1
|
Zhao H, Zhang Y, Gong Y, Shen H, Zhang W, Cheng C, Li P. A simple method to prepare anion exchange membrane by PVA/EVOH/MIDA for acid recovery by diffusion dialysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2132-2148. [PMID: 38678414 DOI: 10.2166/wst.2024.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/03/2024] [Indexed: 04/30/2024]
Abstract
Given the substantial environmental pollution from industrial expansion, environmental protection has become particularly important. Nowadays, anion exchange membranes (AEMs) are widely used in wastewater treatment. With the use of polyvinyl alcohol (PVA), ethylene-vinyl alcohol (EVOH) copolymer, and methyl iminodiacetic acid (MIDA), a series of cross-linked AEMs were successfully prepared using the solvent casting technique, and the network structure was formed in the membranes due to the cross-linking reaction between PVA/EVOH and MIDA. Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to analyze the prepared membranes. At the same time, its comprehensive properties which include water uptake, linear expansion rate, ion exchange capacity, thermal stability, chemical stability, and mechanical stability were thoroughly researched. In addition, diffusion dialysis performance in practical applications was also studied in detail. The acid dialysis coefficient (UH+) ranged from 10.2 to 35.6 × 10-3 m/h. Separation factor (S) value ranged from 25 to 38, which were all larger than that of the commercial membrane DF-120 (UH+: 8.5 × 10-3 m/h, S: 18.5). The prepared membranes had potential application value in acid recovery.
Collapse
Affiliation(s)
- Hua Zhao
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Yueyue Zhang
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Yifei Gong
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Haiyang Shen
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Wenxuan Zhang
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Congliang Cheng
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China E-mail:
| | - Ping Li
- School of Materials & Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| |
Collapse
|
2
|
Ponomar M, Ruleva V, Sarapulova V, Pismenskaya N, Nikonenko V, Maryasevskaya A, Anokhin D, Ivanov D, Sharma J, Kulshrestha V, Améduri B. Structural Characterization and Physicochemical Properties of Functionally Porous Proton-Exchange Membrane Based on PVDF-SPA Graft Copolymers. Int J Mol Sci 2024; 25:598. [PMID: 38203772 PMCID: PMC10779367 DOI: 10.3390/ijms25010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.
Collapse
Affiliation(s)
- Maria Ponomar
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Valentina Ruleva
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
| | - Alina Maryasevskaya
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 68057 Mulhouse, France
| | - Jeet Sharma
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaibhav Kulshrestha
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bruno Améduri
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
3
|
Kumari P, Upadhyay P, Tripathi KM, Gupta R, Kulshrestha V, Awasthi K. Sulphonated poly(ethersulfone)/carbon nano-onions-based nanocomposite membranes with high ion-conducting channels for salt removal via electrodialysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87343-87352. [PMID: 37421532 DOI: 10.1007/s11356-023-28570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Herein, we are reporting the carbon nano onions (CNO)-based sulphonated poly(ethersulfone) (SPES) composite membranes by varying CNO content in SPES matrix for water desalination applications. CNOs were cost-effectively synthesized using flaxseed oil as a carbon source in an energy efficient flame pyrolysis process. The physico- and electrochemical properties of nanocomposite membranes were evaluated and compared to pristine SPES. Moreover, the chemical characterisation of composite membranes and CNOs were illustrated using techniques such as nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA) and universal tensile machine (UTM). In the series of nanocomposite membranes, SPES-0.25 composite membrane displayed the highest water uptake (WU), ion exchange membrane (IEC) and ionic conductivity (IC) values that were enhanced by 9.25%, ~ 44.78% and ~ 6.10%, respectively, compared to pristine SPES membrane. The electrodialytic performance can be achieved maximum when membranes possess low power consumption (PC) and high energy efficiency (Ee). Therefore, the value of Ee and Pc for SPES-0.25 membrane has been determined to be 99.01 ± 0.97% and 0.92 ± 0.01 kWh kg-1, which are 1.12 and 1.11 times higher than the pristine SPES membrane. Hence, integrating CNO nanoparticles into the SPES matrix enhanced the ion-conducting channels.