1
|
Santos EN, Fazekas ÁF, Fekete L, Miklós T, Gyulavári T, Gokulakrishnan SA, Arthanareeswaran G, Hodúr C, László Z, Veréb G. Enhancing membrane performance for oily wastewater treatment: comparison of PVDF composite membranes prepared by coating, blending, and grafting methods using TiO 2, BiVO 4, CNT, and PVP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64578-64595. [PMID: 39541027 PMCID: PMC11624227 DOI: 10.1007/s11356-024-35456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
This comparative study investigates the modification of polyvinylidene fluoride (PVDF) membranes with different nanoparticles (TiO2 or TiO2-based composites containing BiVO4 and/or CNT), using three distinct methods (blending, coating, and grafting) and polyvinylpyrrolidone (PVP). The objective was to enhance the photocatalytic and filtration performance for the separation of oil-in-water emulsions. Regarding the UV activity, the PVDF-TiO2/CNT/PVP-coated membrane presented the best performance. Overall, the addition of 2 wt.% CNT to the TiO2 notably enhanced the photocatalytic activity of the membranes for both UV and visible irradiations. Meanwhile, the presence of 2 wt.% BiVO4 was beneficial only for photocatalysis under visible light irradiation. Regarding the filtration of the oil-in-water emulsions, 2 wt.% CNT or BiVO4 addition resulted in the highest fluxes in the series of the PVDF-TiO2-grafted membranes. The presence of pore former PVP led to relatively high fluxes and photocatalytic activities for all series. Regarding the modification methods, coated membranes showed the highest photocatalytic efficiency and lowest fluxes. Grafted membranes showed relatively high photocatalytic efficiencies and the best filtration performances.
Collapse
Affiliation(s)
- Erika Nascimben Santos
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
- Doctoral School of Environmental Sciences, Faculty of Science and Informatics, University of Szeged, Aradi Vértanúk Sqr. 1, HU-6720, Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Laura Fekete
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Tímea Miklós
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, HU-6720, Szeged, Hungary
| | - Sivasundari Arumugam Gokulakrishnan
- Department of Chemical Engineering, National Institute of Technology, Membrane Research Laboratory, Tiruchirappalli, 620015, Tamilnadu, India
| | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering, National Institute of Technology, Membrane Research Laboratory, Tiruchirappalli, 620015, Tamilnadu, India
| | - Cecilia Hodúr
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Zsuzsanna László
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Gábor Veréb
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary.
| |
Collapse
|
2
|
Benyettou F, Jrad A, Matouk Z, Prakasam T, Hamoud HI, Clet G, Varghese S, Das G, Khair M, Sharma SK, Garai B, AbdulHalim RG, Alkaabi M, Aburabie J, Thomas S, Weston J, Pasricha R, Jagannathan R, Gándara F, El-Roz M, Trabolsi A. Tunable Wettability of a Dual-Faced Covalent Organic Framework Membrane for Enhanced Water Filtration. J Am Chem Soc 2024; 146:23537-23554. [PMID: 39110940 PMCID: PMC11345768 DOI: 10.1021/jacs.4c07559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Membrane technology plays a central role in advancing separation processes, particularly in water treatment. Covalent organic frameworks (COFs) have transformative potential in this field due to their adjustable structures and robustness. However, conventional COF membrane synthesis methods are often associated with challenges, such as time-consuming processes and limited control over surface properties. Our study demonstrates a rapid, microwave-assisted method to synthesize self-standing COF membranes within minutes. This approach allows control over the wettability of the surface and achieves superhydrophilic and near-hydrophobic properties. A thorough characterization of the membrane allows a detailed analysis of the membrane properties and the difference in wettability between its two faces. Microwave activation accelerates the self-assembly of the COF nanosheets, whereby the thickness of the membrane can be controlled by adjusting the time of the reaction. The superhydrophilic vapor side of the membrane results from -NH2 reactions with acetic acid, while the nearly hydrophobic dioxane side has terminal aldehyde groups. Leveraging the superhydrophilic face, water filtration at high water flux, complete oil removal, increased rejection with anionic dye size, and resistance to organic fouling were achieved. The TTA-DFP-COF membrane opens new avenues for research to address the urgent need for water purification, distinguished by its synthesis speed, simplicity, and superior separation capabilities.
