1
|
Qin Q, Yang G, Li J, Sun M, Jia H, Wang J. A review of flow field characteristics in submerged hollow fiber membrane bioreactor: Micro-interface, module and reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121525. [PMID: 38897085 DOI: 10.1016/j.jenvman.2024.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.
Collapse
Affiliation(s)
- Qingwen Qin
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guang Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Juan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China
| | - Min Sun
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
2
|
Zhao Y, Yang F, Jiang H, Gao G. Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling. Nat Commun 2024; 15:4845. [PMID: 38844530 PMCID: PMC11156986 DOI: 10.1038/s41467-024-49266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Piezoceramic membranes have emerged as a prominent solution for membrane fouling control. However, the prevalent use of toxic lead and limitations of vibration-based anti-fouling mechanism impede their wider adoption in water treatment. This study introduces a Mn/BaTiO3 piezoceramic membrane, demonstrating a promising in-situ anti-fouling efficacy and mechanism insights. When applied to an Alternating Current at a resonant frequency of 20 V, 265 kHz, the membrane achieves optimal vibration, effectively mitigating various foulants such as high-concentration oil (2500 ppm, including real industrial oil wastewater), bacteria and different charged inorganic colloidal particles, showing advantages over other reported piezoceramic membranes. Importantly, our findings suggest that the built-in ultrasonic vibration of piezoceramic membranes can generate reactive oxygen species. This offers profound insights into the distinct anti-fouling processes for organic and inorganic wastewater, supplementing and unifying the traditional singular vibrational anti-fouling mechanism of piezoceramic membranes, and potentially propelling the development of piezoelectric catalytic membranes.
Collapse
Affiliation(s)
- Yang Zhao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Feng Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Han Jiang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Nasir MS, Tahir I, Ali A, Ayub I, Nasir A, Abbas N, Sajjad U, Hamid K. Innovative technologies for removal of micro plastic: A review of recent advances. Heliyon 2024; 10:e25883. [PMID: 38380043 PMCID: PMC10877293 DOI: 10.1016/j.heliyon.2024.e25883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Plastics are becoming a pervasive pollutant in every environmental matrix, particularly in the aquatic environment. Due to increased plastic usage and its impact on human and aquatic life, microplastic (MP) pollution has been studied extensively as a global issue. The production of MP has been linked to both consumer and commercial practices. There is a significant amount of MP's that must be removed by wastewater treatment plants before they can be bioaccumulated. Many researchers have recently become interested in the possibility of eliminating MPs in wastewater treatment plants (WWTP). Many studies have analyzed MP's environmental effects, including its emission sources, distribution, and impact on the surrounding environment. The effectiveness of their removal by various wastewater treatment technologies requires a critical review that accounts for all these methods. In this review, we have covered the most useful technologies for the removal of MP during WWTP. The findings of this review should help scientists and policymakers move forward with studies, prototypes, and proposals for significant remediation impact on water quality.
Collapse
Affiliation(s)
- Muhammad Salman Nasir
- Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ifrah Tahir
- Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ahsan Ali
- Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Iqra Ayub
- Department of Energy Systems Engineering, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Abdul Nasir
- Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Khalid Hamid
- Process and Power Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, Chae KJ, Abdelkareem MA. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162569. [PMID: 36871724 DOI: 10.1016/j.scitotenv.2023.162569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
5
|
Zhang J, Yu S, Wang J, Zhao ZP, Cai W. Advanced water treatment process by simultaneous coupling granular activated carbon (GAC) and powdered carbon with ultrafiltration: Role of GAC particle shape and powdered carbon type. WATER RESEARCH 2023; 231:119606. [PMID: 36680821 DOI: 10.1016/j.watres.2023.119606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In current ultrafiltration systems, limited removal for small-sized contaminants and membrane fouling remain longstanding obstacles to overcome. Herein, a novel process by simultaneous coupling powered carbon (PC) and fluidized granular activated carbon (GAC) with ultrafiltration was proposed aiming to achieve high effluent quality and mitigated membrane fouling. This study conducted mechanistic explorations on the performances of different-shaped GAC particles on fouling control and PC release during fluidization, meanwhile comparing the utilizations of powdered activated carbon (PAC) and biochar in terms of their adsorption, deposition and interactions with aquatic contaminants during filtration. The results showed that the effluent COD of biochar-UF was slightly higher than PAC-UF attributed to lower specific surface area and pore volume present on biochar. Compared with PAC-UF, the biochar-UF without fluidized GAC exhibited higher fouling propensity due to more organics attached on membranes via bridging with Ca2+ released by the biochar. Concurrently, distinct morphologies were found for PAC and biochar depositions, where PAC uniformly dispersed on membranes but biochar tended to agglomerate. Interestingly, fluidized spherical GAC (RGAC) with highest particle momentum and least energy consumption appeared highly effective in reducing fouling associated with biochar, and the overall fouling rate of RGAC-biochar-UF was even lower than RGAC-PAC-UF system. More importantly, substantial amount of small-sized PC was released by two cylindrical-shaped GACs, which were determined to be around 12-16 mg/L in contrast to merely 3.4 mg/L produced from RGAC. Consequently, the RGAC-biochar-UF system achieved commensurate effluent quality but better permeability than RGAC-PAC-UF along with a 20% expenditure saved, which might be a promising water treatment system more suitable for large-scale applications.
