1
|
Neumann UH, Kwon MM, Baker RK, Kieffer TJ. Leptin contributes to the beneficial effects of insulin treatment in streptozotocin-diabetic male mice. Am J Physiol Endocrinol Metab 2018; 315:E1264-E1273. [PMID: 30300012 DOI: 10.1152/ajpendo.00159.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was long thought that the only hormone capable of reversing the catabolic consequences of diabetes was insulin. However, various studies have demonstrated that the adipocyte-derived hormone leptin can robustly lower blood glucose levels in rodent models of insulin-deficient diabetes. In addition, it has been suggested that some of the metabolic manifestations of insulin-deficient diabetes are due to hypoleptinemia as opposed to hypoinsulinemia. Because insulin therapy increases leptin levels, we sought to investigate the contribution of leptin to the beneficial effects of insulin therapy. To do this, we tested insulin therapy in streptozotocin (STZ) diabetic mice that were either on an ob/ ob background or that were given a leptin antagonist to determine if blocking leptin action would blunt the glucose-lowering effects of insulin therapy. We found that STZ diabetic ob/ ob mice have a diminished blood glucose-lowering effect in response to insulin therapy compared with STZ diabetic controls and exhibited more severe weight loss post-STZ injection. In addition, STZ diabetic mice administered a leptin antagonist through daily injection or plasmid expression respond less robustly to insulin therapy as assessed by both fasting blood glucose levels and blood glucose levels during an oral glucose tolerance test. However, leptin antagonism did not prevent the insulin-induced reduction in β-hydroxybutyrate and triglyceride levels. Therefore, we conclude that elevated leptin levels can contribute to the glucose-lowering effect of insulin therapy in insulin-deficient diabetes.
Collapse
Affiliation(s)
- Ursula H Neumann
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| | - Michelle M Kwon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
- Department of Surgery, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
2
|
Leptin as a Neuroprotector and a Central Nervous System Functional Stability Factor. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0120-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Gray CW, Coster ACF. A receptor state space model of the insulin signalling system in glucose transport. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2015; 32:457-73. [PMID: 25673317 DOI: 10.1093/imammb/dqv003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/10/2015] [Indexed: 11/13/2022]
Abstract
Insulin is a potent peptide hormone that regulates glucose levels in the blood. Insulin-sensitive cells respond to insulin stimulation with the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM), enabling the clearance of glucose from the blood. Defects in this process can give rise to insulin resistance and ultimately diabetes. One widely cited model of insulin signalling leading to glucose transport is that of Sedaghat et al. (2002) Am. J. Physiol. Endocrinol. Metab. 283, E1084-E1101. Consisting of 20 deterministic ordinary differential equations (ODEs), it is the most comprehensive model of insulin signalling to date. However, the model possesses some major limitations, including the non-conservation of key components. In the current work, we detail mathematical and sensitivity analyses of the Sedaghat model. Based on the results of these analyses, we propose a reduced state space model of the insulin receptor subsystem. This reduced model maintains the input-output relation of the original model but is computationally more efficient, analytically tractable and resolves some of the limitations of the Sedaghat model.
Collapse
Affiliation(s)
- Catheryn W Gray
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Szilvássy Z, Németh J, Kovács P, Paragh G, Sári R, Vígh L, Peitl B. Insulin resistance occurs in parallel with sensory neuropathy in streptozotocin-induced diabetes in rats: differential response to early vs late insulin supplementation. Metabolism 2012; 61:776-86. [PMID: 22154324 DOI: 10.1016/j.metabol.2011.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 12/31/2022]
Abstract
We investigated whether progressive sensory neuropathy was accompanied by changes in whole-body insulin sensitivity (WBIS) in rats made diabetic by streptozotocin (STZ). The effects of early and late insulin supplementation were also studied. The STZ-treated rats failed to gain weight and exhibited stable hyperglycemia and low plasma insulin levels with a decrease in nerve conduction velocity (NCV) measured in A and C fibers of the saphenous nerve. A decreased sensory neuropeptide (SNP) release such as that of substance P, somatostatin, and calcitonin gene-related peptide determined from organ fluid of tracheal preparations subjected to electrical field stimulation also occurred in diabetic animals. These features were accompanied by a decrease in WBIS measured by hyperinsulinemic-euglycemic glucose clamping and a decrease in insulin-stimulated glucose uptake in cardiac and gastrocnemius muscle. When insulin supplementation with slow-release implants (2 IU/d) was started 4 weeks after STZ injection, blood glucose level normalized. Both insulin sensitivity and sensory nerve function reflected in either NCV or SNP release completely recovered by the 12th post-STZ week. When the insulin implants were applied from the eighth post-STZ week, both WBIS and glucose uptake remained significantly decreased, with a seriously impaired NCV and SNP release with strong hyperglycemia. Late insulin supplementation, however, even by using double implantation from the 10th post-STZ week, was unable to restore blood glucose, WBIS, NCV, and SNP release by the 12th week. Insulin resistance occurs in parallel with sensory neuropathy in STZ-diabetic rats. Both can be improved by early but not late insulin supplementation.