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Prashant Upadhyay
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Vishakhapatnam, Andhra Pradesh, 530003, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
4
|
Sharma PP, Mohammed S, Aburabie J, Hashaikeh R. Valorization of Seawater Reverse Osmosis Brine by Monovalent Ion-Selective Membranes through Electrodialysis. MEMBRANES 2023; 13:562. [PMID: 37367766 DOI: 10.3390/membranes13060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
This paper proposes the use of monovalent selective electrodialysis technology to concentrate the valuable sodium chloride (NaCl) component present in seawater reverse osmosis (SWRO) brine for direct utilization in the chlor-alkali industry. To enhance monovalent selectivity, a polyamide selective layer was fabricated on commercial ion exchange membranes (IEMs) through interfacial polymerization (IP) of piperazine (PIP) and 1,3,5-Benzenetricarbonyl chloride (TMC). The IP-modified IEMs were characterized using various techniques to investigate changes in chemical structure, morphology, and surface charge. Ion chromatography (IC) analysis showed that the divalent rejection rate was more than 90% for IP-modified IEMs, compared to less than 65% for commercial IEMs. Electrodialysis results demonstrated that the SWRO brine was successfully concentrated to 14.9 g/L NaCl at a power consumption rate of 3.041 kWh/kg, indicating the advantageous performance of the IP-modified IEMs. Overall, the proposed monovalent selective electrodialysis technology using IP-modified IEMs has the potential to provide a sustainable solution for the direct utilization of NaCl in the chlor-alkali industry.
Collapse
Affiliation(s)
- Prem P Sharma
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Shabin Mohammed
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
5
|
Kumar A, Thakur A, Panesar PS. A review on the industrial wastewater with the efficient treatment techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Yusof NF, Raffi AA, Yahaya NZS, Abas KH, Othman MHD, Jaafar J, Rahman MA. Surface Modification of UiO-66 on Hollow Fibre Membrane for Membrane Distillation. MEMBRANES 2023; 13:253. [PMID: 36984640 PMCID: PMC10055739 DOI: 10.3390/membranes13030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The hydrophobicity of metal-organic frameworks (MOFs) is critical in enhancing the separation process in membrane distillation. Herein, a new superhydrophobic University of Oslo 66 (UiO-66) MOFs was successfully constructed on the top of alumina hollow fibre (AHF) membrane for desalination purposes. The fabrication methodology of the membrane involved in situ growth of pure crystalline UiO-66 on top of AHF and post-synthetic modification by fluorosilane grafting. The resultant membrane was characterised to study the physicochemical properties of the pristine and modified membrane. A superhydrophobic UiO-66 with a contact angle of 163.6° and high liquid entry pressure was obtained by introducing a highly branched fluorocarbon chain while maintaining its crystallinity. As a result, the modified membrane achieved 14.95 L/m2∙h water flux and 99.9% NaCl rejection with low energy consumption in the direct contact membrane distillation process. Furthermore, the high surface energy contributed by UiO-66 is maximised to produce the maximum number of accessible sites for the grafting process. The synergistic effect of surface hydrophobicity and porous UiO-66 membrane in trapping water vapour shows great potential for desalination application.
