1
|
Choi WS, Liu RZ, Mak C, Maadi H, Godbout R. Overcoming retinoic acid resistance in HER2-enriched breast cancers: role of MYC. FEBS J 2024; 291:3521-3538. [PMID: 38708519 DOI: 10.1111/febs.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
HER2-enriched (HER2+) breast cancers express high levels of the growth-promoting HER2 protein. Although these cancers are treated with the HER2-targeted drug, trastuzumab, resistance to treatment is common. Retinoic acid (RA) is an anti-cancer agent that has been successfully used for the treatment of leukemia and holds promise for the treatment of solid cancers, including breast cancer. The HER2 gene is frequently co-amplified with RARA, a key determinant of RA sensitivity in breast cancers. It seems surprising, therefore, that HER2+ breast cancers are refractory to RA treatment. Here, we show that MYC mediates RA resistance by suppressing the expression of cellular retinoic acid binding protein 2 (CRABP2), resulting in RARα inactivation. CRABP2 is an intracellular RA transporter that delivers RA to the nuclear receptor RARα for its activation. Our results indicate that response to RA is enhanced by MYC depletion in HER2+ breast cancer cells and that RA treatment enhances trastuzumab responsiveness. Our findings support the use of RA and trastuzumab for the treatment of subsets of patients with breast cancers that are HER2-RARα co-amplified and have low levels of MYC.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Caitlin Mak
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Hamid Maadi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
García-Padilla C, Lozano-Velasco E, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region. Int J Mol Sci 2024; 25:6608. [PMID: 38928314 PMCID: PMC11204236 DOI: 10.3390/ijms25126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
3
|
Wang X, Ma G, Ren F, Awais MM, Sun J. Bombyx mori nucleopolyhedrovirus induces BmFABP1 downregulation to promote viral proliferation. INSECT SCIENCE 2023; 30:1595-1606. [PMID: 37144516 DOI: 10.1111/1744-7917.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Fatty acid binding proteins (FABPs) play an important role as endogenous cytoprotectants. However, studies on FABPs in invertebrates are scarce. Previously, we discovered Bombyx mori fatty acid binding protein 1 (BmFABP1) through co-immunoprecipitation. Here, we cloned and identified BmFABP1 from BmN cells. The results of immunofluorescence indicated that BmFABP1 was localized in the cytoplasm. The tissue expression profile of silkworms showed that BmFABP1 was expressed in all tissues except hemocytes. The expression level of BmFABP1 gradually decreases in BmN cells and B. mori larvae after infection with B. mori nucleopolyhedrovirus (BmNPV). Upregulation of BmFABP1 expression through overexpression or WY14643 treatment significantly inhibited the replication of BmNPV, while downregulation of BmFABP1 expression by RNA interference promoted the replication of BmNPV. The same results were obtained in experiments on silkworm larvae. These results suggest that BmNPV induces BmFABP1 downregulation to promote its proliferation and that BmFABP1 has a potential anti-BmNPV role. This is the first report on the antiviral effect of BmFABP1 in silkworms and provides new insights into the study of the FABP protein family. Also, it is important to study BmNPV resistance in silkworms to breed transgenic silkworms with BmNPV resistance.
Collapse
Affiliation(s)
- Xiong Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangyu Ma
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Larange A, Takazawa I, Kakugawa K, Thiault N, Ngoi S, Olive ME, Iwaya H, Seguin L, Vicente-Suarez I, Becart S, Verstichel G, Balancio A, Altman A, Chang JT, Taniuchi I, Lillemeier B, Kronenberg M, Myers SA, Cheroutre H. A regulatory circuit controlled by extranuclear and nuclear retinoic acid receptor α determines T cell activation and function. Immunity 2023; 56:2054-2069.e10. [PMID: 37597518 PMCID: PMC10552917 DOI: 10.1016/j.immuni.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.
