1
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
2
|
Choi SJ, Crane L, Kang S, Boyer TH, Perreault F. Removal of urea in ultrapure water system by urease-coated reverse osmosis membrane. WATER RESEARCH X 2024; 22:100211. [PMID: 38298331 PMCID: PMC10825517 DOI: 10.1016/j.wroa.2024.100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Among the various substances found in the feed source for the production of ultrapure water (UPW), urea is challenging to remove because it is a small molecular weight molecule that is not easily oxidized and does not carry a charge under neutral pH conditions. Urease enzyme, found in various organisms such as plants and bacteria, catalyze the hydrolysis of urea into carbon dioxide and ammonia. In this study, urease was immobilized on the polyamide layer of a reverse osmosis (RO) membrane to remove urea in UPW systems. The removal efficiency of urea by urease-coated RO membrane showed up to 27.9 % higher urea removal efficiency compared to the pristine membrane. This increase in urea removal can be attributed to both physical and biological effects from the urease coating on the membrane. Firstly, urease on the membrane surface can act as an additional physical barrier for urea to pass through. Secondly, urea can be hydrolyzed by the enzyme when it passes through the urease-coated RO membrane. In a two-pass RO system typical for UPW production, the removal of urea by a urease-coated membrane would be enhanced by twofold. This overall method can significantly increase the removal efficiency of urea in UPW systems, especially when considering the compounded removal by the urease coating, rejection by RO, and additional reactions by other treatment processes. Moreover, urea in UPW systems can be removed without the installment of additional processes by simply coating urease on the existing RO membranes.
Collapse
Affiliation(s)
- Seung-Ju Choi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Lucas Crane
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Treavor H. Boyer
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
- Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Xu L, Zhang Y, Li T, Peng S, Wu D. Simultaneous desalination and molecular resource recovery from wastewater using an electrical separation system integrated with a supporting liquid membrane. WATER RESEARCH 2023; 246:120706. [PMID: 37820511 DOI: 10.1016/j.watres.2023.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Separating molecular substances from wastewater has always been a challenge in wastewater treatment. In this study, we propose a new strategy for simultaneous desalination and selective recovery of molecular resources, by introducing a supported liquid membrane (SLM) with molecular selectivity into an asymmetric flow-electrode capacitive deionization. Salts and molecular substances in wastewater are removed after passing through the ion separation chamber and the molecular separation chamber, respectively. Faradaic reactions, i.e., the electrolysis of water with OH-, occurred in the electrochemical cathode electrode provides a sufficient and continuous chemical potential gradient for the cross-SLM transport of phenol (a model molecule substance). By optimizing the formulation of the liquid membrane and the pore size of the support membrane, we obtained the SLM with the best performance for separating phenol. In continuous experiment tests, the electrochemical membrane system showed stable separation performance and long-term stability for simultaneous salts removal and phenol (sodium phenol) recovery from wastewater. Finally, we demonstrate the potential application of this technology for the recovery of different carbon resources. Overall, the electrochemical system based on SLM is suitable for various wastewater treatment needs and provides a new approach for the recovery of molecular resources in wastewater.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yunqian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Tingting Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, China.
| |
Collapse
|
4
|
Wu S, Shi W, Li K, Cai J, Xu C, Gao L, Lu J, Ding F. Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 2023; 239:124264. [PMID: 37003384 DOI: 10.1016/j.ijbiomac.2023.124264] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Due to their large specific surface area and numerous diffusion channels, hollow fibers are widely used in wastewater treatment. In this study, we successfully synthesized a chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) hollow nanofiber membrane (CS/PVP/PVA-HNM) via coaxial electrospinning. This membrane demonstrated remarkable permeability and adsorption separation. Specifically, the CS/PVP/PVA-HNM had a pure water permeability of 4367.02 L·m-2·h-1·bar-1. The hollow electrospun nanofibrous membrane exhibited a continuous interlaced nanofibrous framework structure with the extraordinary advantages of high porosity and high permeability. The rejection ratios of CS/PVP/PVA-HNM for Cu2+, Ni2+, Cd2+, Pb2+, malachite green (MG), methylene blue (MB) and crystal violet (CV) were 96.91 %, 95.29 %, 87.50 %, 85.13 %, 88.21 %, 83.91 % and 71.99 %, and the maximum adsorption capacities were 106.72, 97.46, 88.10, 87.81, 53.45, 41.43, and 30.97 mg·g-1, respectively. This work demonstrates a strategy for the synthesis of hollow nanofibers, which provides a novel concept for the design and fabrication of highly efficient adsorption separation membranes.
Collapse
|
5
|
Zhang H, Li L, Geng L, Tan X, Hu Y, Mu P, Li J. Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment. CHEMOSPHERE 2023; 311:137163. [PMID: 36347356 DOI: 10.1016/j.chemosphere.2022.137163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the traditional wastewater treatment methods. Here, we constructed a g-C3N4-based composite sponge solar steam generator (rGCPP) by a simple hydrothermal reaction. Benefiting from its low cost and easy preparation, this evaporator can be expected to be a promising candidate for the alleviation of water shortages and water pollution in practical applications. By combination of the solar steam generation and the photocatalysis into the rGCPP-based interfacial solar-driven steam generation system, the resulted rGCPP-based solar steam generator performs outstanding solar absorption of 90.8%, which achieves high evaporation rate of 1.875 kg m-2 h-1 and solar-to-vapor efficiency of 81.07% under 1 sun irradiation. Meanwhile, organic pollutants in the water source can be completely removed by photocatalytic degradation and the degradation rates were measured to be 99.20% for methylene blue and 91.07% for rhodamine B, respectively. Consequently, the as-prepared composite sponge has promising applications in generating clean water and alleviating water pollution.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Lele Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Le Geng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinyan Tan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yaxuan Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|