Collapse
Affiliation(s)
- Jingyu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Sijia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
6
|
Effect of microplastic aging degree on filter cake formation and membrane fouling characteristics in ultrafiltration process with pre-coagulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Singh N, Vladisavljević GT, Nadal F, Cottin-Bizonne C, Pirat C, Bolognesi G. Enhanced Accumulation of Colloidal Particles in Microgrooved Channels via Diffusiophoresis and Steady-State Electrolyte Flows. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14053-14062. [PMID: 36350104 PMCID: PMC9686125 DOI: 10.1021/acs.langmuir.2c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The delivery of colloidal particles in dead-end microstructures is very challenging, since these geometries do not allow net flows of particle-laden fluids; meanwhile, diffusive transport is slow and inefficient. Recently, we introduced a novel particle manipulation strategy, based on diffusiophoresis, whereby the salt concentration gradient between parallel electrolyte streams in a microgrooved channel induces the rapid (i.e., within minutes) and reversible accumulation, retention, and removal of colloidal particles in the microgrooves. In this study, we investigated the effects of salt contrast and groove depth on the accumulation process in silicon microgrooves and determined the experimental conditions that lead to a particle concentration peak of more than four times the concentration in the channel bulk. Also, we achieved an average particle concentration in the grooves of more than twice the concentration in the flowing streams and almost 2 orders of magnitude larger than the average concentration in the grooves in the absence of a salt concentration gradient. Analytical sufficient and necessary conditions for particle accumulation are also derived. Finally, we successfully tested the accumulation process in polydimethylsiloxane microgrooved channels, as they are less expensive to fabricate than silicon microgrooved substrates. The controlled and enhanced accumulation of colloidal particles in dead-end structures by solute concentration gradients has potential applications in soft matter and living systems, such as drug delivery, synthetic biology, and on-chip diagnostics.
Collapse
Affiliation(s)
- Naval Singh
- Department
of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| | - Goran T. Vladisavljević
- Department
of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| | - François Nadal
- Wolfson
School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| | - Cécile Cottin-Bizonne
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon 1—CNRS, Université de Lyon, Villeurbanne Cedex69622, France
| | - Christophe Pirat
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon 1—CNRS, Université de Lyon, Villeurbanne Cedex69622, France
| | - Guido Bolognesi
- Department
of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, United Kingdom
| |
Collapse
|
8
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
9
|
Dynamic scouring of multifunctional granular material enhances filtration performance in membrane bioreactor: Mechanism and modeling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Dev MJ, Warke RG, Warke GM, Mahajan GB, Patil TA, Singhal RS. Advances in fermentative production, purification, characterization and applications of gellan gum. BIORESOURCE TECHNOLOGY 2022; 359:127498. [PMID: 35724911 DOI: 10.1016/j.biortech.2022.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rahul G Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Gangadhar M Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Girish B Mahajan
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Tanuja A Patil
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
11
|
Liu YJ. Mitigation of membrane fouling of alginate with combined actions of aeration and powdered activated carbon: Fouling behaviors and mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10748. [PMID: 35703107 DOI: 10.1002/wer.10748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
