1
|
Huang Y, Gu M, Zhang G, Shen S, Liu D, Zhou X, Hong Y. Improving multifunctional properties of the polyvinylidene fluoride (PVDF) membrane with crosslinked dialdehyde-starch (DAS) and polyethyleneimine (PEI) coating. Int J Biol Macromol 2024; 280:136015. [PMID: 39326596 DOI: 10.1016/j.ijbiomac.2024.136015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Dialdehyde-soluble starch (DAS) and polyethyleneimine (PEI) were used to coat the polyvinylidene fluoride (PVDF) membrane for improving its antifouling and multifunctional properties through a combination of dip-coating and spray-coating techniques. The resulting membrane demonstrated excellent hydrophilicity and underwater oleophobicity due to hydrophilic DAS and PEI on its surface. The membrane achieved an impressive oil removal rate of 99.8 % and a flux 1420.8 ± 26.5 L·m-2·h-1 when it was used for oil-water emulsion separation. The hydration layer formed by the DAS and PEI greatly enhanced the membrane antifouling property, and its flux recovery rate was up to 96.6 % in BSA filtration experiments. The positive charge PEI and the negative charge DAS contributed to high separation efficiency of 99.1 % for the anion dye MO with the membrane D10P20, and high separation efficiency of 88.3 % for the cation dye RhB with the membrane P5D20. In addition, the coating layer was stable due to the cross-linked DAS and PEI. This research contributes greatly to the preparation of antifouling and multifunctional membrane using environmentally friendly material including polysaccharide derivatives and water soluble polymer.
Collapse
Affiliation(s)
- Yixuan Huang
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Mengqi Gu
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Shusu Shen
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Dapeng Liu
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoji Zhou
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yaoliang Hong
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| |
Collapse
|
2
|
Chehrazi E. Molecular Dynamics Simulations of Gas Transport Properties in Cross-Linked Polyamide Membranes: Tracing the Morphology and Addition of Silicate Nanotubes. ACS OMEGA 2024; 9:33425-33436. [PMID: 39130576 PMCID: PMC11307296 DOI: 10.1021/acsomega.3c10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
This study employs molecular dynamics (MD) simulations to fundamentally provide insight into the role of cross-link density in the CO2 separation properties of interfacially polymerized polyamide (PA) membranes. For this purpose, two atomistic models of pure polyamide membranes with different cross-link densities are constructed by MD simulations to conceptually determine how the fractional free volume of polyamide affects the gas separation performance of the membrane. The PA membrane with a lower cross-link density (LCPA) shows a higher gas diffusion coefficient, a lower gas solubility coefficient, and a higher gas permeability than the PA membrane with a higher cross-link density (HCPA). Moreover, the pristine and modified silicate nanotubes (SNTs) as the fast gas transport channels are incorporated into the polyamide membranes to assess the effect of the SNT/PA interface chemistry on the CO2 separation properties of the membranes. SNTs are systematically modified by three modifying agents with different CO2-philic groups and different interfacial interaction energies with the polyamide matrix. The results of MD simulations demonstrate that the incorporation of silicate nanotubes into the PA matrix increases the gas diffusivity and permeability and decreases the CO2/gas selectivity. Moreover, the membranes containing modified SNTs possessing high CO2-philicity and high SNTs/PA interfacial interactions show a high CO2 separation performance.