Collapse
Affiliation(s)
- Zoltán Szilvássy
- Departments of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
5
|
Ghaffari T, Nouri M, Saei AA, Rashidi MR. Aldehyde and xanthine oxidase activities in tissues of streptozotocin-induced diabetic rats: effects of vitamin E and selenium supplementation. Biol Trace Elem Res 2012; 147:217-25. [PMID: 22231435 DOI: 10.1007/s12011-011-9291-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/24/2011] [Indexed: 01/07/2023]
Abstract
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.
Collapse
Affiliation(s)
- Tayyebeh Ghaffari
- Biochemistry Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
6
|
Serino AS, Adegoke OA, Zargar S, Gordon CS, Szigiato AA, Hawke TJ, Riddell MC. Voluntary physical activity and leucine correct impairments in muscle protein synthesis in partially pancreatectomised rats. Diabetologia 2011; 54:3111-20. [PMID: 21909838 DOI: 10.1007/s00125-011-2296-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/02/2011] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Poorly controlled type 1 diabetes mellitus can cause reduced skeletal muscle mass and weakness during adolescence, which may affect long-term management of the disease. The aim of this study was to determine whether regular voluntary physical activity and leucine feeding restore rates of protein synthesis and deficits in skeletal muscle mass in a young, hypoinsulinaemic/hyperglycaemic rat model of diabetes. METHODS Four-week-old male Sprague-Dawley rats were partially pancreatectomised (Px) to induce hypoinsulinaemia/hyperglycaemia and housed with/without access to running wheels for 3 weeks (n = 12-14/group). Sham surgery rats (shams) served as sedentary controls (n = 18). Protein synthesis and markers of protein anabolism were assessed in the fasted state and following leucine gavage. Fibre type and cross-sectional areas of the gastrocnemius muscle were measured using a metachromatic ATPase stain. RESULTS Compared with sedentary behaviour, regular activity lowered fasting glycaemia and reduced fed hyperglycaemia in Px rats. Active-Px rats, which ran 2.2 ± 0.71 km/night, displayed greater muscle mass and fibre areas similar to shams, while sedentary-Px rats displayed a 20-30% loss in muscle fibre areas. Muscle protein synthesis (basal and in response to leucine gavage) was impaired in sedentary-Px (by ~65%), but not in active-Px rats, when compared with shams. Following leucine gavage, the phosphorylation status of eIF4E binding protein 1 (4E-BP1) and ribosomal S6 kinase 1 (S6K1), markers of mammalian target of rapamycin complex 1 (mTORC1) signalling, increased in shams (by two- and ninefold, respectively) and in active-Px (1.5- and fourfold, respectively) rats, but not in sedentary-Px rats. CONCLUSION/INTERPRETATION Moderate physical activity in young Px rats normalises impairments in skeletal muscle growth and protein synthesis. These findings illustrate the critical compensatory role that modest physical activity and targeted nutrition can have on skeletal muscle growth during periods of hypoinsulinaemia in adolescent diabetes.
