1
|
Kunachowicz D, Ściskalska M, Kepinska M. Modulatory Effect of Lifestyle-Related, Environmental and Genetic Factors on Paraoxonase-1 Activity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2813. [PMID: 36833509 PMCID: PMC9957543 DOI: 10.3390/ijerph20042813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Paraoxonase-1 (PON1) is a calcium-dependent, HDL-bound serum hydrolase active toward a wide variety of substrates. PON1 displays three types of activities, among which lactonase, paraoxonase, arylesterase and phosphotriesterase can be distinguished. Not only is this enzyme a major organophosphate compound detoxifier, but it is also an important constituent of the cellular antioxidant system and has anti-inflammatory and antiatherogenic functions. The concentration and activity of PON1 is highly variable among individuals, and these differences can be both of genetic origin and be a subject of epigenetic regulation. Owing to the fact that, in recent decades, the exposure of humans to an increasing number of different xenobiotics has been continuously rising, the issues concerning the role and activity of PON1 shall be reconsidered with particular attention to growing pharmaceuticals intake, dietary habits and environmental awareness. In the following manuscript, the current state of knowledge concerning the influence of certain modifiable and unmodifiable factors, including smoking, alcohol intake, gender, age and genotype variation on PON1 activity, along with pathways through which these could interfere with the enzyme's protective functions, is presented and discussed. Since exposure to certain xenobiotics plays a key role in PON1 activity, the influence of organophosphates, heavy metals and several pharmaceutical agents is also specified.
Collapse
Affiliation(s)
| | | | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland
| |
Collapse
|
2
|
Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3
|
Wysocka A, Zwolak A. The Relevance of Noncoding DNA Variations of Paraoxonase Gene Cluster in Atherosclerosis-Related Diseases. Int J Mol Sci 2021; 22:ijms22042137. [PMID: 33670025 PMCID: PMC7926863 DOI: 10.3390/ijms22042137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
The human paraoxonase (PON) gene cluster is comprised of three contiguous genes (PON1, PON2 and PON3) of presumably common origin coding three lactonases of highly similar structure and substrate specificity. The catalytic activity of PON proteins is directed toward artificial organophosphates and in physiological conditions toward thiolactones and oxidized phospholipids. Consequently, PON enzymes are regarded as an effective defense against oxidative stress and, as a result, against atherosclerosis development. Additionally, both PON's serum activity and its concentration are influenced by several polymorphic variations in coding and noncoding DNA regions of the PON gene cluster remaining in linkage disequilibrium. Hence, the genetic polymorphism of the PON gene cluster may contribute to atherosclerotic process progression or deceleration. In this review the authors analyzed the relevance of noncoding DNA polymorphic variations of PON genes in atherosclerosis-related diseases involving coronary and peripheral artery disease, stroke, diabetes mellitus, dementia and renal disease and concluded that the effect of PON gene cluster' polymorphism has a considerable impact on the course and outcome in these conditions. The following PON genetic variations may serve as additional predictors of the risk of atherosclerosis in selected populations and individuals.
Collapse
Affiliation(s)
- Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Chair and Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland
- Correspondence: ; Tel.: +48-814487720
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Chair and Department of Endocrinology, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
4
|
Sitagliptin-Dependent Differences in the Intensity of Oxidative Stress in Rat Livers Subjected to Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2738605. [PMID: 31781329 PMCID: PMC6875175 DOI: 10.1155/2019/2738605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/22/2019] [Accepted: 09/21/2019] [Indexed: 12/29/2022]
Abstract
Purpose Ischemia/reperfusion (IR) is the main cause of liver damage after transplantation. We evaluated the effect of sitagliptin (STG) on oxidative stress parameters in the rat liver under IR. Methods Rats were treated with STG (5 mg/kg) (S and SIR) or saline solution (C and CIR). Livers from CIR and SIR were subjected to ischemia (60 min) and reperfusion (24 h). During reperfusion, aminotransferases (ALT and AST) were determined in blood samples. Thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), paraoxonase-1 (PON1), glutathione peroxidase (GPx), and the mRNA expression of SOD1 were determined in liver homogenates after reperfusion. Different regions of livers were also histologically evaluated. Results The PON1 activity was higher, and the TBARS level was lower in SIR than in CIR. There was an inverse relationship between TBARS and PON1 levels in the whole cohort. The GPx activity was lower in ischemic than in nonischemic groups regardless of the STG treatment. In SIR, the SOD1 activity was higher compared to that in CIR. In S, the expression of SOD1 mRNA was the highest of all examined groups and positively correlated with the SOD1 activity in the whole animal cohort. During IR aminotransferases, the activity in the drug-treated group was lower in all examined points of time. In drug-treated groups, the percentage of steatosis was higher than that in nontreated groups regardless of IR. Conclusions The protective effect of STG on the rat liver, especially its antioxidant properties, was revealed under IR conditions.