Collapse
Affiliation(s)
- Alexandre Larange
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ikuo Takazawa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nicolas Thiault
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - SooMun Ngoi
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Hitoshi Iwaya
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laetitia Seguin
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ildefonso Vicente-Suarez
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephane Becart
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Greet Verstichel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ann Balancio
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Amnon Altman
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - John T Chang
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Bjorn Lillemeier
- Immunobiology and Microbial Pathogenesis Laboratory, IMPL-L, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Samuel A Myers
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| | - Hilde Cheroutre
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
5
|
Gong Y, Bao L, Xu T, Yi X, Chen J, Wang S, Pan Z, Huang P, Ge M. The tumor ecosystem in head and neck squamous cell carcinoma and advances in ecotherapy. Mol Cancer 2023; 22:68. [PMID: 37024932 PMCID: PMC10077663 DOI: 10.1186/s12943-023-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
The development of head and neck squamous cell carcinoma (HNSCC) is a multi-step process, and its survival depends on a complex tumor ecosystem, which not only promotes tumor growth but also helps to protect tumor cells from immune surveillance. With the advances of existing technologies and emerging models for ecosystem research, the evidence for cell-cell interplay is increasing. Herein, we discuss the recent advances in understanding the interaction between tumor cells, the major components of the HNSCC tumor ecosystem, and summarize the mechanisms of how biological and abiotic factors affect the tumor ecosystem. In addition, we review the emerging ecological treatment strategy for HNSCC based on existing studies.
Collapse
Affiliation(s)
- Yingying Gong
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lisha Bao
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, People's Republic of China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, People's Republic of China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, People's Republic of China.
| |
Collapse
|
6
|
Cardeña-Núñez S, Callejas-Marín A, Villa-Carballar S, Rodríguez-Gallardo L, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. CRABP-I Expression Patterns in the Developing Chick Inner Ear. BIOLOGY 2023; 12:biology12010104. [PMID: 36671796 PMCID: PMC9855850 DOI: 10.3390/biology12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions, regarded as an excellent system for analyzing events that occur during development, such as patterning, morphogenesis, and cell specification. Retinoic acid (RA) is involved in all these development processes. Cellular retinoic acid-binding proteins (CRABPs) bind RA with high affinity, buffering cellular free RA concentrations and consequently regulating the activation of precise specification programs mediated by particular regulatory genes. In the otic vesicle, strong CRABP-I expression was detected in the otic wall's dorsomedial aspect, where the endolymphatic apparatus develops, whereas this expression was lower in the ventrolateral aspect, where part of the auditory system forms. Thus, CRABP-I proteins may play a role in the specification of the dorsal-to-ventral and lateral-to-medial axe of the otic anlagen. Regarding the developing sensory patches, a process partly involving the subdivision of a ventromedial pro-sensory domain, the CRABP-I gene displayed different levels of expression in the presumptive territory of each sensory patch, which was maintained throughout development. CRABP-I was also relevant in the acoustic-vestibular ganglion and in the periotic mesenchyme. Therefore, CRABP-I could protect RA-sensitive cells in accordance with its dissimilar concentration in specific areas of the developing chick inner ear.
Collapse
|
7
|
Nhieu J, Lin YL, Wei LN. CRABP1 in Non-Canonical Activities of Retinoic Acid in Health and Diseases. Nutrients 2022; 14:nu14071528. [PMID: 35406141 PMCID: PMC9003107 DOI: 10.3390/nu14071528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
In this review, we discuss the emerging role of Cellular Retinoic Acid Binding Protein 1 (CRABP1) as a mediator of non-canonical activities of retinoic acid (RA) and relevance to human diseases. We first discuss the role of CRABP1 in regulating MAPK activities and its implication in stem cell proliferation, cancers, adipocyte health, and neuro-immune regulation. We then discuss an additional role of CRABP1 in regulating CaMKII activities, and its implication in heart and motor neuron diseases. Through molecular and genetic studies of Crabp1 knockout (CKO) mouse and culture models, it is established that CRABP1 forms complexes with specific signaling molecules to function as RA-regulated signalsomes in a cell context-dependent manner. Gene expression data and CRABP1 gene single nucleotide polymorphisms (SNPs) of human cancer, neurodegeneration, and immune disease patients implicate the potential association of abnormality in CRABP1 with human diseases. Finally, therapeutic strategies for managing certain human diseases by targeting CRABP1 are discussed.