Collapse
Affiliation(s)
- A S Serino
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, Friedman JM. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 2010; 11:11-22. [PMID: 20074524 DOI: 10.1016/j.cmet.2009.11.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/02/2009] [Accepted: 11/30/2009] [Indexed: 12/16/2022]
Abstract
We tested whether leptin can ameliorate diabetes independent of weight loss by defining the lowest dose at which leptin treatment of ob/ob mice reduces plasma glucose and insulin concentration. We found that a leptin dose of 12.5 ng/hr significantly lowers blood glucose and that 25 ng/hr of leptin normalizes plasma glucose and insulin without significantly reducing body weight, establishing that leptin exerts its most potent effects on glucose metabolism. To find possible mediators of this effect, we profiled liver mRNA using microarrays and identified IGF Binding Protein 2 (IGFBP2) as being regulated by leptin with a similarly high potency. Overexpression of IGFBP2 by an adenovirus reversed diabetes in insulin-resistant ob/ob, Ay/a, and diet-induced obese mice, as well as insulin-deficient streptozotocin-treated mice. Hyperinsulinemic clamp studies showed a 3-fold improvement in hepatic insulin sensitivity following IGFBP2 treatment of ob/ob mice. These results show that IGFBP2 can regulate glucose metabolism, a finding with potential implications for the pathogenesis and treatment of diabetes.
Collapse
|
8
|
Alterations of behavioral and endocrinological reactivity induced by 3 brief social defeats in rats: relevance to human psychopathology. Psychoneuroendocrinology 2009; 34:1405-16. [PMID: 19482436 DOI: 10.1016/j.psyneuen.2009.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 11/21/2022]
Abstract
In the realm of animal models of psychopathology, social stress based procedures rely on robust theoretical prerequisites to meet construct validity criteria for the target syndromes. In order to further assess the relevance for human psychopathology of a social defeat based model in rats, known to elicit consistent behavioral and hormonal changes, we expanded its characterization on the basis of both behavioral parameters and peripheral biomarkers thought to be pertinent for clinical symptoms. Rats were subjected to 3 daily social defeat experiences that shortly thereafter led to the insurgence of defensive behaviors, anhedonia, and body weight loss. HPA axis showed an activated response when rats were sampled as early as after the first social defeat experience, while none of the peripheral immune, metabolic, and neurotrophic factors examined were concurrently affected. With the aim of determining the long-term bio-behavioral sequelae of the social defeat experience, rats were assessed also 3 weeks after the social defeats. At this time, behavioral changes were still observed, including decreased general activity and sociality in a social avoidance test, increased immobility and decreased escape responses in a forced swim test. These alterations were not paralleled by alterations in anhedonia nor HPA axis responses from controls, nor where evident changes in the humoral component of the immune response nor in brain derived neurotrophic factor levels, whereas a substantial increase in leptin levels was observed in previously socially defeated rats compared to control. Overall these data depict a very complex set of alterations induced both acutely and long-term by social stress in endocrinological and behavioral reactivity of rats.
Collapse
|
9
|
Abstract
Adipose tissue is not an inert cell mass contributing only to the storage of fat, but a sophisticated ensemble of cellular components with highly specialized and complex functions. In addition to managing the most important energy reserve of the body, it secretes a multitude of soluble proteins called adipokines, which have beneficial or, alternatively, deleterious effects on the homeostasis of the whole body. The expression of these adipokines is an integrated response to various signals received from many organs, which depends heavily on the integrity and physiological status of the adipose tissue. One of the main regulators of gene expression in fat is the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), which is a fatty acid- and eicosanoid-dependent nuclear receptor that plays key roles in the development and maintenance of the adipose tissue. Furthermore, synthetic PPARgamma agonists are therapeutic agents used in the treatment of type 2 diabetes.This review discusses recent knowledge on the link between fat physiology and metabolic diseases, and the roles of PPARgamma in this interplay via the regulation of lipid and glucose metabolism. Finally, we assess the putative benefits of targeting this nuclear receptor with still-to-be-identified highly selective PPARgamma modulators.