A laboratory-scale flat-sheet ceramic microfiltration membrane system was developed to investigate the membrane fouling behaviors and mechanisms of sodium alginate (SA) in the presence of aeration and powdered activated carbon (PAC). When the SA concentration increased from 20 to 500 mg/L, the permeate flux decreased by 81.7%, and the transmembrane pressure (TMP) and resistance increased 1.7 and 24.5 times, respectively. At an SA concentration of 500 mg/L, it was found that the membrane fouling tended to decrease with the increase in the aeration rate, indicating high control of the fouling by air scouring, while PAC-aeration scouring produced a significant improvement in the permeate flux with substantially reduced fouling. In the microfiltration of 500 mg/L SA at an air flow rate of 2.2 L/min and PAC concentrations of 40, 100, and 250 mg/L, the flux increased by 179.3%, 238.0%, and 302.7%, the TMP decreased by 32.6%, 34.8%, and 45.7%, and the cake and pore blocking resistance decreased by 78.0%, 85.1%, and 87.9%, respectively, compared to the corresponding values without PAC-aeration scouring. Intermediate blocking and complete blocking models were confirmed to elucidate the effect of aeration scouring and PAC-aeration scouring on the mitigation of membrane fouling by SA. PRACTITIONER POINTS: Air scouring was effective at mitigating membrane fouling of sodium alginate. The addition of PAC could alleviate membrane fouling of SA. Synergistic scouring by aeration and PAC offers a promising means for more-efficient and cost-effective control of membrane fouling. The fouling mechanisms in various scenarios were elucidated.
Collapse
Affiliation(s)
- Ya-Juan Liu
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong City, P.R. China
| |
Collapse
|
12
|
Hui Y, Feng X, Wang H, Mao ZS, Yang C. Effects on the Performance of Filtration in a Constant-Pressure Stirred Membrane Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Hui
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoliang Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zai-Sha Mao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. WATER 2022. [DOI: 10.3390/w14091384] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial-intelligence methods and machine-learning models have demonstrated their ability to optimize, model, and automate critical water- and wastewater-treatment applications, natural-systems monitoring and management, and water-based agriculture such as hydroponics and aquaponics. In addition to providing computer-assisted aid to complex issues surrounding water chemistry and physical/biological processes, artificial intelligence and machine-learning (AI/ML) applications are anticipated to further optimize water-based applications and decrease capital expenses. This review offers a cross-section of peer reviewed, critical water-based applications that have been coupled with AI or ML, including chlorination, adsorption, membrane filtration, water-quality-index monitoring, water-quality-parameter modeling, river-level monitoring, and aquaponics/hydroponics automation/monitoring. Although success in control, optimization, and modeling has been achieved with the AI methods, ML models, and smart technologies (including the Internet of Things (IoT), sensors, and systems based on these technologies) that are reviewed herein, key challenges and limitations were common and pervasive throughout. Poor data management, low explainability, poor model reproducibility and standardization, as well as a lack of academic transparency are all important hurdles to overcome in order to successfully implement these intelligent applications. Recommendations to aid explainability, data management, reproducibility, and model causality are offered in order to overcome these hurdles and continue the successful implementation of these powerful tools.
Collapse
|
14
|
Lou CW, Lin MC, Huang CH, Lai MF, Shiu BC, Lin JH. Preparation of Needleless Electrospinning Polyvinyl Alcohol/Water-Soluble Chitosan Nanofibrous Membranes: Antibacterial Property and Filter Efficiency. Polymers (Basel) 2022; 14:polym14051054. [PMID: 35267878 PMCID: PMC8915060 DOI: 10.3390/polym14051054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Electrospinning is an efficient method of producing nanofibers out of polymers that shows a great potential for the filtration territory. Featuring water-soluble chitosan (WS-CS), a low-pollution process and a self-made needleless machine, PVA/WS-CS nanofibrous membranes were prepared and evaluated for nanofiber diameter, bacteriostatic property, filtration efficiency, pressure drop, and quality factor. Test results indicate that the minimal fiber diameter was 216.58 ± 58.15 nm. Regardless of the WS-CS concentration, all of the PVA/WS-CS nanofibrous membranes attained a high porosity and a high water vapor transmission rate (WVTR), with a pore size of 12.06–22.48 nm. Moreover, the membranes also exhibit bacteriostatic efficacy against Staphylococcus aureus, an optimal quality factor of 0.0825 Pa−1, and a filtration efficiency as high as 97.0%, that is 72.5% higher than that of common masks.