Collapse
Affiliation(s)
- Noor Fadilah Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Amirul Afiat Raffi
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Nur Zhatul Shima Yahaya
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Khairul Hamimah Abas
- Department of Control & Instrumentation Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Mukhlis A. Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
7
|
Zhang H, Li L, Geng L, Tan X, Hu Y, Mu P, Li J. Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment. CHEMOSPHERE 2023; 311:137163. [PMID: 36347356 DOI: 10.1016/j.chemosphere.2022.137163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the traditional wastewater treatment methods. Here, we constructed a g-C3N4-based composite sponge solar steam generator (rGCPP) by a simple hydrothermal reaction. Benefiting from its low cost and easy preparation, this evaporator can be expected to be a promising candidate for the alleviation of water shortages and water pollution in practical applications. By combination of the solar steam generation and the photocatalysis into the rGCPP-based interfacial solar-driven steam generation system, the resulted rGCPP-based solar steam generator performs outstanding solar absorption of 90.8%, which achieves high evaporation rate of 1.875 kg m-2 h-1 and solar-to-vapor efficiency of 81.07% under 1 sun irradiation. Meanwhile, organic pollutants in the water source can be completely removed by photocatalytic degradation and the degradation rates were measured to be 99.20% for methylene blue and 91.07% for rhodamine B, respectively. Consequently, the as-prepared composite sponge has promising applications in generating clean water and alleviating water pollution.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Lele Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Le Geng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinyan Tan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yaxuan Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
8
|
Ionic liquid-based pore-filling anion-exchange membranes enable fast large-sized metallic anion migration in electrodialysis. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Ren Y, Zhang A, Li L, Ma L, Jin Q, Yuan M, He G, Zhang F. Hydrogen bonding promoted electrodialysis performance of a novel blend anion exchange membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Investigation on flexible and thermally crosslinked bis-piperidinium-PPO anion exchange membrane (AEM) for electro-kinetic desalination and acid recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Khan MI, Shanableh A, Osman SM, Lashari MH, Manzoor S, Rehman AU, Luque R. Fabrication of trimethylphosphine-functionalized anion exchange membranes for desalination application via electrodialysis process. CHEMOSPHERE 2022; 308:136330. [PMID: 36087733 DOI: 10.1016/j.chemosphere.2022.136330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The design of conductive, improved durable and selective anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process is critical for a more sustainable future. This work reports the design of a series of homogeneous trimethylphosphine (TMP)-functionalized anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process. Physico-chemical characterization and electrochemical performance of the trimethylphosphine-functionalized anion exchange membranes was conducted and the activity found to be tuned by varying the quantity of trimethylphosphine into the membrane architecture. For anion exchange membranes M1 to M4, the ion exchange capacity (IEC) was increased from 1.35 to 2.16 mmol/g, water uptake (WR) from 4.30 to 17.72%, linear expansion ratio (LER) from 3.70 to 12.50% with enhancing the quantity of trimethylphosphine into the polymer architecture. The ionic resistance decreased from 15.14 to 2.61 Ω cm2 with increasing quantities of trimethylphosphine whereas transport number increased from 0.98 to 0.99. The performance of synthesized trimethylphosphine-functionalized anion exchange membranes in desalination of NaCl was evaluated via electrodialysis process (flux of 3.42 mol/m2. h and current efficiency of 64.30%). Results showed that the prepared trimethylphosphine-functionalized membrane (optimum M4) possess improved desalination performance as compared to commercial membrane Neosepta AMX under identical experimental conditions.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Aziz Ur Rehman
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C 3), Campus de Rabanales, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation
| |
Collapse
|
12
|
Molecular engineering of a synergistic photocatalytic and photothermal membrane for highly efficient and durable solar water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Cheng C, Shen HY, Gong Y, Chen W, Li P. Auxiliary functional group diffusion dialysis membranes for acid recovery. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Congliang Cheng
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
- Anhui Province Key Laboratory of Environment‐friendly Polymer Material Anhui University Hefei People's Republic of China
| | - Hai Yang Shen
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| | - Yifei Gong
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| | - Wei Chen
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| | - Ping Li
- Anhui Key Laboratory of Advanced Building Materials Anhui Jianzhu University Hefei People's Republic of China
| |
Collapse
|
14
|
Yu S, Qian H, Liao J, Dong J, Yu L, Liu C, Shen J. Proton blockage PVDF-co-HFP-based anion exchange membrane for sulfuric acid recovery in electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rajput A, Sharma J, Raj SK, Kulshrestha V. Dehydrofluorinated poly(vinylidene fluoride-co-hexafluoropropylene) based crosslinked cation exchange membrane for brackish water desalination via electrodialysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Pan J, Tao Y, Zhao L, Yu X, Zhao X, Wu T, Liu L. Green preparation of quaternized vinylimidazole-based anion exchange membrane by photopolymerization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Enhanced performance of poly(olefin)-based anion exchange membranes cross-linked by triallylmethyl ammonium iodine and divinylbenzene. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|