Collapse
Affiliation(s)
| | | | - Li-Na Wei
- Correspondence: ; Tel.: +1-612-6259-402
| |
Collapse
|
8
|
Enikeev AD, Komelkov AV, Axelrod ME, Galetsky SA, Kuzmichev SA, Tchevkina EM. CRABP1 and CRABP2 Protein Levels Correlate with Each Other but Do Not Correlate with Sensitivity of Breast Cancer Cells to Retinoic Acid. BIOCHEMISTRY (MOSCOW) 2021; 86:217-229. [PMID: 33832420 DOI: 10.1134/s0006297921020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Retinoic acid (RA) binding proteins, CRABP1 and CRABP2, are molecular chaperones that mediate intracellular activity of RA, the key promoter of cell differentiation with tumor suppressor activity. One of the main functions of CRABP2 is delivery and transfer of RA to the nuclear receptors RAR/RXR, which leads to activation of the transcription of a wide range of retinoid-responsive genes. The functions of CRABP1 are less studied but are apparently associated with sequestration of RA in cytoplasm and limitation of its transcriptional activity, suggesting involvement of this protein in the development of RA resistance. The mechanisms regulating activity of CRABP1 are also poorly understood. Comparison of the CRABP1 level in tumor cell lines of various origins, performed for the first time here, showed absence of the CRABP1 protein in the cell lines of tumors considered to be RA-resistant, and pronounced production of this protein in the RA-sensitive cells. However, analysis carried out with a panel of breast cancer cell lines with different levels of RA-sensitivity showed that there was no correlation between the production of CRABP1 protein and the sensitivity of the cells to RA. At the same time, we found strong correlation between the expression of CRABP1 and CRABP2 proteins in all studied cell types, regardless of their origin and RA-sensitivity/resistance. Moreover, suppression of the CRABP1 level in both RA-sensitive and RA-resistant cells was shown in the cells with cells with knockdown of CRABP2 gene. The revealed CRABP2-dependent regulation of CRABP1 production is a new mechanism of the intracellular retinoic signaling system.
Collapse
Affiliation(s)
- Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Andrey V Komelkov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| | - Maria E Axelrod
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Sergey A Galetsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Sergey A Kuzmichev
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| |
Collapse
|
9
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
10
|
Medina P, Gómez A, Zanuy S, Blázquez M. Involvement of the retinoic acid signaling pathway in sex differentiation and pubertal development in the European sea bass Dicentrarchus labrax. Heliyon 2019; 5:e01201. [PMID: 30839897 PMCID: PMC6365411 DOI: 10.1016/j.heliyon.2019.e01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Retinoic Acid (RA) is a vitamin A derivative present in many biological processes including embryogenesis, organ development and cell differentiation. The RA signaling pathway is essential for the onset of meiosis in tetrapods, although its role in fish reproduction needs further evidence. This study reports the expression profiles of several genes involved in this pathway during sex differentiation and the first reproductive season in European sea bass (Dicentrarchus labrax) gonads. The assessed genes are representative of several steps of the pathway including retinol transport, RA synthesis, nuclear receptors, RA transport and degradation. The study includes a synteny analysis of stra8, a tetrapod meiosis gatekeeper, in several taxa. The results show that, these genes were overexpressed during early gonad development and their expression decreased during meiosis progression in males and during vitellogenesis in females. Specifically, a decrease of cyp26a1, involved in RA degradation, together with an increase of aldh1a2 and aldh1a3, in charge of RA-synthesis, might ensure the availability of high RA levels at the time of meiosis in males and females. Moreover, the absence of stra8 in the European sea bass genome, as well as the conserved genomic neighbourhood found in other taxa, suggest a stra8 independent signaling for RA during meiosis. Taken together, our results might help to better understand the role of RA signaling in teleost gonad development.
Collapse
Affiliation(s)
- Paula Medina
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Mercedes Blázquez
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
11
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
12
|
Choi N, Park J, Lee JS, Yoe J, Park GY, Kim E, Jeon H, Cho YM, Roh TY, Lee Y. miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget 2016; 6:23533-47. [PMID: 26124181 PMCID: PMC4695135 DOI: 10.18632/oncotarget.4372] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022] Open
Abstract
Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type-1 (SCA1) neurodegenerative disease and some types of cancer; however, the role of CIC in prostate cancer remains unknown. Here we show that CIC suppresses prostate cancer progression. CIC expression was markedly decreased in human prostatic carcinoma. CIC overexpression suppressed prostate cancer cell proliferation, invasion, and migration, whereas CIC RNAi exerted opposite effects. We found that knock-down of CIC derepresses expression of ETV5 and CRABP1 in LNCaP and PC-3 cells, respectively, thereby promoting cell proliferation and invasion. We also discovered that miR-93, miR-106b, and miR-375, which are known to be frequently overexpressed in prostate cancer patients, cooperatively down-regulate CIC levels to promote cancer progression. Altogether, we suggest miR-93/miR-106b/miR-375-CIC-CRABP1 as a novel key regulatory axis in prostate cancer progression.
Collapse
Affiliation(s)
- Nahyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jongmin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jeon-Soo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Guk Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Eunjeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Hyeongrin Jeon
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Yong Mee Cho
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
13
|
Jumper N, Hodgkinson T, Arscott G, Har-Shai Y, Paus R, Bayat A. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease. J Invest Dermatol 2016; 136:1500-1512. [PMID: 27025872 DOI: 10.1016/j.jid.2016.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease.