Collapse
Affiliation(s)
- Silvia I Anghel
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne CH-1015, Switzerland
| | | |
Collapse
|
10
|
Motyl KJ, McCabe LR. Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J Cell Physiol 2008; 218:376-84. [PMID: 18932203 DOI: 10.1002/jcp.21608] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leptin is a hormone secreted by adipocytes that is implicated in the regulation of bone density. Serum leptin levels are decreased in rodent models of type 1 (T1-) diabetes and in diabetic patients. Whether leptin mediates diabetic bone changes is unclear. Therefore, we treated control and T1-diabetic mice with chronic (28 days) subcutaneous infusion of leptin or saline to elucidate the therapeutic potential of leptin for diabetic osteoporosis. Leptin prevented the increase of marrow adipocytes and the increased aP2 expression that we observed in vehicle-treated diabetic mice. However, leptin did not prevent T1-diabetic decreases in trabecular bone volume fraction or bone mineral density in tibia or vertebrae. Consistent with this finding, markers of bone formation (osteocalcin RNA and serum levels) in diabetic mice were not restored to normal levels with leptin treatment. Interestingly, markers of bone resorption (TRAP5 RNA and serum levels) were decreased in diabetic mice by leptin treatment. In summary, we have demonstrated a link between low leptin levels in T1-diabetes and marrow adiposity. However, leptin treatment alone was not successful in preventing bone loss.
Collapse
Affiliation(s)
- Katherine J Motyl
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
11
|
do Carmo JM, Hall JE, da Silva AA. Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats. Am J Physiol Heart Circ Physiol 2008; 295:H1974-81. [PMID: 18790839 DOI: 10.1152/ajpheart.00265.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP responses to phenylephrine or sodium nitroprusside and autoregressive spectral analysis. Measurements were made during control period, 7 days after induction of diabetes, and 7 days after ICV leptin infusion. STZ diabetes was associated with hyperglycemia (422 +/- 17 mg/dl) and bradycardia (-79 +/- 4 beats/min). Leptin decreased glucose levels (165 +/- 16 mg/dl) and raised HR to control values (303 +/- 10 to 389 +/- 10 beats/min). Intrinsic HR (IHR) and chronotropic responses to a full-blocking dose of propranolol and atropine were reduced during diabetes (260 +/- 7 vs. 316 +/- 6, -19 +/- 2 vs. -43 +/- 6, and 39 +/- 3 vs. 68 +/- 8 beats/min), and leptin treatment restored these variables to normal (300 +/- 7, -68 +/- 10, and 71 +/- 8 beats/min). Leptin normalized BRS (bradycardia, -2.6 +/- 0.3, -1.7 +/- 0.2, and -3.0 +/- 0.5; and tachycardia, -3.2 +/- 0.4, -1.9 +/- 0.3, and -3.4 +/- 0.3 beats.min(-1).mmHg(-1) for control, diabetes, and leptin) and HR variability (23 +/- 4 to 11 +/- 1.5 ms2). Chronic glucose infusion to maintain hyperglycemia during leptin infusion did not alter the effect of leptin on IHR but abolished the improved BRS. These results show rapid impairment of autonomic nervous system control of HR after the induction of diabetes and that central nervous system actions of leptin can abolish the hyperglycemia as well as the altered IHR and BRS in STZ-induced diabetes.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
12
|
Signore AP, Zhang F, Weng Z, Gao Y, Chen J. Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. J Neurochem 2008; 106:1977-90. [PMID: 18466320 PMCID: PMC2634657 DOI: 10.1111/j.1471-4159.2008.05457.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leptin is well known as a hormone important in the central control of appetitive behaviors via receptor-mediated actions in the hypothalamus, where leptin adjusts food intake to maintain homeostasis with the body's energy stores. Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. This review summarizes our current knowledge of how leptin functions in the brain and then focuses on the ability of leptin to mitigate neuronal damage in experimental models of human neurological disorders. Damage to the brain by acute events such as stroke, or long-term loss of neurons associated with neurodegenerative diseases, including Parkinson's and Alzheimer's disease, may be amenable to treatment using leptin to limit death of susceptible cells. Leptin-mediated pro-survival signaling is now known to prevent the death of neurons in these models. The signaling cascades that leptin generates are shared by other neuroprotective molecules including insulin and erythropoietin, and are thus a component of the neurotrophic effects mediated by endogenous hormones. Coupled with evidence that leptin dysregulation in human disease also results in enhanced neuronal susceptibility to damage, development of leptin as a therapeutic methodology is an attractive and viable possibility.
