1
|
Mahalingam A, Pushparaj H. Synthesis, Characterization, and Fabrication of Nickel Metal-Organic Framework-Incorporated Polymer Electrolyte Membranes for Fuel-Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31145-31157. [PMID: 38842949 DOI: 10.1021/acsami.4c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Proton-conducting sulfonated polymer metal-organic framework (MOF)-based composite membranes were synthesized by anchoring the nickel MOF (Ni-MOF) to the aromatic sulfonated polymer backbone. In this work, we sulfonated two different polymers, poly(1,4-phenylene ether ether sulfone) (PEES) and poly ether ether ketone (PEEK), with a controllable sulfonation degree, and the synthesized Ni-MOF was incorporated into the sulfonated polymers to prepare a polymer electrolyte membrane. The effect of an MOF as a pendant moiety on the polymer backbone had a significant effect on properties such as water uptake, thermal, mechanical, and oxidative stabilities, swelling ratio, ion-exchange capacity (IEC), morphology, proton conductivity, and fuel-cell performance. The presence of an MOF structure enhanced the water retention capacity of the composite membranes. Adding Ni-MOF to the composite membrane improved the fuel-cell performance by increasing the OCV and power density. Among the synthesized electrolytes, the 3 wt % Ni-MOF-incorporated sPEEK membrane displayed a power density of 319 mW/cm2 with a cell voltage of 0.79 V, which was higher than the pure sulfonated polymer. Thus, the developed composite membranes are suitable for fuel-cell applications.
Collapse
|
2
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
3
|
Li W, Yang F, Lin Z, Sun R, Chen L, Xie Y, Pang J, Jiang Z. Semi-crystalline sulfonated poly(ether ketone) proton exchange membranes: The trade-off of facile synthesis and performance. J Colloid Interface Sci 2023; 645:493-501. [PMID: 37159991 DOI: 10.1016/j.jcis.2023.04.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Improving the performance of proton exchange membranes (PEMs) through the synthesis of sulfonated polymers with elaborate molecular structures has received extensive approval. However, the tedious synthetic process and consequently high costs restrain their possible substitution for Nafion, a classic PEM material. Herein, a series of semi-crystalline sulfonated poly(ether ketone)s with fluorene-based units were prepared via direct copolymerization of commercially available monomers and followed post-sulfonation, namely SPEK-FD-x, where × represents the molar ratio of the fluorene-containing monomer to the employed bisphenol monomers. The entire synthetic pathway was facile without involving hardly accessible materials. Subsequently, various properties of SPEK-FD-x membranes were investigated and further compared with Nafion 117. Due to the formation of the well-defined hydrophilic-hydrophobic microphase separation morphology and the reinforcement of the PEK crystalline regions, the SPEK-FD-x membranes exhibited outstanding proton conductivity, resistance for methanol permeation, as well as dimensional, thermal, oxidative, and mechanical stability. Among them, the overall behavior of the SPEK-FD-25 membrane was comparable to or even greater than that of Nafion 117, most importantly, it also performed decently in both H2/air fuel cells and direct methanol fuel cells. Therefore, with the straightforward synthesis and superior performance, the SPEK-FD-x membranes may serve as a promising alternative to Nafion.
Collapse
Affiliation(s)
- Wenying Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Fan Yang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Ziyu Lin
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Ruiyin Sun
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Liyuan Chen
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Yunji Xie
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, D-76131 Karlsruhe, Germany.
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China.