Collapse
Affiliation(s)
- Natalie Jumper
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tom Hodgkinson
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Guyan Arscott
- Department of Plastic and Reconstructive Surgery, University of West Indies, Kingston, Jamaica
| | - Yaron Har-Shai
- Plastic Surgery Unit, Carmel Medical Center, Haifa, Israel
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, D-48149, Münster, Germany
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Liu RZ, Garcia E, Glubrecht DD, Poon HY, Mackey JR, Godbout R. CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid. Mol Cancer 2015; 14:129. [PMID: 26142905 PMCID: PMC4491424 DOI: 10.1186/s12943-015-0380-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Background Clinical trials designed to test the efficacy of retinoic acid (RA) as an adjuvant for the treatment of solid cancers have been disappointing, primarily due to RA resistance. Estrogen receptor (ER)-negative breast cancer cells are more resistant to RA than ER-positive cells. The expression and subcellular distribution of two RA-binding proteins, FABP5 and CRABP2, has already been shown to play critical roles in breast cancer cell response to RA. CRABP1, a third member of the RA-binding protein family, has not previously been investigated as a possible mediator of RA action in breast cancer. Methods CRABP1 and CRABP2 expression in primary breast tumor tissues was analyzed using gene expression and tissue microarrays. CRABP1 levels were manipulated using siRNAs and by transient overexpression. RA-induced subcellular translocation of CRABPs was examined by immunofluorescence microscopy and immunoblotting. RA-induced transactivation of RAR was analyzed using a RA response element (RARE)-driven luciferase reporter system. Effects of CRABP1 expression and RA treatment on downstream gene expression were investigated by semi-quantitative RT-PCR analysis. Results Compared to normal mammary tissues, CRABP1 expression is significantly down-regulated in ER+ breast tumors, but maintained in triple-negative breast cancers. Elevated CRABP1 levels are associated with poor patient prognosis, high Ki67 immunoreactivity and high tumor grade in breast cancer. The prognostic significance of CRABP1 is attributed to its cytoplasmic localization. We demonstrate that CRABP1 expression attenuates RA-induced cell growth arrest and inhibits RA signalling in breast cancer cells by sequestering RA in the cytoplasm. We also show that CRABP1 affects the expression of genes involved in RA biosynthesis, trafficking and metabolism. Conclusions CRABP1 is an adverse factor for clinical outcome in triple-negative breast cancer and a potent inhibitor of RA signalling in breast cancer cells. Our data indicate that CRABP1, in conjunction with previously identified CRABP2 and FABP5, plays a key role in breast cancer cell response to RA. We propose that these three RA-binding proteins can serve as biomarkers for predicting triple-negative breast cancer response to RA, with elevated levels of either cytoplasmic CRABP1 or FABP5 associated with RA resistance, and elevated levels of nuclear CRABP2 associated with sensitivity to RA. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0380-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Elizabeth Garcia
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Darryl D Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Ho Yin Poon
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
15
|
Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer. Tumour Biol 2014; 35:10295-300. [DOI: 10.1007/s13277-014-2348-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022] Open
|
16
|
Login H, Butowt R, Bohm S. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1. Brain Struct Funct 2014; 220:2143-57. [PMID: 24797530 DOI: 10.1007/s00429-014-0783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.