Collapse
Affiliation(s)
- Farah Benyettou
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Asmaa Jrad
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi , United Arab Emirates
| | - Zineb Matouk
- Technology
Innovative Institute, Abu Dhabi 9639, United Arab
Emirates
| | - Thirumurugan Prakasam
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | | | - Guillaume Clet
- ENSICAEN,
UNICAEN, CNRS, LCS, Normandie Univ, Caen 14000, France
| | - Sabu Varghese
- Core
Technology Platform, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Mostafa Khair
- Core
Technology Platform, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Bikash Garai
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi , United Arab Emirates
| | - Rasha G. AbdulHalim
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Maryam Alkaabi
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi , United Arab Emirates
- Engineering Division, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Sneha Thomas
- Core
Technology Platform, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - James Weston
- Core
Technology Platform, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core
Technology Platform, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering Division, New York University
Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto
de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Mohamad El-Roz
- ENSICAEN,
UNICAEN, CNRS, LCS, Normandie Univ, Caen 14000, France
| | - Ali Trabolsi
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- NYUAD
Water Research Center, New York University
Abu Dhabi (NYUAD), 129188 Abu Dhabi , United Arab Emirates
| |
Collapse
|
3
|
Zhao J, Wang Y, Zhang Z, Zhu Z, Zeng S, Yang G, Zhang S, Pan F, Jiang Z. Biomineralization-Inspired Synthesis of Hybrid COF Nanosheets toward Efficient Desalination Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310566. [PMID: 38282104 DOI: 10.1002/smll.202310566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Synthesis of covalent organic framework nanosheets (CONs) with high aspect ratio is crucial to their assembly into advanced membranes. Nonetheless, the π-π stacking between covalent organic framework (COF) layers often leads to thick CONs. Herein, inspired by biomineralization process, a series of aspect ratio CONs >15 000 is synthesized by multifunctional polyelectrolytes which not only provide the nucleation sites for pre-assembly with COF monomer, but also suppress π-π interaction for anisotropic growth through protonation. The membrane assembled from CONs exhibited water permeance of 341 kg m-2 h-1 and salt rejection of 99.5% in desalination, outperforming ever-reported membranes. This method establishes a platform for the synthesis of crystalline nanosheets.
Collapse
Affiliation(s)
- Junyi Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuhan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiming Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ziting Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shichen Zeng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guangzhaoyao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, China
| |
Collapse
|
4
|
Xu Y, Luan X, He P, Zhu D, Mu R, Wang Y, Wei G. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308091. [PMID: 38088535 DOI: 10.1002/smll.202308091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Indexed: 05/25/2024]
Abstract
Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.
Collapse
Affiliation(s)
- Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Zhang H, Wang F, Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Adv Colloid Interface Sci 2024; 325:103097. [PMID: 38330881 DOI: 10.1016/j.cis.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of industries, the issue of pollution on Earth has become increasingly severe. This has led to the deterioration of various surfaces, rendering them ineffective for their intended purposes. Examples of such surfaces include oil rigs, seawater intakes, and more. A variety of functional surface techniques have been created to address these issues, including superwetting surfaces, antifouling coatings, nano-polymer composite materials, etc. They primarily exploit the membrane's surface properties and hydration layer to improve the antifouling property. In recent years, biomimetic superwetting surfaces with non-toxic and environmental characteristics have garnered massive attention, greatly aiding in solving the problem of pollution. In this work, a detailed presentation of antifouling superwetting materials was made, including superhydrophobic surface, superhydrophilic surface, and superhydrophilic/underwater superoleophobic surface, along with the antifouling mechanisms. Then, the applications of the superwetting antifouling materials in antifouling domain were addressed in depth.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Ratnasari A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered 2023; 14:2252234. [PMID: 37712708 PMCID: PMC10506444 DOI: 10.1080/21655979.2023.2252234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by β and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.