Collapse
Affiliation(s)
- Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Meng-Chen Lin
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Chen-Hung Huang
- Department of Aerospace and Systems Engineering, Feng Chia University, Taichung City 407102, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Mei-Feng Lai
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
| | - Jia-Horng Lin
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| |
Collapse
|
15
|
Simultaneous coupling of fluidized granular activated carbon (GAC) and powdered activated carbon (PAC) with ultrafiltration process: A promising synergistic alternative for water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Cai W, Zhang J, Li Y, Chen Q, Xie W, Wang J. Characterizing membrane fouling formation during ultrafiltration of high-salinity organic wastewater. CHEMOSPHERE 2022; 287:132057. [PMID: 34474376 DOI: 10.1016/j.chemosphere.2021.132057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
High-salinity organic wastewater usually consists of diverse highly concentrated ions such as Na+, Ca2+ and Al3+ etc., which may significantly influence the fouling propensity when membrane technique is employed for contaminants removal. The current work investigated the effects of high salinity especially high-concentration Na+, Ca2+ and Al3+ on UF fouling characteristics, where 2 M Na+ and 0.5-1.0 M Ca2+ or Al3+ were applied according to the general composition of high-salinity wastewater. The results demonstrated that the presence of high-concentration Na+ alone benefited the ultrafiltration of bovine serum albumin (BSA) solution, but posed adverse effects on the ultrafiltration of humic acid (HA) solution. Further addition of Ca2+ or Al3+ on the basis of Na+ was found to aggravate the development of BSA fouling. Such differentiated behaviors were further elucidated by the comprehensive fouling characterizations in terms of foulant properties, specific resistances, filtration modelling and fouling layer observations. Correlation analysis suggested that irreversible fouling had strong relationship with Al3+ addition, while reversible fouling seemed to be primarily influenced by foulant size. Meanwhile, membrane rejection in the presence of various salts remarkably decreased, which was negatively correlated with zeta potential. Consequently, this study should shed light on the membrane fouling formation for treating high-salinity organic wastewater using membrane techniques.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wenwen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Lindamulla LMLKB, Jegatheesan V, Jinadasa KBSN, Nanayakkara KGN, Othman MZ. Integrated mathematical model to simulate the performance of a membrane bioreactor. CHEMOSPHERE 2021; 284:131319. [PMID: 34217927 DOI: 10.1016/j.chemosphere.2021.131319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactor technology includes the integration of biological wastewater treatment and physical separation by membrane filtration. When analyzing the system performance, efficiency of biological processes, physical separation and membrane fouling must be taken into consideration. Over the years, mathematical modelling of wastewater treatment has evolved and is being used extensively to optimize the performance of treatment systems. A Number of attempts have been made towards the development of mathematical models for membrane bioreactors and most of these models have not considered the effect of soluble microbial products on membrane fouling. Also the effect of periodic membrane cleaning was neglected. In this study, an integrated mathematical model was developed for the membrane bioreactor. A biological model based on activated sludge processes (extended with biopolymer kinetics) and a physical model with cake layer kinetics and membrane fouling have been combined. In order to overcome the drawbacks of previous attempts of modelling, the influence of soluble microbial products and extracellular polymeric substances are considered in the model integration. Further, the physical processes of the sludge removal and membrane cleaning which have strong influence on membrane fouling are considered in the model. "AQUASIM", a computer program for the identification and simulation of aquatic systems, was used for solving the processes. Calibrated and validated model enables the prediction of the system performance and membrane fouling under different operating conditions.