Collapse
Affiliation(s)
- Hande Login
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
17
|
Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A, Trukhanova L, Zueva E, Tavitian B, Dyakova N, Zborovskaya I, Tchevkina E. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle 2014; 13:1530-9. [PMID: 24626200 DOI: 10.4161/cc.28475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CRABP1 (cellular retinoic acid binding protein 1) belongs to the family of fatty acid binding proteins. Retinoic acid binding is the only known functional activity of this protein. The role of CRABP1 in human carcinogenesis remains poorly understood. Here, for the first time we demonstrated pro-metastatic and pro-tumorigenic activity of CRABP1 in mesenchymal tumors. Further functional analysis revealed that the pro-tumorigenic effect of CRABP1 does not depend on retinoic acid binding activity. These results suggest that CRABP1 could have an alternative intracellular functional activity that contributes to the high malignancy of transformed mesenchymal cells. Microarray analysis detected CRABP1-mediated alterations in the expression of about 100 genes, including those encoding key regulatory proteins. CRABP1 is ubiquitously expressed in monophasic synovial sarcomas, while in biphasic synovial sarcomas it is expressed uniquely by the spindle cells of the aggressive mesenchymal component. High level of CRABP1 expression is associated with lymph node metastasis and poor differentiation/high grade of pancreatic neuroendocrine tumors (pNETs). Presented data suggest CRABP1 as a promising biomarker of pNETs' clinical behavior. Our results give the first evidence of pro-tumorigenic and pro-metastatic activity of CRABP1 in mesenchymal and neuroendocrine tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elina Zueva
- N.N. Blokhin Russian Cancer Research Center; Moscow, Russia
| | | | | | | | | |
Collapse
|
18
|
Blum N, Begemann G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell Mol Life Sci 2013; 70:3907-27. [PMID: 23479131 PMCID: PMC11113817 DOI: 10.1007/s00018-013-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Cai AQ, Radtke K, Linville A, Lander AD, Nie Q, Schilling TF. Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development 2012; 139:2150-5. [PMID: 22619388 DOI: 10.1242/dev.077065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vitamin A derivative retinoic acid (RA) is a morphogen that patterns the anterior-posterior axis of the vertebrate hindbrain. Cellular retinoic acid-binding proteins (Crabps) transport RA within cells to both its nuclear receptors (RARs) and degrading enzymes (Cyp26s). However, mice lacking Crabps are viable, suggesting that Crabp functions are redundant with those of other fatty acid-binding proteins. Here we show that Crabps in zebrafish are essential for posterior patterning of the hindbrain and that they provide a key feedback mechanism that makes signaling robust as they are able to compensate for changes in RA production. Of the four zebrafish Crabps, Crabp2a is uniquely RA inducible and depletion or overexpression of Crabp2a makes embryos hypersensitive to exogenous RA. Computational models confirm that Crabp2a improves robustness within a narrow concentration range that optimizes a 'robustness index', integrating spatial information along the RA morphogen gradient. Exploration of signaling parameters in our models suggests that the ability of Crabp2a to transport RA to Cyp26 enzymes for degradation is a major factor in promoting robustness. These results demonstrate a previously unrecognized requirement for Crabps in RA signaling and hindbrain development, as well as a novel mechanism for stabilizing morphogen gradients despite genetic or environmental fluctuations in morphogen availability.
Collapse
Affiliation(s)
- Anna Q Cai
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
20
|
Helfer G, Ross AW, Russell L, Thomson LM, Shearer KD, Goodman TH, McCaffery PJ, Morgan PJ. Photoperiod regulates vitamin A and Wnt/β-catenin signaling in F344 rats. Endocrinology 2012; 153:815-24. [PMID: 22210746 DOI: 10.1210/en.2011-1792] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In seasonal mammals, growth, energy balance, and reproductive status are regulated by the neuroendocrine effects of photoperiod. Thyroid hormone (TH) is a key player in this response in a number of species. A neuroendocrine role for the nutritional factor vitamin A has not been considered, although its metabolic product retinoic acid (RA) regulates transcription via the same nuclear receptor family as TH. We hypothesized that vitamin A/RA plays a role in the neuroendocrine hypothalamus alongside TH signaling. Using a reporter assay to measure RA activity, we demonstrate that RA activity levels in the hypothalamus of photoperiod-sensitive F344 rats are reduced in short-day relative to long-day conditions. These lower RA activity levels can be explained by reduced expression of a whole network of RA signaling genes in the ependymal cells around the third ventricle and in the arcuate nucleus of the hypothalamus. These include genes required for uptake (Ttr, Stra6, and Crbp1), synthesis (Raldh1), receptor response (RAR), and ligand clearance (Crapb1 and Cyp26B1). Using melatonin injections into long-day rats, we show that the probable trigger of the fall in RA is melatonin. Surprisingly we also found RPE65 expression in the mammalian hypothalamus for the first time. Similar to RA signaling genes, members of the Wnt/β-catenin pathway and NMU and its receptor NMUR2 are also under photoperiodic control. Our data provide strong evidence for a novel endocrine axis, involving the nutrient vitamin A regulated by photoperiod and melatonin and suggest a role for several new players in the photoperiodic neuroendocrine response.