Collapse
Affiliation(s)
- Ehsan Chehrazi
- Department of Polymer Chemistry
and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
3
|
Mashhadikhan S, Amooghin AE, Masoomi MY, Sanaeepur H, Garcia H. Defect-Engineered Metal-Organic Framework/Polyimide Mixed Matrix Membrane for CO 2 Separation. Chemistry 2024; 30:e202401181. [PMID: 38700479 DOI: 10.1002/chem.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Defect-engineered metal-organic frameworks (MOFs) with outstanding structural and chemical features have become excellent candidates for specific separation applications. The introduction of structural defects in MOFs as an efficient approach to manipulate their functionality provides excellent opportunities for the preparation of MOF-based mixed matrix membranes (MMMs). However, the use of this strategy to adjust the properties and develop the separation performance of gas separation membranes is still in its early stages. Here, a novel defect-engineered MOF (quasi ZrFum or Q-ZrFum) was synthesized via a controlled thermal deligandation process and incorporated into a CO2-philic 6FDA-durene polyimide (PI) matrix to form Q-ZrFum loaded MMMs. Defect-engineered MOFs and fabricated MMMs were investigated regarding their characteristic properties and separation performance. The incorporation of defects into the MOF structure increases the pore size and provides unsaturated active metal sites that positively affect CO2 molecule transport. The interfacial compatibility between the Q-ZrFum particles and the PI matrix increases via the deligandation process, which improves the mechanical strength of Q-ZrFum loaded membranes. MMM containing 5 wt.% of defect-engineered Q-ZrFum exhibits excellent CO2 permeability of 1308 Barrer, which increased by 99 % compared to the pure PI membrane (656 Barrer) at a feed pressure of 2 bar. CO2/CH4 and CO2/N2 selectivity reached 44 and 26.6 which increased by about 70 and 16 %, respectively. This study emphasizes that defect-engineered MOFs can be promising candidates for use as fillers in the preparation of MMMs for the future development of membrane-based gas separation applications.
Collapse
Affiliation(s)
- Samaneh Mashhadikhan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | | | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Hermenegildo Garcia
- Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Universitat Politècnica de València, Av. De los naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Alebrahim T, Huang L, Welgama HK, Esmaeili N, Deng E, Cheng S, Acharya D, Doherty CM, Hill AJ, Rumsey C, Trebbin M, Cook TR, Lin H. Low-Loading Mixed Matrix Materials: Fractal-Like Structure and Peculiarly Enhanced Gas Permeability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11116-11124. [PMID: 38372265 DOI: 10.1021/acsami.3c19631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon. Herein, we design an ideal series of MMMs containing polyethers (one of the leading polymers for CO2/N2 separation) and discrete metal-organic polyhedra (MOPs) with cage sizes of 2-5 nm. Adding 3 mass % MOP-3 in a polyether increases the CO2 permeability by 100% from 510 to 1000 Barrer at 35 °C because of the increased gas diffusivity. No discernible changes in typical physical properties governing gas transport properties are detected, such as glass transition temperature, fractional free volume, d-spacing, etc. We hypothesize that this behavior is attributed to fractal-like networks formed by highly porous MOPs, and for the first time, we validate this hypothesis using small-angle X-ray scattering analysis.
Collapse
Affiliation(s)
- Taliehsadat Alebrahim
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Liang Huang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Heshali K Welgama
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Narjes Esmaeili
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Durga Acharya
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Future Industries, Private Bag 10, Clayton, South Victoria 3169, Australia
| | - Cara M Doherty
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Future Industries, Private Bag 10, Clayton, South Victoria 3169, Australia
| | - Anita J Hill
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Future Industries, Private Bag 10, Clayton, South Victoria 3169, Australia
| | - Clayton Rumsey
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Martin Trebbin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
6
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
7
|
Martínez-Izquierdo L, García-Comas C, Dai S, Navarro M, Tissot A, Serre C, Téllez C, Coronas J. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4024-4034. [PMID: 38214452 PMCID: PMC10811625 DOI: 10.1021/acsami.3c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
Collapse
Affiliation(s)
- Lidia Martínez-Izquierdo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Cristina García-Comas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Shan Dai
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Marta Navarro
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Laboratorio
de Microscopías Avanzadas, Universidad
de Zaragoza, Zaragoza 50018, Spain
| | - Antoine Tissot
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Christian Serre
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
8
|
Zhang G, Bui V, Yin Y, Tsai EHR, Nam CY, Lin H. Carbon Capture Membranes Based on Amorphous Polyether Nanofilms Enabled by Thickness Confinement and Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440697 DOI: 10.1021/acsami.3c07046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Thin-film composite membranes are a leading technology for post-combustion carbon capture, and the key challenge is to fabricate defect-free selective nanofilms as thin as possible (100 nm or below) with superior CO2/N2 separation performance. Herein, we developed high-performance membranes based on an unusual choice of semi-crystalline blends of amorphous poly(ethylene oxide) (aPEO) and 18-crown-6 (C6) using two nanoengineering strategies. First, the crystallinity of the nanofilms decreases with decreasing thickness and completely disappears at 500 nm or below because of the thickness confinement. Second, polydimethylsiloxane is chosen as the gutter layer between the porous support and selective layer, and its surface is modified with bio-adhesive polydopamine (<10 nm) with an affinity toward aPEO, enabling the formation of the thin, defect-free, amorphous aPEO/C6 layer. For example, a 110 nm film containing 40 mass % C6 in aPEO exhibits CO2 permeability of 900 Barrer (much higher than a thick film with 420 Barrer), rendering a membrane with a CO2 permeance of 2200 GPU and CO2/N2 selectivity of 27 at 35 °C, surpassing Robeson's upper bound. This work shows that engineering at the nanoscale plays an important role in designing high-performance membranes for practical separations.