Collapse
Affiliation(s)
- L M L K B Lindamulla
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia; Department of Civil Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - V Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - K B S N Jinadasa
- Department of Civil Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - K G N Nanayakkara
- Department of Civil Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - M Z Othman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| |
Collapse
|
18
|
Cai W, Gao Z, Yu S, Lv M, Shi Y, Wang J. New insights into membrane fouling formation during ultrafiltration of organic wastewater with high salinity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119446] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Jiang L, Yu Y, Liu G. Effects of inorganic particles and their interactions with biofilms on dynamic membrane structure and long-term filtration performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146639. [PMID: 33773340 DOI: 10.1016/j.scitotenv.2021.146639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
In present study, the effects of inorganic particles and their interaction with biofilms on the filtration behavior of dynamic membrane bioreactor (DMBR) were investigated. When no inorganic particles were included in the simulated domestic wastewater, a porous biofilm DM was formed on support materials. As a result, the transmembrane pressure (TMP) did not increase (< 10 Pa) during the 97 days' experiment and the effluent turbidity was consistently lower than 1.0 NTU. When sands (1.3-69.2 μm; 50 mg/L) were the only inorganic particles contained in wastewater, the effluent turbidity became instable and ranged from 0.31 to 3.88 NTU, probably because the DM structures were disturbed by sand scouring. The natural clays (0.5-2.7 μm) in wastewater were very liable to deposit on the support materials of DMBRs to form thick and compact DMs with greater contents of biomass and EPS, especially co-existing with sands. Due to the existence of natural clays, the DM porosity decreased significantly and rapid rising in TMP occurred frequently. This study demonstrated that pure biofilms without containing inorganic particles were ideal materials for DMs, which could achieve long-term stable operation with low effluent turbidity (< 1 NTU) and low TMP (< 10 Pa), while inorganic particles with any size could deteriorate the filtration performance. Therefore, removing the inorganic particles in wastewater as many as possible prior DMBR is critically important for achieving long-term stable operation.
Collapse
Affiliation(s)
- Lugao Jiang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yang Yu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Cai W, Chen Q, Zhang J, Li Y, Xie W, Wang J. Effects of High Salinity on Alginate Fouling during Ultrafiltration of High-Salinity Organic Synthetic Wastewater. MEMBRANES 2021; 11:membranes11080590. [PMID: 34436353 PMCID: PMC8402206 DOI: 10.3390/membranes11080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Ultrafiltration is widely employed in treating high-salinity organic wastewater for the purpose of retaining particulates, microbes and macromolecules etc. In general, high-salinity wastewater contains diverse types of saline ions at fairly high concentration, which may significantly change foulant properties and subsequent fouling propensity during ultrafiltration. This study filled a knowledge gap by investigating polysaccharide fouling formation affected by various high saline environments, where 2 mol/L Na+ and 0.5–1.0 mol/L Ca2+/Al3+ were employed and the synergistic influences of Na+-Ca2+ and Na+-Al3+ were further unveiled. The results demonstrated that the synergistic influence of Na+-Ca2+ strikingly enlarged the alginate size due to the bridging effects of Ca2+ via binding with carboxyl groups in alginate chains. As compared with pure alginate, the involvement of Na+ aggravated alginate fouling formation, while the subsequent addition of Ca2+ or Al3+ on the basis of Na+ mitigated fouling development. The coexistence of Na+-Ca2+ led to alginate fouling formed mostly in a loose and reversible pattern, accompanied by significant cracks appearing on the cake layer. In contrast, the fouling layer formed by alginate-Na+-Al3+ seemed to be much denser, leading to severer irreversible fouling formation. Notably, the membrane rejection under various high salinity conditions was seriously weakened. Consequently, the current study offered in-depth insights into the development of polysaccharide-associated fouling during ultrafiltration of high-salinity organic wastewater.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Q.C.); (J.Z.); (Y.L.); (W.X.)
- Correspondence:
| | - Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Q.C.); (J.Z.); (Y.L.); (W.X.)
| | - Jingyu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Q.C.); (J.Z.); (Y.L.); (W.X.)
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Q.C.); (J.Z.); (Y.L.); (W.X.)
| | - Wenwen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Q.C.); (J.Z.); (Y.L.); (W.X.)