Collapse
Affiliation(s)
- Gisela Helfer
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wei LN. Chromatin remodeling and epigenetic regulation of the CrabpI gene in adipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:206-12. [PMID: 21435396 PMCID: PMC3151335 DOI: 10.1016/j.bbalip.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
Retinoic acid (RA) acts by binding to nuclear RA receptors (RARs) to regulate a broad spectrum of downstream target genes in most cell types examined. In cytoplasm, RA binds specifically to cellular retinoic acid binding proteins I (CRABPI), and II. Although the function of CRABPI in animals remains the subject of debate, it is believed that CRABPI binding facilitates RA metabolism, thereby modulating the concentration of RA and the type of RA metabolites in cells. The basal promoter of the CrabpI gene is a housekeeping promoter that can be regulated by thyroid hormones (T3), DNA methylation, sphinganine, and ethanol acting on its upstream regulatory region. T3 regulation of CrabpI is mediated by the binding of thyroid hormone receptor (TR) to a TR response element (TRE) approximately 1 kb upstream of the basal promoter. Specifically, in the adipocyte differentiation process, T3 regulation is bimodal and closely associated with the cellular differentiation status: T3 activates CrabpI in predifferentiated cells (e.g., mesenchymal precursors or fibroblasts), but suppresses this gene once cells are committed to adipocyte differentiation. These disparate effects are functions of T3-triggered differential recruitment of coregulatory complexes in conjunction with chromatin looping/folding that alters the configuration of this genomic locus along adipocyte differentiation. Subsequent sliding, disassembly and reassembly of nucleosomes occur, resulting in specific changes in the conformation of the basal promoter chromatin at different stages of differentiation. This chapter summarizes studies illustrating the epigenetic regulation of CrabpI expression during adipocyte differentiation. Understanding the pathways regulating CrabpI in this specific context might help to illuminate the physiological role of CRABPI in vivo. This article is part of a special issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, 6-122 Jackson Hall, 341 Church St. SE, Minneapolis, MN 55655, USA.
| |
Collapse
|
22
|
Chile T, Corrêa-Giannella ML, Fortes MAHZ, Bronstein MD, Cunha-Neto MB, Giannella-Neto D, Giorgi RR. Expression of CRABP1, GRP, and RERG mRNA in clinically non-functioning and functioning pituitary adenomas. J Endocrinol Invest 2011; 34:e214-8. [PMID: 21270509 DOI: 10.3275/7481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pituitary tumors account for approximately 10-15% of intracranial neoplasms. AIM Using the cDNA microarray method, we have previously compared expression under two distinct conditions: a pool of 4 clinically non-functioning pituitary adenomas (NFPA) and a spinal cord metastasis of a non-functioning pituitary carcinoma, in order to gain biological insights into genomic changes of pituitary neoplasias. In the present study, we further investigated the mRNA expression of 3 selected genes previously described as being involved in other neoplasias based on a series of 60 pituitary adenomas: CRABP1 (cellular retinoic acid binding protein 1), GRP (gastrin-releasing peptide), and RERG (Ras-related, estrogen- regulated, growth inhibitor). MATERIAL AND METHODS The expression of CRABP1, GRP, and RERG was determined by quantitative RT-PCR. RESULTS A significantly higher content of CRABP1 mRNA was observed in NFPA compared to functioning adenomas, and PRL-secreting adenomas showed a lower expression of this gene compared to normal pituitary. A lower expression of GRP mRNA was detected in NFPA compared to normal pituitary and also to functioning adenomas. RERG mRNA was overexpressed in NFPA in comparison to functioning adenomas and to normal pituitary. Among the functioning adenomas, only the ACTH-secreting adenomas presented a higher expression of RERG mRNA compared to normal pituitary. CONCLUSIONS The findings of differential expression of CRABP1 in prolactinomas and of RERG in NFPA compared to normal pituitary suggests that retinoic acid and estrogen receptor, respectively, could be involved in the tumorigenesis of these adenomas subtypes. Additional studies are required to further confirm this hypothesis.
Collapse
Affiliation(s)
- T Chile
- Laboratory for Cellular and Molecular Endocrinology (LIM-25), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
24
|
Uhrig M, Brechlin P, Jahn O, Knyazev Y, Weninger A, Busia L, Honarnejad K, Otto M, Hartmann T. Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Abeta42 reduces their differentiation potential. BMC Med 2008; 6:38. [PMID: 19087254 PMCID: PMC2645429 DOI: 10.1186/1741-7015-6-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 12/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neurodegeneration and changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Owing to varying APP processing, several beta-amyloid peptides (Abeta) are generated. In contrast to the form with 40 amino acids (Abeta40), the variant with 42 amino acids (Abeta42) is thought to be the pathogenic form triggering the pathological cascade in AD. While total-Abeta effects have been studied extensively, little is known about specific genome-wide effects triggered by Abeta42 or Abeta40 derived from their direct precursor C99. METHODS A combined transcriptomics/proteomics analysis was performed to measure the effects of intracellularly generated Abeta peptides in human neuroblastoma cells. Data was validated by real-time polymerase chain reaction (real-time PCR) and a functional validation was carried out using RNA interference. RESULTS Here we studied the transcriptomic and proteomic responses to increased or decreased Abeta42 and Abeta40 levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix) and proteomic approaches were combined to analyze the cellular response to the changed Abeta42- and Abeta40-levels. The cells responded to this challenge with significant changes in their expression pattern. We identified several dysregulated genes and proteins, but only the cellular retinoic acid binding protein 1 (CRABP1) was up-regulated exclusively in cells expressing an increased Abeta42/Abeta40 ratio. This consequently reduced all-trans retinoic acid (RA)-induced differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this effect was specific to the AD typical increase in the Abeta42/Abeta40 ratio, whereas a decreased ratio did not result in up-regulation of CRABP1. CONCLUSION We conclude that increasing the Abeta42/Abeta40 ratio up-regulates CRABP1, which in turn reduces the differentiation potential of the human neuroblastoma cell line SH-SY5Y, but increases cell proliferation. This work might contribute to the better understanding of AD neurogenesis, currently a controversial topic.