Collapse
Affiliation(s)
- Anisa Ratnasari
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| |
Collapse
|
7
|
Kim HJ, Jung YJ, Son SH, Choi WS. Compressible Separator and Catalyst for Simultaneous Separation and Purification of Emulsions and Aqueous Pollutants. ACS OMEGA 2023; 8:40741-40753. [PMID: 37929114 PMCID: PMC10620873 DOI: 10.1021/acsomega.3c05776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Oily wastewater, a global environmental concern, demands efficient oil/water separation and pollutant removal. Our compressible separator and catalyst (CSC) balls, prepared through sponge etching and metal nanoparticle synthesis, exhibited efficient degradation of dyes of varying sizes, spanning a molecular weight range from 139 to 696 g/mol during the oil/water separation. Control over the distance between catalysts was achieved by incorporating Ag-Pt-Pd catalysts into the sponge skeleton and by adjusting the compression rates. The dispersion of the catalysts improved degradation efficiency for larger dyes, while concentrating the catalysts proved to be more effective for the smaller ones. By optimizing the compression rates of CSC balls, we successfully achieved the effective removal of emulsions of different sizes and precise control of flux. Our CSC ball-loaded system offers efficient and versatile solutions for concurrent separation and purification of emulsions and pollutants with potential environmental benefits.
Collapse
Affiliation(s)
- Hee Ju Kim
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Young Ju Jung
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Su Hyeon Son
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Won San Choi
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| |
Collapse
|
8
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Gayatri R, Fizal ANS, Yuliwati E, Hossain MS, Jaafar J, Zulkifli M, Taweepreda W, Ahmad Yahaya AN. Preparation and Characterization of PVDF-TiO 2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1023. [PMID: 36985917 PMCID: PMC10057082 DOI: 10.3390/nano13061023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO2) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane's efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane's hydrophilicity was raised with the addition of TiO2, showing an increased contact angle to 71°. The results show that the PVDF-PVP-TiO2 membrane achieved its optimum water flux of 97 L/(m2h) while the PVDF-PEG-TiO2 membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity.
Collapse
Affiliation(s)
- Rianyza Gayatri
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand;
| | - Ahmad Noor Syimir Fizal
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| | - Erna Yuliwati
- Program Study of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Palembang, Jalan A. Yani 13 Ulu Kota, Palembang 30263, Indonesia;
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Faculty of Science and Information Technology, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Muzafar Zulkifli
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| | - Wirach Taweepreda
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand;
| | - Ahmad Naim Ahmad Yahaya
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| |
Collapse
|
10
|
Tang S, Sun S, Liu T, Li M, Jiang Y, Wang D, Guo N, Guo Z, Chang X. Bionic engineering-induced formation of hierarchical structured minerals with superwetting surfaces for oil-water separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Xia C, Ye H, Wu Y, Garalleh HA, Garaleh M, Sharma A, Pugazhendhi A. Nanofibrous/biopolymeric membrane a sustainable approach to remove organic micropollutants: A review. CHEMOSPHERE 2023; 314:137663. [PMID: 36581125 DOI: 10.1016/j.chemosphere.2022.137663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Aquifers are severely polluted with organic and inorganic pollutants, posing a serious threat to the global ecological system's balance. While various traditional methods are available, the development of innovative methods for effluent treatment and reuse is critical. Polymers have recently been widely used in a variety of industry sectors due to their unique properties. Biopolymers are a biodegradable material that is also a viable alternative to synthetic polymers. Biopolymers are preferably obtained from cellulose and carrageenan molecules from various biological sources. While compared with conventional non-biodegradable polymeric materials, the biopolymer possesses unique characteristics such as renewability, cost-effectiveness, biodegradability, and biocompatibility. The improvements towards the biopolymeric (natural) membranes have also been thoroughly discussed. The use of nanofillers to stabilise and improve the effectiveness of biopolymeric membranes in the elimination of organic pollutants is one of the most recent developments. This was discovered that the majority of biopolymeric membranes technology consolidated on organic pollutants. More research should be directed toward against emerging organic/persistent organic pollutants (POP) and micropollutants. Furthermore, processes for regenerating and reusing utilized biopolymer-based carbon - based materials are emphasized.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haoran Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, 76130, Mexico
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
12
|