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
21
|
Li N, Lu X, He M, Duan X, Yan B, Chen G, Wang S. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125478. [PMID: 33652213 DOI: 10.1016/j.jhazmat.2021.125478] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Catalytic membranes can simultaneously realize physical separation and chemical oxidation in one integrated system, which is the frontier technology for effective removal of organic containments in wastewater treatment. The catalytic membrane coupled with advanced oxidation processes (AOPs) not only significantly enhances the pollutant removal efficiency but also inhibits the fouling of the membrane via self-cleaning. In this review, the preparation approaches of catalytic membranes including blending, surface coating, and bottom-up synthesis are comprehensively summarized. The different integrated catalytic membrane systems coupled with photocatalysis, Fenton oxidation, persulfate activations, ozonation and electrocatalytic oxidation are discussed in terms of mechanisms and performance. Besides, the principles, influencing factors, advantages and issues of the different catalytic membrane/oxidation systems are outlined comparatively. Finally, the future challenges, and research directions are suggested, which is conducive to the design and development of catalytic membrane-oxidation systems for practical remediation of organic containing wastewater.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Mengting He
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
22
|
Kwon D, Lam TY, Kim M, Tan GYA, Lee PH, Kim J. Combined Effect of Activated Carbon Particles and Non-Adsorptive Spherical Beads as Fluidized Media on Fouling, Organic Removal and Microbial Communities in Anaerobic Membrane Bioreactor. MEMBRANES 2021; 11:365. [PMID: 34069901 PMCID: PMC8157586 DOI: 10.3390/membranes11050365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023]
Abstract
The combined effect of acrylonitrile butadiene styrene (ABS) spherical beads and granular activated carbon (GAC) particles as fluidized media on the performance of anaerobic fluidized bed membrane bioreactor (AFMBR) was investigated. GAC particles and ABS beads were fluidized together in a single AFMBR to investigate membrane fouling and organic removal efficiency as well as energy consumption. The density difference between these two similarly sized media caused the stratified bed layer where ABS beads are fluidized above the GAC along the membrane. Membrane relaxation was effective to reduce the fouling and trans-membrane pressure (TMP) below 0.25 bar could be achieved at 6 h of hydraulic retention time (HRT). More than 90% of soluble chemical oxygen demand (SCOD) was removed after 80 d operation. Biogas consisting of 65% of methane was produced by AFMBR, suggesting that combined use of GAC and ABS beads did not have any adverse effect on methane production during the operational period. Scanning Electron Microscope (SEM) examinations showed the adherence of microbes to both media. However, 16S rRNA results revealed that fewer microbes attached to ABS beads than GAC. There were also compositional differences between the ABS and GAC microbial communities. The abundance of the syntrophs and exoelectrogens population on ABS beads was relatively low compared to that of GAC. Our result implied that syntrophic synergy and possible occurrence of direct interspecies electron transfer (DIET) might be facilitated in AFMBR by GAC, while traditional methanogenic pathways were dominant in ABS beads. The electrical energy required was 0.02 kWh/m3, and it was only about 13% of that produced by AFMBR.
Collapse
Affiliation(s)
- Daeeun Kwon
- Department of Environmental Engineering, Program in Environmental and Polymer Engineering, Inha University, Inharo 100, Michuholgu, Incheon 22212, Korea; (D.K.); (M.K.)
| | - Theo Y.C. Lam
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong; (T.Y.C.L.); (G.-Y.A.T.)
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Minseok Kim
- Department of Environmental Engineering, Program in Environmental and Polymer Engineering, Inha University, Inharo 100, Michuholgu, Incheon 22212, Korea; (D.K.); (M.K.)
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong; (T.Y.C.L.); (G.-Y.A.T.)
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program in Environmental and Polymer Engineering, Inha University, Inharo 100, Michuholgu, Incheon 22212, Korea; (D.K.); (M.K.)
| |
Collapse
|
23
|
High fidelity simulation of ultrafine PM filtration by multiscale fibrous media characterized by a combination of X-ray CT and FIB-SEM. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bulejko P, Krištof O, Svěrák T. Experimental and modeling study on fouling of hollow-fiber membranes by fine dust aerosol particles. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Lay HT, Chew JW. Critical flux of colloidal foulant in microfiltration: Effect of organic solvent. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Classical and Recent Applications of Membrane Processes in the Food Industry. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09262-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Loske L, Nakagawa K, Yoshioka T, Matsuyama H. 2D Nanocomposite Membranes: Water Purification and Fouling Mitigation. MEMBRANES 2020; 10:E295. [PMID: 33092187 PMCID: PMC7589742 DOI: 10.3390/membranes10100295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
In this study, the characteristics of different types of nanosheet membranes were reviewed in order to determine which possessed the optimum propensity for antifouling during water purification. Despite the tremendous amount of attention that nanosheets have received in recent years, their use to render membranes that are resistant to fouling has seldom been investigated. This work is the first to summarize the abilities of nanosheet membranes to alleviate the effect of organic and inorganic foulants during water treatment. In contrast to other publications, single nanosheets, or in combination with other nanomaterials, were considered to be nanostructures. Herein, a broad range of materials beyond graphene-based nanomaterials is discussed. The types of nanohybrid membranes considered in the present work include conventional mixed matrix membranes, stacked membranes, and thin-film nanocomposite membranes. These membranes combine the benefits of both inorganic and organic materials, and their respective drawbacks are addressed herein. The antifouling strategies of nanohybrid membranes were divided into passive and active categories. Nanosheets were employed in order to induce fouling resistance via increased hydrophilicity and photocatalysis. The antifouling properties that are displayed by two-dimensional (2D) nanocomposite membranes also are examined.