Collapse
Affiliation(s)
- Markus Uhrig
- Center for Molecular Biology of the University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang XJ, Chen J, Lv ZB, Nie ZM, Wang D, Shen HD, Wang XD, Wu XF, Zhang YZ. Expression and functional analysis of the cellular retinoic acid binding protein from silkworm pupae (Bombyx mori). J Cell Biochem 2008; 102:970-9. [PMID: 17486602 DOI: 10.1002/jcb.21333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellular retinoic acid binding protein (CRABP) is a member of intracellular lipid-binding protein (iLBP), and closely associated with retinoic acid (RA) activity. We have cloned the CRABP gene from silkworm pupae and studied the interaction between Bombyx mori CRABP (BmCRABP) and all-trans retinoic acid (atRA). The MTT assay data indicated that when BmCRABP is overexpressed in Bm5 cells, the cells dramatically resisted to atRA-induced growth inhibition. Conversely, the cells were sensitive to atRA treatment upon knocking down the BmCRABP expression. Subcellular localization revealed that BmCRABP is a cytoplasm protein, even when treated with atRA, the CRABP still remained in the cytoplasm. These data demonstrated that the function of BmCRABP have an effect on the physiological function of atRA.
Collapse
Affiliation(s)
- Xue-Jian Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci U S A 2007; 104:18694-9. [PMID: 18000064 DOI: 10.1073/pnas.0704433104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leukemia-associated chimeric oncoproteins often act as transcriptional repressors, targeting promoters of master genes involved in hematopoiesis. We show that CRABPI (encoding cellular retinoic acid binding protein I) is a target of PLZF, which is fused to RARalpha by the t(11;17)(q23;q21) translocation associated with retinoic acid (RA)-resistant acute promyelocytic leukemia (APL). PLZF represses the CRABPI locus through propagation of chromatin condensation from a remote intronic binding element culminating in silencing of the promoter. Although the canonical, PLZF-RARalpha oncoprotein has no impact on PLZF-mediated repression, the reciprocal translocation product RARalpha-PLZF binds to this remote binding site, recruiting p300, inducing promoter hypomethylation and CRABPI gene up-regulation. In line with these observations, RA-resistant murine PLZF/RARalpha+RARalpha/PLZF APL blasts express much higher levels of CRABPI than standard RA-sensitive PML/RARalpha APL. RARalpha-PLZF confers RA resistance to a retinoid-sensitive acute myeloid leukemia (AML) cell line in a CRABPI-dependent fashion. This study supports an active role for PLZF and RARalpha-PLZF in leukemogenesis, identifies up-regulation of CRABPI as a mechanism contributing to retinoid resistance, and reveals the ability of the reciprocal fusion gene products to mediate distinct epigenetic effects contributing to the leukemic phenotype.
Collapse
|
27
|
Papis E, Bernardini G, Gornati R, Menegola E, Prati M. Gene expression in Xenopus laevis embryos after Triadimefon exposure. Gene Expr Patterns 2007; 7:137-42. [PMID: 16875885 DOI: 10.1016/j.modgep.2006.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/23/2022]
Abstract
The triazole derivative Triadimefon (FON) is a systemic fungicide used to control powdery mildews, rusts, and other fungal pests. Some data have already been published about the teratogenic activity of this compound: craniofacial malformations were found in mouse, rat, and Xenopus laevis embryos exposed to FON. These alterations were correlated to defective branchial arch development possibly caused by abnormal neural crest cell (NCC) migration into the branchial mesenchyme. As the migration of NCCs is controlled by the HOX code and by an anteroposterior retinoic acid (RA) gradient, we analyzed the expression of CYP26, a key enzyme in RA metabolism, following FON exposure. The increased expression of this gene and the ability of citral (a RA inhibitor) to reduce the teratogenic effects of the fungicide support the notion that endogenous RA is involved in the mechanism of action of FON. Moreover, by in situ hybridization, we studied the effects of FON exposure at gastrula stage on the expression of some genes involved in craniofacial development, hindbrain patterning, and NCC migration. We observed abnormal localization of xCRABP, Hoxa2 and Xbap signal expression at the level of migrating NCC domains, whereas in the hindbrain, we did not find any alteration in Krox20 and Hoxa2 expression.