Collapse
Affiliation(s)
- Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Vinh Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Yifan Yin
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chang-Yong Nam
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Hasegawa Y, Natsui M, Abe C, Ikeda A, Lundin STB. Estimation of CO 2 Separation Performances through CHA-Type Zeolite Membranes Using Molecular Simulation. MEMBRANES 2023; 13:60. [PMID: 36676867 PMCID: PMC9863776 DOI: 10.3390/membranes13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Chabazite (CHA)-type zeolite membranes are a potential material for CO2 separations because of their small pore aperture, large pore volume, and low aluminum content. In this study, the permeation and separation properties were evaluated using a molecular simulation technique with a focus on improving the CO2 separation performance. The adsorption isotherms of CO2 and CH4 on CHA-type zeolite with Si/Al = 18.2 were predicted by grand canonical Monte Carlo, and the diffusivities in zeolite micropores were simulated by molecular dynamics. The CO2 separation performance of the CHA-type zeolite membrane was estimated by a Maxwell-Stefan equation, accounting for mass transfer through the support tube. The results indicated that the permeances of CO2 and CH4 were influenced mainly by the porosity of the support, with the CO2 permeance reduced due to preferential adsorption with increasing pressure drop. In contrast, it was important for estimation of the CH4 permeance to predict the amounts of adsorbed CH4. Using molecular simulation and the Maxwell-Stefan equation is shown to be a useful technique for estimating the permeation properties of zeolite membranes, although some problems such as predicting accurate adsorption terms remain.
Collapse
|
10
|
Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Sanni SE, Vershima DA, Okoro EE, Oni BA. Technological advancements in the use of ionic liquid- membrane systems for CO 2 capture from biogas/flue gas - A review. Heliyon 2022; 8:e12233. [PMID: 36582712 PMCID: PMC9792796 DOI: 10.1016/j.heliyon.2022.e12233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon capture has become a very important method for curbing the problems associated with the release of carbon dioxide into the atmosphere, which in turn has detrimental effects on the planet and its inhabitants. Ionic liquids and membrane separation have been explored in this review paper as effective means of capturing carbon dioxide. An innovative approach to CO2 capture is the use of Ionic liquids (ILs) since they exhibit certain significant traits such as good stability (thermal, mechanical and chemical), inflammability and high absorptive capacities. Ionic liquids (ILs) are widely regarded as nontoxic substances. Viscosity and thermal degradation of ILs at temperatures slightly above 100 °C are the major disadvantages of ILs. Membrane separation is a technique used for the effective separation of substances by materials bearing holes in a continuous structure. Membrane technology has gained significant improvements, over the years. Several ILs and membrane systems were considered in this work. Their weaknesses, strengths, permeability, selectivity, operating conditions and carbon capture efficiencies, were all highlighted in order to gain a good perspective on ways by which the individual systems can be improved upon. The study considered several polymer-Ionic liquid hybrid materials as viable options for CO2 capture from a post-combustion process. Different ILs were scrutinized for possible integration in membranes by taking full advantage of their individual properties and harnessing their tune-able characteristics in order to improve the overall carbon capture performance of the system. Several options for improving the mechanical, chemical, and thermal stabilities of the hybrid systems were considered including the use of cellulose acetate membrane, nanoparticles (graphene oxide powder) alongside potential ionic liquids. Doping membranes with ILs and nanoparticulates such as graphene oxide serves as a potential method for enhancing the CO2 capture of membranes and this review provides several evidences that serve as proofs for this concept.