Collapse
Affiliation(s)
- Armando P. Signore
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Zhongfang Weng
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - YanQing Gao
- State Key Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai, China 200032
| | - Jun Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- State Key Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai, China 200032
- Geriatric Research, Educational and Clinical Center Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
13
|
Malendowicz LK, Rucinski M, Belloni AS, Ziolkowska A, Nussdorfer GG. Leptin and the regulation of the hypothalamic-pituitary-adrenal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:63-102. [PMID: 17725965 DOI: 10.1016/s0074-7696(07)63002-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leptin, the product of the obesity gene (ob) predominantly secreted from adipocytes, plays a major role in the negative control of feeding and acts via a specific receptor (Ob-R), six isoforms of which are known at present. Evidence has been accumulated that leptin, like other peptides involved in the central regulation of food intake, controls the function of the hypothalamic-pituitary-adrenal (HPA) axis, acting on both its central and peripheral branches. Leptin, along with Ob-R, is expressed in the hypothalamus and pituitary gland, where it modulates corticotropin-releasing hormone and ACTH secretion, probably acting in an autocrine-paracrine manner. Only Ob-R is expressed in the adrenal gland, thereby making it likely that leptin affects it by acting as a circulating hormone. Although in vitro and in vivo findings could suggest a glucocorticoid secretagogue action in the rat, the bulk of evidence indicates that leptin inhibits steroid-hormone secretion from the adrenal cortex. In keeping with this, leptin was found to dampen the HPA axis response to many kinds of stress. In contrast, leptin enhances catecolamine release from the adrenal medulla. This observation suggests that leptin activates the sympathoadrenal axis and does not appear to agree with its above-mentioned antistress action. Leptin and/or Ob-R are also expressed in pituitary and adrenal tumors, but little is known about the role of this cytokine in the pathophysiology.
Collapse
Affiliation(s)
- Ludwik K Malendowicz
- Department of Histology and Embryology, School of Medicine, Karol Marcinkowski University of Medical Sciences, PL-60781 Poznan, Poland
| | | | | | | | | |
Collapse
|
14
|
Awad AS. Role of AT1 receptors in permeability of the blood–brain barrier in diabetic hypertensive rats. Vascul Pharmacol 2006; 45:141-7. [PMID: 16959546 DOI: 10.1016/j.vph.2006.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 12/01/2005] [Accepted: 04/01/2006] [Indexed: 02/07/2023]
Abstract
The precise mechanisms of vascular diseases in patients with diabetic hypertensive are not clearly understood. There are evidences of alteration in permeability of blood-brain barrier (BBB) in diabetic hypertensive rats. This study sought to examine the effect of candesartan on the systolic blood pressure and the brain endothelial barrier function and antioxidant enzymes in rat brain. Five groups of eight male Sprague-Dawley rats include: control group (gpI), diabetic hypertensive group (gpII), diabetic hypertensive group treated with candesartan (gpIII), diabetic hypertensive rats with epinephrine (gpIV) and diabetic hypertensive rats with epinephrine treated with candesartan (gpV). Diabetes was induced by single injection of 55 mg kg(-1) streptozotocin (STZ) i.p. Blood glucose was measured, rats with blood glucose higher than 300 mg/dl were identified as diabetic. After induction of diabetes, rats received L-NAME (0.5 mg/ml in drinking water for 1 week) starting on the day 4 after STZ injection. Systolic blood pressure (SBP) was recorded two times, at day 0 (before starting L-NAME) and at day 7 (after L-NAME treatment). Also, body weight was measured two times, at initial time (before STZ injection) and terminal (at the last day in the experiment). On the day of acute experiment, rats were anesthetized with sodium pentobarbital (35 mg/kg, i.p.). The integrity of the BBB was investigated using Evans blue (EB) dye (4 ml/kg, 2%). Epinephrine was used (40 micro g/kg) to increase the permeability of the brain. After decapitation, first the brain was removed, next homogenized and then the content of EB dye in the brain was measured. Another five groups of rats manipulated with the same manner except EB dye injection. These second group to evaluate antioxidant enzymes, reduced glutathione (GSH), lipid peroxides and superoxide dismutase (SOD) in brain homogenate. This study indicates that, in diabetic hypertensive rats, epinephrine administration leads to increase in microvascular-EB-albumin efflux to brain. However, candesartan treatment significantly attenuates this permeability to brain tissue and significantly increased GSH and SOD activity, while level of lipid peroxides was decreased significantly. The finding supports that the use of candesartan may offer a good alternative in the treatment of diabetic hypertensive subjects because it has an action that might be mediated through an antioxidant effect and beneficial effects on vascular endothelial permeability as well.
