NO3)2, Ca(NO3)2, and Zn(NO3)2 salts. The trend of electrical properties to follow the electronegativity of the nitrate salt cation is demonstrated. The performed measurements of nitrate salt inclusions into PVDF offer a new insight into effects of previously unstudied structures of PVDF composites, opening new potential possibilities of crystalline phase control of the composite and use in further research and component design.
Collapse
Affiliation(s)
- Dinara Sobola
- Academy of Sciences ČR, Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Republic; (D.S.); (A.W.)
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia;
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
| | - Klára Částková
- Central European Institute of Technology BUT, Purkyňova 123, 612 00 Brno, Czech Republic; (K.Č.); (J.K.)
- Department of Ceramics and Polymers, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
| | - Nikola Papež
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
| | - Petr Sedlák
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
- Central European Institute of Technology BUT, Purkyňova 123, 612 00 Brno, Czech Republic; (K.Č.); (J.K.)
| | - Tomáš Trčka
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
- Correspondence: ; Tel.: +420-54114-6011
| | - Farid Orudzhev
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia;
| | - Jaroslav Kaštyl
- Central European Institute of Technology BUT, Purkyňova 123, 612 00 Brno, Czech Republic; (K.Č.); (J.K.)
| | - Adam Weiser
- Academy of Sciences ČR, Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Republic; (D.S.); (A.W.)
| | - Alexandr Knápek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic;
| | - Vladimír Holcman
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (P.K.); (R.D.); (N.P.); (P.S.); (V.H.)
| |
Collapse
|
18
|
Fabrication of hydrophobic ZIFs based composite membrane with high CO2 absorption performance. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0762-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|
20
|
Zhao J, Chong JY, Shi L, Wang R. PTFE-assisted immobilization of Pluronic F127 in PVDF hollow fiber membranes with enhanced hydrophilicity through nonsolvent-thermally induced phase separation method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Xin Q, Li X, Hou H, Liang Q, Guo J, Wang S, Zhang L, Lin L, Ye H, Zhang Y. Superhydrophobic Surface-Constructed Membrane Contactor with Hierarchical Lotus-Leaf-Like Interfaces for Efficient SO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1827-1837. [PMID: 33379865 DOI: 10.1021/acsami.0c17534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An organic-inorganic polyvinylidene fluoride/polyvinylidene fluoride-silica (PVDF/PVDF-SiO2) mixed matrix membrane contactor is fabricated via a facile and efficient hydrophobic modification method. The solubility parameters of the PVDF particle are precisely regulated, the PVDF particles are blended with SiO2 nanoparticles to form PVDF-SiO2 suspension, and then the suspension is introduced onto the surface of the PVDF substrate by an in situ spin coating strategy. The PVDF particles are partly etched and incorporated to construct the adhesive PVDF-SiO2 core-shell layer on the PVDF substrate, which results in a more stable PVDF-SiO2 coating layer on the substrate. The surface structure is precisely regulated by changing the etching morphology of PVDF particles and amount of doped PVDF and SiO2 particles, forming an integrated porous PVDF-SiO2 layer and constructing hierarchical lotus-leaf-like interfaces. The resultant PVDF/PVDF-SiO2 membrane contactors display the relatively regular distribution of pore size with ∼420 nm and excellent hydrophobic property with a water contact angle of ∼158°, which noticeably lightens wetting phenomena of membrane contactors. The SO2 absorption fluxes can reach as high as 1.26 × 10-3 mol·m-2·s-1 using 0.625 M of ethanolamine (EA) as liquid absorbent. The high stability of the SO2 absorption flux test indicates the excellent interface compatibility between the PVDF-SiO2 coating layer and the PVDF substrate. The versatile organic-inorganic layer exhibits super hydrophobic property, which prevents wetting of membrane pores. In addition, the membrane mass transfer resistance (H/Km) and membrane phase transfer coefficient (Km) are explored.
Collapse
Affiliation(s)
- Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hailong Hou
- CNOOC Gas and Power Group/R & D Center, Chaoyang District Taiyanggong South Street No. 6, Beijing 100028, China
| | - Qingqing Liang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianping Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
22
|
Li L, Ma G, Pan Z, Zhang N, Zhang Z. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. MEMBRANES 2020; 10:E380. [PMID: 33260435 PMCID: PMC7760880 DOI: 10.3390/membranes10120380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
In recent years, gas-liquid membrane contactors have attracted increasing attention. A membrane contactor is a device that realizes gas-liquid or liquid-liquid mass transfer without being dispersed in another phase. The membrane gas absorption method combines the advantages of chemical absorption and membrane separation, in addition to exhibiting high selectivity, modularity, and compactness. This paper introduces the operating principle and wetting mechanism of hollow membrane contactors, shows the latest research progress of membrane contactors in gas separation, especially for the removal of carbon dioxide from gas mixtures by membrane contactors, and summarizes the main aspects of membrane materials, absorbents, and membrane contactor structures. Furthermore, recommendations are provided for the existing deficiencies or unsolved problems (such as membrane wetting), and the status and progress of membrane contactors are discussed.