Collapse
Affiliation(s)
- Samuel Eshorame Sanni
- Department of Chemical Engineering, Covenant University, Ota, Ogun, Nigeria,Corresponding author:
| | | | - Emeka Emmanuel Okoro
- Department of Petroleum Engineering, University of Port Harcourt, Choba, Rivers State, Nigeria
| | | |
Collapse
|
12
|
Membranes constructed with zero-dimension carbon quantum dots for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Engineering CAU-10-H for preparation of mixed matrix membrane for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Incorporating KAUST-7 into PIM-1 towards mixed matrix membranes with long-term stable CO2/CH4 separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Multiparameter Neural Network Modeling of Facilitated Transport Mixed Matrix Membranes for Carbon Dioxide Removal. MEMBRANES 2022; 12:membranes12040421. [PMID: 35448392 PMCID: PMC9028914 DOI: 10.3390/membranes12040421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022]
Abstract
Membranes for carbon capture have improved significantly with various promoters such as amines and fillers that enhance their overall permeance and selectivity toward a certain particular gas. They require nominal energy input and can achieve bulk separations with lower capital investment. The results of an experiment-based membrane study can be suitably extended for techno-economic analysis and simulation studies, if its process parameters are interconnected to various membrane performance indicators such as permeance for different gases and their selectivity. The conventional modelling approaches for membranes cannot interconnect desired values into a single model. Therefore, such models can be suitably applicable to a particular parameter but would fail for another process parameter. With the help of artificial neural networks, the current study connects the concentrations of various membrane materials (polymer, amine, and filler) and the partial pressures of carbon dioxide and methane to simultaneously correlate three desired outputs in a single model: CO2 permeance, CH4 permeance, and CO2/CH4 selectivity. These parameters help predict membrane performance and guide secondary parameters such as membrane life, efficiency, and product purity. The model results agree with the experimental values for a selected membrane, with an average absolute relative error of 6.1%, 4.2%, and 3.2% for CO2 permeance, CH4 permeance, and CO2/CH4 selectivity, respectively. The results indicate that the model can predict values at other membrane development conditions.
Collapse
|
17
|
Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Superior CO2/N2 separation performance of highly branched Poly(1,3 dioxolane) plasticized by polyethylene glycol. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Sunder N, Fong YY, Bustam MA, Suhaimi NH. Development of Amine-Functionalized Metal-Organic Frameworks Hollow Fiber Mixed Matrix Membranes for CO 2 and CH 4 Separation: A Review. Polymers (Basel) 2022; 14:1408. [PMID: 35406281 PMCID: PMC9002624 DOI: 10.3390/polym14071408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
CO2 separation from raw natural gas can be achieved through the use of the promising membrane-based technology. Polymeric membranes are a known method for separating CO2 but suffer from trade-offs between its permeability and selectivity. Therefore, through the use of mixed matrix membranes (MMMs) which utilizes inorganic or hybrid fillers such as metal-organic frameworks (MOFs) in polymeric matrix, the permeability and selectivity trade-off can be overcome and possibly surpass the Robeson Upper Bounds. In this study, various types of MOFs are explored in terms of its structure and properties such as thermal and chemical stability. Next, the use of amine and non-amine functionalized MOFs in MMMs development are compared in order to investigate the effects of amine functionalization on the membrane gas separation performance for flat sheet and hollow fiber configurations as reported in the literature. Moreover, the gas transport properties and various challenges faced by hollow fiber mixed matrix membranes (HFMMMs) are discussed. In addition, the utilization of amine functionalization MOF for mitigating the challenges faced is included. Finally, the future directions of amine-functionalized MOF HFMMMs are discussed for the fields of CO2 separation.
Collapse
Affiliation(s)
- Naveen Sunder
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
| | - Yeong Yin Fong
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
- CO2 Research Center (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Nadia Hartini Suhaimi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
| |
Collapse
|