Hu J, Yuan S, Zhao W, Li C, Liu P, Shen X. Fabrication of a Superhydrophilic/Underwater Superoleophobic PVDF Membrane via Thiol–Ene Photochemistry for the Oil/Water Separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Wang L, Niu J, Gao S, Liu Z, Wu S, Huang M, Li H, Zhu M, Yuan R. Breakthrough in controlling membrane fouling and complete demulsification via electro-fenton pathway: Principle and mechanisms. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Li Y, Yang X, Wen Y, Zhao Y, Yan L, Han G, Shao L. Progress reports of mineralized membranes: Engineering strategies and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Tang S, Yang J, Wu B, Zhang J, Li J, He B, Wang H, Cui Z. Fabrication of hollow fiber nanofiltration membrane with high permselectivity based on “Co-deposition, biomineralization and dual cross-linking” process. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Liu H, Xiong H, Chang Y, Xu J, Xu C, Liu Y. Fabrication of Superhydrophobic Coating Based on Waterborne Silicone-Modified Polyurethane Dispersion and Silica Nanoparticles. Polymers (Basel) 2022; 15:polym15010022. [PMID: 36616372 PMCID: PMC9824546 DOI: 10.3390/polym15010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, eco-friendly superhydrophobic coatings were prepared by dispersing hydrophobic silica nanoparticles and a waterborne silicone-modified polyurethane dispersion into an ethanol solution, which was free of fluorine and volatile toxic solvents. The effects of the silica content on the hydrophobicity and scratch resistance of the hydrophobic surfaces were investigated by WCA measurements and a sandpaper abrasion test, respectively. The experimental results indicated that when the silica content exceeded 30% by mass, the silica/silicone-modified polyurethane coatings had superhydrophobicity. Meanwhile, the superhydrophobic coatings with a silica content of 30% by mass simultaneously had the optimal mechanical stability. We studied the morphology and roughness of the hydrophobic surfaces with different silica content and attempted to briefly explain the influence mechanism of silica content. Furthermore, anti-icing and oil-water separation experiments were carried out on the superhydrophobic coatings, which exhibited good anti-icing performance and high separation efficiency. The eco-friendly superhydrophobic coating is expected to be applied in the fields of oil-water separation, anti-icing, and self-cleaning, etc.
Collapse
Affiliation(s)
- Haidong Liu
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hengsen Xiong
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongming Chang
- Chengdu Kaimite Co., Ltd., No. 39 Jiancai Road, Chengdu 610051, China
| | - Jianhui Xu
- Chengdu Kaimite Co., Ltd., No. 39 Jiancai Road, Chengdu 610051, China
- Chongqing Zhixiang Paving Technology Engineering Co., Ltd., China Merchants Chongqing Communications Technology Research and Design Institute, Chongqing 401336, China
- Correspondence: (J.X.); (C.X.)
| | - Chuanlai Xu
- Sichuan Jiuzhou Electric Group Co., Ltd., No. 6 Jiuhua Road, Mianyang 621000, China
- Sichuan Avionics System Product Lightweight Design and Manufacturing Engineering Laboratory, Mianyang 621000, China
- Correspondence: (J.X.); (C.X.)
| | - Yaolu Liu
- Department of Engineering Mechanics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Zheng H, Zhu M, Wang D, Zhou Y, Sun X, Jiang S, Li M, Xiao C, Zhang D, Zhang L. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Zhang N, Cheng K, Zhang J, Li N, Yang X, Wang Z. A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Zhang R, Xu Y, Shen L, Li R, Lin H. Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120541] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Shi Y, Zheng Q, Ding L, Yang F, Jin W, Tang CY, Dong Y. Electro-Enhanced Separation of Microsized Oil-in-Water Emulsions via Metallic Membranes: Performance and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4518-4530. [PMID: 35258928 DOI: 10.1021/acs.est.2c00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventional separation membranes suffer from evitable fouling and flux decrease for water treatment applications. Herein, a novel protocol of electro-enhanced membrane separation is proposed for the efficient treatment of microsized emulsions (∼1 μm) by rationally designing robust electroresponsive copper metallic membranes, which could mitigate oil fouling and coenhance permeance (from ∼1026 to ∼2516 L·m-2·h-1·bar-1) and rejection (from ∼87 to ∼98%). High-flux Cu membranes exhibit superior ductility and electrical conductivity, enabling promising electroactivity. Separation performance and the fouling mechanism were studied under different electrical potentials and ionic strengths. Application of negative polarization into a large-pore (∼2.1 μm) Cu membrane is favorable to not only almost completely reject smaller-sized oil droplets (∼1 μm) but also achieve antifouling and anticorrosion functions. Moreover, surfactants around oil droplets might be redistributed due to electrostatic repulsion, which effectively enhances the steric hindrance effect between neighboring oil droplets, mitigating oil coalescence and consequently membrane fouling. Furthermore, due to the screening effect of surfactants, the presence of low-concentration salts increases the adsorption of surfactants at the oil-water interface, thus preventing oil coalescence via decreasing oil-water interfacial tension. However, under high ionic strengths, the fouling mechanism converts from cake filtration to a complete blocking model due to the reduced electrostatic repulsion between the Cu membrane and oil droplets. This work would provide mechanistic insights into electro-enhanced antifouling for not only oil emulsion separation but also more water treatment applications using rationally designed novel electroresponsive membranes.