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| |
Collapse
|
4
|
Wei P, Huang D, Luo C, Sui Y, Li X, Liu Q, Zhu B, Cong C, Zhou Q, Meng X. High-performance sandwich-structure PI/SPEEK+HPW nanofiber composite membrane with balanced proton conductivity and stability. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Heteroatom Doping Strategy Enables Bi-functional Electrode with Superior Electrochemical Performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Liu L, Wang Y, Liu S, Li N, Hu Z, Chen S. Novel bifunctional fillers (ATP/P–CNOs) for sulfonated poly(aryl ether sulfone) matrix for improved power output and durability of H2/O2 fuel cell at low humidity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic frameworks (MOFs) are arguably a class of highly tuneable polymer-based materials with wide applicability. The arrangement of chemical components and the bonds they form through specific chemical bond associations are critical determining factors in their functionality. In particular, crystalline porous materials continue to inspire their development and advancement towards sustainable and renewable materials for clean energy conversion and storage. An important area of development is the application of MOFs in proton-exchange membrane fuel cells (PEMFCs) and are attractive for efficient low-temperature energy conversion. The practical implementation of fuel cells, however, is faced by performance challenges. To address some of the technical issues, a more critical consideration of key problems is now driving a conceptualised approach to advance the application of PEMFCs. Central to this idea is the emerging field MOF-based systems, which are currently being adopted and proving to be a more efficient and durable means of creating electrodes and electrolytes for proton−exchange membrane fuel cells. This review proposes to discuss some of the key advancements in the modification of PEMs and electrodes, which primarily use functionally important MOFs. Further, we propose to correlate MOF-based PEMFC design and the deeper correlation with performance by comparing proton conductivities and catalytic activities for selected works.
Collapse
|
8
|
Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride–Phosphotungstic Acid Ionic Polymer–Metal Composite (IPMC) Membrane. MEMBRANES 2022; 12:membranes12070651. [PMID: 35877854 PMCID: PMC9322641 DOI: 10.3390/membranes12070651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
This work presents the development of a cost-effective electric-stimulus-responsive bending actuator based on a sulfonated polyvinyl chloride (SPVC)–phosphotungstic acid (PTA) ionic polymer–metal composite (IPMC), using a simple solution-casting method followed by chemical reduction of platinum (Pt) ions as an electrode. The characterizations of the prepared IPMC were performed using Fourier-transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques, Thermogravimetric analysis (TGA), and Energy-dispersive X-ray (EDX) analysis. Excellent ion-exchange capacity (IEC) and proton conductivity (PC), with values of ca. 1.98 meq·g−1 and ca. 1.6 mS·cm−1, respectively, were observed. The water uptake (WU) and water loss (WL) capacities of the IPMC membranes were measured at 25 °C, and found to have maxima of ca. 48% for 10 h, and ca. 36% at 6 V DC for almost 9 min, respectively. To analyze the actuation performance of the developed membrane, tip displacement and actuation force measurements were conducted. Tip displacement was found to be ca. 15.1 mm, whereas bending actuation was found to be 0.242 mN at 4 V DC. The moderate water loss, good proton conductivity (PC), high thermal stability, and good electrochemical properties of the developed IPMC membrane actuator position it as a cost-effective alternative to highly expensive conventional perfluorinated polymer-based actuators.
Collapse
|
9
|
Arulpriya P, Krishnaveni T, Shanmugasundaram T, Kadirvelu K. Mesoporous TiO2 @ Fe metal organic framework nanocomposite for an efficient chlorpyrifos detection and degradation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wang Z, Ren J, Sun Y, Wang L, Fan Y, Zheng J, Qian H, Li S, Xu J, Zhang S. Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Alashkar A, Al-Othman A, Tawalbeh M, Qasim M. A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells. MEMBRANES 2022; 12:membranes12020178. [PMID: 35207099 PMCID: PMC8877517 DOI: 10.3390/membranes12020178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
This work provides a comprehensive review on the incorporation of ionic liquid (ILs) into polymer blends and their utilization as proton exchanges membranes (PEM). Various conventional polymers that incorporate ILs are discussed, such as Nafion, poly (vinylidene fluoride), polybenzimidazole, sulfonated poly (ether ether ketone), and sulfonated polyimide. The methods of synthesis of IL/polymer composite membranes are summarized and the role of ionic liquids as electrolytes and structure directing agents in PEM fuel cells (PEMFCs) is presented. In addition, the obstacles that are reported to impede the development of commercial polymerized IL membranes are highlighted in this work. The paper concludes that the presence of certain ILs can increase the conductivity of the PEM, and consequently, enhance the performance of PEMFCs. Nevertheless, the leakage of ILs from composite membranes as well as the limited long-term thermal and mechanical stability are considered as the main challenges that limit the employment of IL/polymer composite membranes in PEMFCs, especially for high-temperature applications.