Collapse
Affiliation(s)
- Elena Papis
- Department of Biotechnology and Molecular Science, University of Insubria, via Dunant 3, 21100 Varese, Italy
| | | | | | | | | |
Collapse
|
28
|
Tyson-Capper AJ, Cork DMW, Wesley E, Shiells EA, Loughney AD. Characterization of cellular retinoid-binding proteins in human myometrium during pregnancy. ACTA ACUST UNITED AC 2006; 12:695-701. [PMID: 16959971 DOI: 10.1093/molehr/gal070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many complementary or competing signalling pathways bear an influence on the myometrium at any one time, and because the retinoic acid signalling pathway influences differentiation of a wide array of human tissues, this may be one of the determinants of myometrial differentiation during pregnancy. We have explored the novel hypothesis that the retinoids may act as important regulators in controlling the differentiated state of the human myometrium during pregnancy by characterizing the expression profiles for cellular retinoid-binding proteins CRBPI, CRABPI and CRABPII in non-pregnant, pregnant (non-labouring) and labouring human myometrium taken from the functionally distinct upper and lower uterine segments. In addition, we have investigated the effect of all-trans retinoic acid (ATRA) on the expression of several retinoic acid response genes including cyclooxygenase-2 (COX-2) and connexin-43 (Cx-43). Different spatial and temporal patterns of expression were observed for CRBPI, CRABPI and CRABPII within the upper and lower uterine segments through the three trimesters of pregnancy and in labour. Furthermore, the expression of COX-2, Cx-43, CRABPI, the transcription factor c-Jun and the retinoic acid receptor RARbeta altered in response to different concentrations of ATRA, suggesting that the differential expression of cellular retinoid-binding proteins may lead to different levels of retinoic acid being delivered to its nuclear targets, leading to the differential expression of specific target genes within the myometrium during pregnancy.
Collapse
Affiliation(s)
- Alison J Tyson-Capper
- School of Surgical and Reproductive Sciences, The Medical School, University of Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
29
|
Pfoertner S, Goelden U, Hansen W, Toepfer T, Geffers R, Ukena SN, von Knobloch R, Hofmann R, Buer J, Schrader AJ. Cellular retinoic acid binding protein I: expression and functional influence in renal cell carcinoma. Tumour Biol 2005; 26:313-23. [PMID: 16254461 DOI: 10.1159/000089262] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/03/2005] [Indexed: 11/19/2022] Open
Abstract
Despite the known anti-proliferative and tumor-suppressive effects seen with retinoic acid (RA), treatment of metastatic renal cell carcinoma (RCC) failed to meet the initial expectations. As the exact mechanisms of action of RA and especially the role of the cellular RA binding proteins (CRABP) have not been elucidated yet, we investigated the expression of CRABP-I and its potential influence on RA response in RCC. Real-time RT-PCR analysis disclosed a significant lack of CRABP-I expression in four RCC cell lines and 12 primary RCC samples; in contrast, high expression levels were found in the respective adjacent normal kidney tissue. To further investigate the impact of CRABP-I on RA response in RCC, A-498 RCC cells were employed as a cellular model system. CRABP-I was stably transfected into A-498 cells which consequently displayed substantial resistance to all-trans (ATRA) and 9-cis RA compared to vector controls lacking CRABP-I. Comparison of gene expression profiles of ATRA-treated CRABP-I-expressing A-498 cells and vector controls revealed specific regulation of 54 of approximately 20,000 genes tested on a selected human CodeLink UniSet Bioarray, with a prominent modulation of genes involved in transcriptional control, signaling, apoptosis, cell cycle regulation and metabolism. The genetic changes reported here contribute to a better understanding of the role of RA in RCC. They also provide new insights into CRABP-I-mediated signaling and gene expression.
Collapse
Affiliation(s)
- Susanne Pfoertner
- Department of Cell Biology and Immunology, German Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|