1
|
Tian L, Wang M, Liao G, Liu B, Sun Y, Hu Y, Lu Z. Semi-Interpenetrating Polymer Network Anion Exchange Membranes Based on Quaternized Polybenzoxazine and Poly(Vinyl Alcohol-Co-Ethylene) for Acid Recovery by Diffusion Dialysis. Chemistry 2024; 30:e202401361. [PMID: 39031662 DOI: 10.1002/chem.202401361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Acid recovery from acidic waste is a pressing issue in current times. Chemical methods for recovery are not economically feasible and require significant energy input to save the environment. This study reported a semi-interpenetrating polymer network (semi-IPN) anion exchange membranes (AEMs) for acid recovery by diffusion dialysis with excellent dimensional stability, high oxidation stability, good acid dialysis coefficient (UH +) and high separation factor (S). Semi-IPN AEMs are prepared by ring-open cross-linked quaternized polybenzoxazine (AQBZ) with poly(vinyl alcohol-co-ethylene), where AQBZ is obtained by Mannich reaction and Menshutkin reaction. All four proportions of semi-IPNs exhibit clear micro-phase separation, which is conducive to ion transport. The water uptake (WU) of the four semi-IPNs ranges from 14.2 % to 19.2 %, while the swelling ratio (SR) remains between 8.7 % and 11.3 %. These results indicate that the cross-linked structure in the designed semi-IPNs effectively control swelling and ensure dimensional stability. The thermal degradation temperature (Td5) of semi-IPN4:6 to semi-IPN7:3 varies from 309 °C to 289 °C, with an oxidation stability weight loss rate (WOX) ranging from 91.5 % to 93.5 %, demonstrating excellent thermal stability and oxidation stability. The semi-IPNs also show good UH + values ranging from 11.9-16.3*10-3 m/h and high S values between 38.6 and 45.9, indicating the promising potential of the semi-IPNs.
Collapse
Affiliation(s)
- Longyu Tian
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Min Wang
- Dongying Hualian Petrochemical Co.Ltd., Dongying, P. R. China
| | - Guangming Liao
- Dongying Hualian Petrochemical Co.Ltd., Dongying, P. R. China
| | - Baoliang Liu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Yucheng Sun
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Yukun Hu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Zaijun Lu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| |
Collapse
|
2
|
Zhou H, Gong J, Li J, Song B, Fang S, Wang Y, Tang L, Peng P. Cross-Linked and Doped Graphene Oxide Membranes with Excellent Antifouling Capacity for Rejection of Antibiotics and Salts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8636-8652. [PMID: 36735585 DOI: 10.1021/acsami.2c19789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) membranes have suffered from the instability of water permeability and low rejection of pollutant separation. In this paper, a reasonable modification protocol for GO nanosheets at the molecular level was proposed. A molecular cross-linking strategy was adopted to regulate the interlayer spacing of GO nanosheets, and nanofiltration membranes with high water stability and excellent antifouling capacity were prepared, which could effectively reject antibiotics and salts. The GO1-MPD0.5 (the mass ratio of GO nanosheets to MPD is 1:0.5) and GO/GO1-MPD0.5-0.25 (the doping ratio of GO1-MPD0.5 is 25%) membranes had stable water permeability of 4.22 ± 0.06 and 3.65 ± 0.11 L m-2 h-1 bar-1, and the rejection rates for ciprofloxacin (CIP) and ofloxacin (OFX) were 93.35 ± 3.62 and 95.48 ± 2.97 and 85.89 ± 6.52 and 88.21 ± 3.67%, respectively. Molecular dynamics simulations well explained the high water stability of membranes, and the cross-linked hydrophobic benzene ring played a role in the rejection of pollutant molecules. Moreover, the GO1-MPD0.5 membrane showed excellent antifouling capacity and the flux recovery ratio (FRR) was more than 98%. This paper provides a new idea for the design of nanofiltration membranes with high stability and good rejection permeability at the molecular level and provides a prospect for the application of nanofiltration membranes in practical water treatment and water purification.