Collapse
Affiliation(s)
- Azza S Awad
- Department of Pharmacology and Toxicology, Faculty Pharmacy, Al-Azhar University (Girls), Nasr City, Cairo, Egypt.
| |
Collapse
|
15
|
Karrow NA. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav Immun 2006; 20:144-58. [PMID: 16023324 DOI: 10.1016/j.bbi.2005.05.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/09/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis (HPAA) and autonomic nervous system (ANS) are both activated during inflammation as an elaborate multi-directional communication pathway designed to restore homeostasis, in part, by regulating the inflammatory and subsequent immune response. During fetal and neonatal development programming of the HPAA, ANS and possibly the immune system is influenced by signals from the surrounding environment, as part of an adaptive mechanism to enhance the survival of the offspring. It is currently hypothesized that if this programming is either misguided, or the individual's environment is drastically altered such that neuroendocrine programming becomes maladaptive, it may contribute to the pathogenesis of certain diseases. Current research, suggests that exposure to inflammatory signals during critical windows of early life development may influence the programming of various genes within the neuroendocrine-immune axis. This review will provide, (1) an overview of the HPAA and ANS pathways that are activated during inflammation, highlighting studies that have used lipopolysaccharide as a model inflammagen and, (2) evidence to support the hypothesis that inflammatory stress during fetal and neonatal development can alter programming of the neuroendocrine-immune axis, influencing stress and immune responsiveness, and possibly disease resistance later in life.
Collapse
Affiliation(s)
- N A Karrow
- Centre for the Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Ont., Canada, N1G 2W1.
| |
Collapse
|
16
|
Martin OJ, Lee A, McGraw TE. GLUT4 Distribution between the Plasma Membrane and the Intracellular Compartments Is Maintained by an Insulin-modulated Bipartite Dynamic Mechanism. J Biol Chem 2006; 281:484-90. [PMID: 16269413 DOI: 10.1074/jbc.m505944200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The GLUT4 glucose transporter is predominantly retained inside basal fat and muscle cells, and it is rapidly recruited to the plasma membrane with insulin stimulation. There is controversy regarding the mechanism of basal GLUT4 retention. One model is that GLUT4 retention is dynamic, based on slow exocytosis and rapid internalization of the entire pool of GLUT4 (Karylowski, O., Zeigerer, A., Cohen, A., and McGraw, T. E. (2004) Mol. Biol. Cell 15, 870-882). In this model, insulin increases GLUT4 in the plasma membrane by modulating GLUT4 exocytosis and endocytosis. The second model is that GLUT4 retention is static, with approximately 90% of GLUT4 stored in compartments that are not in equilibrium with the cell surface in basal conditions (Govers, R., Coster, A. C., and James, D. E. (2004) Mol. Cell Biol. 24, 6456-6466). In this model, insulin increases GLUT4 in the plasma membrane by releasing it from the static storage compartment. Here we show that under all experimental conditions examined, basal GLUT4 retention is by a bipartite dynamic mechanism involving slow efflux and rapid internalization. To establish that the dynamic model developed in studies of the extreme conditions of >100 nm insulin and no insulin also describes GLUT4 behavior at more physiological insulin concentrations, we characterized GLUT4 trafficking in 0.5 nm insulin. This submaximal insulin concentration promotes an intermediate effect on both GLUT4 exocytosis and endocytosis, resulting in an intermediate degree of redistribution to the plasma membrane. These data establish that changes in the steady-state surface/total distributions of GLUT4 are the result of gradated, insulin-induced changes in GLUT4 exocytosis and endocytosis rates.
Collapse
Affiliation(s)
- Ola J Martin
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10013, USA
| | | | | |
Collapse
|