Collapse
Affiliation(s)
- Lara Loske
- Department of Environmental, Process & Energy Engineering, Management Center Innsbruck (MCI)—The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria;
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| |
Collapse
|
28
|
Fadel M, Wyart Y, Moulin P. An Efficient Method to Determine Membrane Molecular Weight Cut-Off Using Fluorescent Silica Nanoparticles. MEMBRANES 2020; 10:E271. [PMID: 33019688 PMCID: PMC7600232 DOI: 10.3390/membranes10100271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Membrane processes have revolutionized many industries because they are more energy and environmentally friendly than other separation techniques. This initial selection of the membrane for any application is based on its Molecular Weight Cut-Off (MWCO). However, there is a lack of a quantitative, liable, and rapid method to determine the MWCO of the membrane. In this study, a methodology to determine the MWCO, based on the retention of fluorescent silica nanoparticles (NPs), is presented. Optimized experimental conditions (Transmembrane pressure, filtration duration, suspension concentration, etc.) have been performed on different membranes MWCO. Filtrations with suspension of fluorescent NPs of different diameters 70, 100, 200 and 300 nm have been examined. The NPs sizes were selected to cover a wide range in order to study NPs diameters larger, close to, and smaller than the membrane pore size. A particle tracking analysis with a nanosight allows us to calculate the retention curves at all times. The retention rate curves were shifted over the filtration process at different times due to the fouling. The mechanism of fouling of the retained NPs explains the determined value of the MWCO. The reliability of this methodology, which presents a rapid quantitative way to determine the MWCO, is in good agreement with the value given by the manufacturer. In addition, this methodology gives access to the retention curve and makes it possible to determine the MWCO as a function of the desired retention rate.
Collapse
Affiliation(s)
| | | | - Philippe Moulin
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence CEDEX, France; (M.F.); (Y.W.)
| |
Collapse
|
29
|
Zambare RS, Dhopte KB, Nemade PR, Tang CY. Effect of oxidation degree of GO nanosheets on microstructure and performance of polysulfone-GO mixed matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Filtration Performances of Different Polysaccharides in Microfiltration Process. Processes (Basel) 2019. [DOI: 10.3390/pr7120897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Membrane technology has been widely applied for water treatment, while membrane fouling still remains a big challenge. The polysaccharides in extracellular polymeric substances (EPS) have been known as a significant type of foulant due to their high fouling propensity. However, polysaccharides have many varieties which definitely behave differently in membrane filtration. Therefore, in this study, different polysaccharides alginate sodium and xanthan gum were chosen to study their effects on membrane fouling in a wide concentration range. The results demonstrated that the filtration behaviors of alginate sodium and xanthan gum were completely different, which was due to their different molecular structures. Alginate had a small molecular weight and it was easy for alginate to penetrate membrane pores resulting in pore blocking. A series of concentrations of alginate including 5 mg/L, 10 mg/L, 20 mg/L, 30 mg/L, 40 mg/L, and 50 mg/L were examined and it was found that the permeate flux decline highly depended on the level of alginate in the feed water. While for the filtration of xanthan gum, the same concentration of xanthan gum led to more serious fouling than that observed in alginate, which might be due to its large molecule. In addition, calcium chloride was added in the solutions of both alginate and xanthan gum to examine the influence of a divalent cation on polysaccharide fouling. A “unimodal” peak can be observed in the fouling propensity caused by Ca2+ and alginate with increasing the concentration of alginate. Such a phenomenon was not found in the fouling of xanthan gum and Ca2+ led to more serious fouling for all concentrations of xanthan gum. In light of this, this study gave new insights into the fouling propensities of different polysaccharides.
Collapse
|