Collapse
Affiliation(s)
- Huaiyang Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
- Shenzhen Institute, Hunan University, Shenzhen518000, P. R. China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Yuwen Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Liangxiu Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Ping Peng
- College of Materials Science and Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
3
|
Lin J, Dan X, Wang J, Huang S, Fan L, Xie M, Zhao S, Lin X. In-situ cross-linked porous anion exchange membranes with high performance for efficient acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Li G, Wang G, Wei S, Yu Y, Li X, Zhang J, Chen J, Wang R. Side-Chain Grafting-Modified Sulfonated Poly(ether ether ketone) with Significantly Improved Selectivity for a Vanadium Redox Flow Battery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gang Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Shiguo Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Yan Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Xuesong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
5
|
Patnaik P, Sarkar S, Pal S, Chatterjee U. Cu(I) catalyzed ATRP for the preparation of high-performance poly (vinylidene fluoride)-g-poly 2-(dimethylamino)ethyl methacrylate crosslinked anion exchange membranes for enhanced acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Recovery and enrichment of acid from metallurgical wastewater model by electrodialysis integrated diffusion dialysis system using poly(ethylene) based IEMs. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Xie F, Lu F, Liu C, Tian Y, Gao Y, Zheng L, Gao X. Poly(ionic liquid) Membranes Preserving Liquid Crystalline Microstructures for Lithium-Ion Enrichment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Su X, Wang J, Xu S, Zhang D, He R. Construction of macromolecule cross-linked anion exchange membranes containing free radical inhibitor groups for superior chemical stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Nagarale R, Bavdane PP, Sreenath S, Pawar CM, Dave V, Satpati AK. Polyaniline derivatized anion exchange membrane for acid recovery. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li X, Afsar NU, Chen X, Wu Y, Chen Y, Shao F, Song J, Yao S, Xia R, Qian J, Wu B, Miao J. Negatively Charged MOF-Based Composite Anion Exchange Membrane with High Cation Selectivity and Permeability. MEMBRANES 2022; 12:membranes12060601. [PMID: 35736308 PMCID: PMC9227639 DOI: 10.3390/membranes12060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022]
Abstract
Every metal and metallurgical industry is associated with the generation of wastewater, influencing the living and non-living environment, which is alarming to environmentalists. The strict regulations about the dismissal of acid and metal into the environment and the increasing emphasis on the recycling/reuse of these effluents after proper remedy have focused the research community's curiosity in developing distinctive approaches for the recovery of acid and metals from industrial wastewaters. This study reports the synthesis of UiO-66-(COOH)2 using dual ligand in water as a green solvent. Then, the prepared MOF nanoparticles were introduced into the DMAM quaternized QPPO matrix through a straightforward blending approach. Four defect-free UiO-66-(COOH)2/QPPO MMMs were prepared with four different MOF structures. The BET characterization of UiO-66-(COOH)2 nanoparticles with a highly crystalline structure and sub-nanometer pore size (~7 Å) was confirmed by XRD. Because of the introduction of MOF nanoparticles with an electrostatic interaction and pore size screening effect, a separation coefficient (SHCl/FeCl2) of 565 and UHCl of 0.0089 m·h-1 for U-C(60)/QPPO were perceived when the loading dosage of the MOF content was 10 wt%. The obtained results showed that the prepared defect-free MOF membrane has broad prospects in acid recovery applications.
Collapse
Affiliation(s)
- Xiaohuan Li
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China;
| | - Xiaopeng Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yifeng Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yu Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Feng Shao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiaxian Song
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Shuai Yao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| |
Collapse
|
11
|
Pawar CM, Sreenath S, Dave V, Bavdane PP, Singh V, Verma V, Nagarale RK. Chemically stable and high acid recovery anion exchange membrane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Jiang S, Wang F, Cao X, Slater B, Wang R, Sun H, Wang H, Shen X, Yao Z. Novel application of ion exchange membranes for preparing effective silver and copper based antibacterial membranes. CHEMOSPHERE 2022; 287:132131. [PMID: 34492413 DOI: 10.1016/j.chemosphere.2021.132131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Ben Slater
- Institute of Porous Materials, Ecole Normale Supérieure, 24 Rue Lhomond, 75005, Paris, France
| | - Rongrong Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|