Collapse
Affiliation(s)
- Yongxuan Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qifeng Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liujie Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenbiao Jin
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Preparation of Nano-TiO 2-Modified PVDF Membranes with Enhanced Antifouling Behaviors via Phase Inversion: Implications of Nanoparticle Dispersion Status in Casting Solutions. MEMBRANES 2022; 12:membranes12040386. [PMID: 35448357 PMCID: PMC9025110 DOI: 10.3390/membranes12040386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles have been applied in membrane antifouling performance modification for years. However, the influence of TiO2 nanoparticle dispersion status during the blending process on membrane properties and the inner mechanism has seldom been focused on. Herein, we investigated the influence of the various dispersing statuses of TiO2 nanoparticles on membrane properties and antifouling performance by exploring various blending processes without changing the original recipe. Polyethylene glycol (PEG) was employed as a pore-forming agent during the membrane preparation process, and also as a pre-dispersing agent for the TiO2 nanoparticles via the steric hindrance effect. Compared to the original preparation process of the PVDF/TiO2 composite membrane, the pre-dispersing of TiO2 via PEG ensured a modified membrane with uniform surface pores and structures on cross-sectional morphologies, larger porosity and water permeability, and more negative zeta potential. The contact angle was decreased by 6.0%, implying better hydrophilicity. The improved antifouling performance was corroborated by the increasing free energy of cohesion and adhesion, the interaction energy barrier (0.43 KT) between the membrane surfaces and approaching foulants assessed by classic XDLVO theory and the low flux decline in the filtration experiment. A kinetics mechanism analysis of the casting solutions, which found a low TSI value (<1.0), substantiated that the pre-dispersion of TiO2 with PEG contributed to the high stability and ultimately favorable antifouling behaviors. This study provides an optimized approach to the preparation of excellent nano-TiO2/polymeric composite membranes applied in the municipal sewage treatment field.
Collapse
|
22
|
Baig N, Arshad Z, Ali SA. Synthesis of a biomimetic zwitterionic pentapolymer to fabricate high-performance PVDF membranes for efficient separation of oil-in-water nano-emulsions. Sci Rep 2022; 12:5028. [PMID: 35322114 PMCID: PMC8943177 DOI: 10.1038/s41598-022-09046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Oily wastewater from industries has an adverse impact on the environment, human and aquatic life. Poly(vinylidene fluoride) (PVDF) membrane modified with a zwitterionic/hydrophobic pentapolymer (PP) with controlled pore size has been utilized to separate oil from water from their nano-emulsions. The PP has been synthesized in 91% yield via pentapolymerization of four different diallylamine salts [(CH2=CHCH2)2NH+(CH2)x A-], bearing CO2-, PO3H-, SO3-, (CH2)12NH2 pendants, and SO2 in a respective mol ratio of 25:36:25:14:100. Incorporating PP into PVDF has shown a substantially reduced membrane hydrophobicity; the contact angle decreased from 92.5° to 47.4°. The PP-PVDF membranes have demonstrated an excellent capability to deal with the high concentrations of nano-emulsions with a separation efficiency of greater than 97.5%. The flux recovery ratio (FRR) of PP-5 incorporated PVDF membrane was about 82%, which was substantially higher than the pristine PVDF.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Zeeshan Arshad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
23
|
Facile and scalable surface functionalization approach with small silane molecules for oil/water separation and demulsification of surfactant/asphaltenes-stabilized emulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Dmitrieva ES, Anokhina TS, Novitsky EG, Volkov VV, Borisov IL, Volkov AV. Polymeric Membranes for Oil-Water Separation: A Review. Polymers (Basel) 2022; 14:polym14050980. [PMID: 35267801 PMCID: PMC8912433 DOI: 10.3390/polym14050980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.