Collapse
Affiliation(s)
- Linlin Li
- College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China; (L.L.); (G.M.); (Z.P.)
| | - Guiyang Ma
- College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China; (L.L.); (G.M.); (Z.P.)
| | - Zhen Pan
- College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China; (L.L.); (G.M.); (Z.P.)
| | - Na Zhang
- Shandong Gas Marketing Branch, Sinopec Gas Company, Jinan 250000, China;
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Rosli A, Ahmad AL, Low SC. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Xu P, Huang Y, Kong X, Gong D, Fu K, Chen X, Qiu M, Fan Y. Hydrophilic membrane contactor for improving selective removal of SO2 by NaOH solution. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Lin Y, Salem MS, Zhang L, Shen Q, El-shazly AH, Nady N, Matsuyama H. Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118141] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Preparation and Characterization of Polyphenylsulfone (PPSU) Membranes for Biogas Upgrading. MATERIALS 2020; 13:ma13122847. [PMID: 32630434 PMCID: PMC7345145 DOI: 10.3390/ma13122847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022]
Abstract
Asymmetric polyphenylsulfone (PPSU) membranes were fabricated by a non-solvent induced phase inversion method. Glycerin and silica nanoparticles were added into the polymer solution to investigate their effects on the material properties and gas separation performance of prepared membranes. The morphology and structure of PPSU membranes were analyzed by scanning electron microscopy (SEM), the surface roughness of the selective layer was analyzed by atomic force microscopy (AFM), and the surface free energy was calculated based on the contact angle measurements by using various solvents. The gas separation performance of PPSU membranes was estimated by measuring the permeability of CO2 and CH4. The addition of glycerin as a nonsolvent into the polymer solution changed the cross-section structure from finger-like structure into sponge-like structure due to the delayed liquid-liquid demixing process, which was confirmed by SEM analysis. The incorporation of silica nanoparticles into PPSU membranes slightly increased the hydrophilicity, which was confirmed by water contact angle results. PPSU membrane fabricated from the polymer solution containing 10 wt.% glycerin showed the best CO2/CH4 selectivity of 3.86 and the CO2 permeability of 1044.01 Barrer. Mixed matrix PPSU membrane containing 0.1 wt.% silica nanoparticles showed the CO2/CH4 selectivity of 3.16 and the CO2 permeability of 1202.77 Barrer.
Collapse
|
27
|
Gu Q, Ng TCA, Zhang L, Lyu Z, Zhang Z, Ng HY, Wang J. Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Free-Standing PVDF/Reduced Graphene Oxide Film for All-Solid-State Flexible Supercapacitors towards Self-Powered Systems. MICROMACHINES 2020; 11:mi11020198. [PMID: 32075070 PMCID: PMC7074646 DOI: 10.3390/mi11020198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022]
Abstract
The development of polymer-based devices has attracted much attention due to their miniaturization, flexibility, lightweight and sustainable power sources with high efficiency in the field of wearable/portable electronics, and energy system. In this work, we proposed a polyvinylidene fluoride (PVDF)-based composite matrix for both energy harvesting and energy storage applications. The physicochemical characterizations, such as X-ray diffraction, laser Raman, and field-emission scanning electron microscopy (FE-SEM) analyses, were performed for the electrospun PVDF/sodium niobate and PVDF/reduced graphene oxide composite film. The electrospun PVDF/sodium niobate nanofibrous mat has been utilized for the energy harvester which shows an open circuit voltage of 40 V (peak to peak) at an applied compressive force of 40 N. The PVDF/reduced graphene oxide composite film acts as the electrode for the symmetric supercapacitor (SSC) device fabrication and investigated for their supercapacitive properties. Finally, the self-charging system has been assembled using PVDF/sodium niobate (energy harvester), and PVDF/reduced graphene oxide SSC (energy storage) and the self-charging capability is investigated. The proposed self-charging system can create a pathway for the all-polymer based composite high-performance self-charging system.
Collapse
|
29
|
Pang H, Chen Z, Gong H, Du M. Fabrication of a super hydrophobic polyvinylidene fluoride–hexadecyltrimethoxysilane hybrid membrane for carbon dioxide absorption in a membrane contactor. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117536] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Xu Y, Goh K, Wang R, Bae TH. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115791] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Babin A, Bougie F, Rodrigue D, Iliuta MC. A closer look on the development and commercialization of membrane contactors for mass transfer and separation processes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Goh P, Naim R, Rahbari-Sisakht M, Ismail A. Modification of membrane hydrophobicity in membrane contactors for environmental remediation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Xu Y, Li X, Lin Y, Malde C, Wang R. Synthesis of ZIF-8 based composite hollow fiber membrane with a dense skin layer for facilitated biogas upgrading in gas-liquid membrane contactor. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Malakhov A, Bazhenov S, Vasilevsky V, Borisov I, Ovcharova A, Bildyukevich A, Volkov V, Giorno L, Volkov A. Thin-film composite hollow fiber membranes for ethylene/ethane separation in gas-liquid membrane contactor. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Xu Y, Lin Y, Chew NGP, Malde C, Wang R. Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
|