Collapse
Affiliation(s)
- Adnan Alashkar
- Materials Science and Engineering Ph.D. Program, Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Correspondence:
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Sustainable Energy & Power Systems Research Centre, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Muhammad Qasim
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| |
Collapse
|
12
|
Sandwich-structure PI/SPEEK/PI proton exchange membrane developed for achieving the high durability on excellent proton conductivity and stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang Y, Liu L, Liu Y, Li N, Hu Z, Chen S. Double-filler composite sulfonated poly(aryl ether ketone) membranes with graphite carbon nitride and graphene oxide as polyelectrolyte for fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Liu L, Lu Y, Pu Y, Li N, Hu Z, Chen S. Highly sulfonated carbon nano-onions as an excellent nanofiller for the fabrication of composite proton exchange membranes with enhanced water retention and durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Wang FD, Su WH, Zhang CX, Wang QL. High Proton Conductivity of a Cadmium Metal-Organic Framework Constructed from Pyrazolecarboxylate and Its Hybrid Membrane. Inorg Chem 2021; 60:16337-16345. [PMID: 34644054 DOI: 10.1021/acs.inorgchem.1c02165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new type of metal-organic framework, [Cd2(pdc)(H2O)(DMA)2]n (pdc = 3,5-pyrazoledicarboxylic acid; DMA = dimethylamine), named Cd-MOF, was synthesized and characterized. There are regular rectangular pore channels containing a large number of dimethylamine cations in the crystal structure. AC impedance test results show the proton conductivity of Cd-MOF reaches 1.15 × 10-3 S cm-1 at 363 K and 98% RH. In order for its application in fuel cells, the Cd-MOF was introduced into a sulfonated polyphenylene oxide matrix to prepare a hybrid membrane, and the proton conductivity of the hybrid membrane has a high value of 2.64 × 10-1 S cm-1 at 343 K and 98% RH, which is higher than those of most MOF polymer hybrid membranes. The proton conductivity of the hybrid membrane of the SPPO polymer still maintains a certain degree of stability in a wide temperature range. To the best of our knowledge, it is the first proton exchange membrane that combines pyrazolecarboxylate cadmium MOFs and an SPPO polymer with high proton conductivity and good stability. This research may help to further develop the application of MOFs in the field of proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Feng-Dong Wang
- Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wen-Hui Su
- Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chen-Xi Zhang
- Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
16
|
Huang H, Ma Y, Jiang Z, Jiang ZJ. Spindle-like MOFs-derived porous carbon filled sulfonated poly (ether ether ketone): A high performance proton exchange membrane for direct methanol fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
He S, Lu Z, Dai W, Yang K, Xue Y, Jia X, Lin J. Anchoring Water Soluble Phosphotungstic Acid by Hybrid Fillers to Construct Three-Dimensional Proton Transport Networks. MEMBRANES 2021; 11:536. [PMID: 34357185 PMCID: PMC8303771 DOI: 10.3390/membranes11070536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Phosphotungstic acid (HPW)-filled composite proton exchange membranes possess high proton conductivity under low relative humidity (RH). However, the leaching of HPW limits their wide application. Herein, we propose a novel approach for anchoring water soluble phosphotungstic acid (HPW) by polydopamine (PDA) coated graphene oxide and halloysite nanotubes (DGO and DHNTs) in order to construct hybrid three-dimensional proton transport networks in a sulfonated poly(ether ether ketone) (SPEEK) membrane. The introduction of PDA on the surfaces of the hybrid fillers could provide hydroxyl groups and secondary amine groups to anchor HPW, resulting in the uniform dispersion of HPW in the SPEEK matrix. The SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane exhibited higher water uptake and much better conductivity than the SPEEK membrane at low relative humidity. The best conductivity reached wass 0.062 S cm-1 for the composite membrane, which is quite stable during the water immersion test.
Collapse
Affiliation(s)
- Shaojian He
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Zhongrui Lu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Wenxu Dai
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Kangning Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Yang Xue
- State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyang Jia
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| | - Jun Lin
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (S.H.); (Z.L.); (W.D.); (K.Y.); (X.J.)
| |
Collapse
|