Collapse
Affiliation(s)
| | - Tatyana S. Anokhina
- Correspondence: ; Tel.: +7-(495)-647-59-27 (ext. 202); Fax: +7-(495)-633-85-20
| | | | | | | | | |
Collapse
|
25
|
Baig N, Salhi B, Sajid M, Aljundi IH. Recent Progress in Microfiltration/Ultrafiltration Membranes for Separation of Oil and Water Emulsions. CHEM REC 2022; 22:e202100320. [PMID: 35189025 DOI: 10.1002/tcr.202100320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Oily wastewater has become one of the leading causes of environmental pollution. A massive quantity of oily wastewater is released from industries, oil spills, and routine activities, endangering the ecosystem's sustainability. Due to the enormous negative impact, researchers put strenuous efforts into developing a sustainable solution to treat oily wastewater. Microfiltration/ultrafiltration membranes are considered an efficient solution to treat oily wastewater due to their low cost, small footprint, facile operation, and high separation efficiencies. However, membranes severely fouled during the separation process due to oil's adsorption and cake layer formation, which shortens the membranes' life. This review has critically discussed the microfiltration/ultrafiltration membrane synthesizing methods and their emulsion's separation performance. In the end, key challenges and their possible solutions are highlighted to provide future direction to synthesize next-generation membranes.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
26
|
Qi L, Liang R, Jiang T, Qin W. Anti-fouling polymeric membrane ion-selective electrodes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Cui M, Qing Y, Yang Y, Long C, Liu C. Nanofunctionalized composite-crosslinked epoxy resin for eco-friendly and robust superhydrophobic coating against contaminants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Zhang J, Huang X, Xiong Y, Zheng W, Liu W, He M, Li L, Liu J, Lu L, Peng K. Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Mahdavi H, Amin Kerachian M, Abazari M. Synergistic effect of GO@SiO2 and GO@ZnO nano-hybrid particles with PVDF-g-PMMA copolymer in high-flux ultrafiltration membrane for oily wastewater treatment and antifouling properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Fan K, Su J, Zeng Z, Hu J, Yang H, Hou Z. Anti-fouling and protein separation of PVDF-g-PMAA@MnO 2 filtration membrane with in-situ grown MnO 2 nanorods. CHEMOSPHERE 2022; 286:131756. [PMID: 34365174 DOI: 10.1016/j.chemosphere.2021.131756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
MnO2 nanorods with controllable scale were grown in the PVDF-g-PMAA modified membrane to form PVDF-g-PMAA@ MnO2 membrane through the in situ redox reaction of KMnO4 solution, which is confirmed by scanning electron microscopy (SEM) and X-ray energy-dispersion spectroscopy (EDX). The pore size of the membrane decreased with the increase of KMnO4 solution concentration. The thermodynamic stability and the hydrophilicity of the membrane were also enhanced by the MnO2 nanorods. The water flux, bovine serum albumin (BSA)/Lysozyme protein solution flux and rejection, flux recovery, etc. showed effective improvement of the anti-fouling performance of the PVDF-g-PMAA@ MnO2 membrane. More importantly, it can effectively separate BSA from lysozyme, which provided a potential application in the field of biology, food, and other industrial fields for the requirement of separation and purification.
Collapse
Affiliation(s)
- Kai Fan
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China; Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiang Su
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China
| | - Zihang Zeng
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China; Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Haijun Yang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China; Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Zhengchi Hou
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China; Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| |
Collapse
|
31
|
Zhao X, Lan Y, Pan J, Wang R, Wang T, Liu L. Polyphenol-engineered superwetting membranes with wrinkled microspherical organizations for high-efficient oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Amphiphilic super-wetting membranes from direct immobilization of nanoparticles by in-situ polymerization and ionic cross-linking during phase inversion. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|