Collapse
|
5
|
Meneses MJ, Silvestre R, Sousa-Lima I, Macedo MP. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20164049. [PMID: 31430977 PMCID: PMC6720961 DOI: 10.3390/ijms20164049] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are characterized by an overall state of inflammation and oxidative stress, which highlight the importance of a functional antioxidant system and normal activity of some endogenous enzymes, namely paraoxonase-1 (PON1). PON1 is an antioxidant and anti-inflammatory glycoprotein from the paraoxonases family. It is mainly expressed in the liver and secreted to the bloodstream, where it binds to HDL. Although it was first discovered due to its ability to hydrolyze paraoxon, it is now known to have an antiatherogenic role. Recent studies have shown that PON1 plays a protective role in other diseases that are associated with inflammation and oxidative stress, such as Type 1 and Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. The aim of this review is to elucidate the physiological role of PON1, as well as the impact of altered PON1 levels in metabolic disorders.
Collapse
Affiliation(s)
- Maria João Meneses
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ProRegeM PhD Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Regina Silvestre
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Sousa-Lima
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal
| | - Maria Paula Macedo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal.
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal.
- Medical Sciences Department and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Sayılan Özgün G, Özgün E, Tabakçıoğlu K, Süer Gökmen S, Eskiocak S, Çakır E. Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells. Balkan Med J 2017; 34:534-539. [PMID: 29215336 PMCID: PMC5785658 DOI: 10.4274/balkanmedj.2016.1217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 are antioxidant and anti-atherosclerotic structural high-density lipoprotein proteins that are mainly synthesized by the liver. No study has ever been performed to specifically examine the effects of caffeine on paraoxonase enzymes and on liver apolipoprotein A-1 protein levels. Aims: To investigate the dose-dependent effects of caffeine on liver apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels. Study Design: In vitro experimental study. Methods: HepG2 cells were incubated with 0 (control), 10, 50 and 200 μM of caffeine for 24 hours. Cell viability was evaluated by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels were measured by western blotting. Results: We observed a significant increase on apolipoprotein A-1 and paraoxonase-1 protein levels in the cells incubated with 50 µM of caffeine and a significant increase on paraoxonase-1 protein level in the cells incubated with 200 µM of caffeine. Conclusion: Our study showed that caffeine does not change paraoxonase-3 protein level, but the higher doses used in our study do cause an increase in both apolipoprotein A-1 and paraoxonase-1 protein levels in liver cells.
Collapse
Affiliation(s)
- Gülben Sayılan Özgün
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Eray Özgün
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Kıymet Tabakçıoğlu
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| | - Selma Süer Gökmen
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Sevgi Eskiocak
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - Erol Çakır
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
7
|
Ponce-Ruiz N, Rojas-García A, Barrón-Vivanco B, Elizondo G, Bernal-Hernández Y, Mejía-García A, Medina-Díaz I. Transcriptional regulation of human paraoxonase 1 by PXR and GR in human hepatoma cells. Toxicol In Vitro 2015; 30:348-54. [DOI: 10.1016/j.tiv.2015.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023]
|
8
|
[Is paraoxonase 1 a marker of cardiovascular risk in youth with type 1 diabetes? (Study about 109 cases)]. Presse Med 2015; 44:e185-90. [PMID: 25769648 DOI: 10.1016/j.lpm.2014.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES We purpose to verify if paraoxonase 1 (PON1) activity may be a marker of cardiovascular risk in a young Tunisian population with type 1 diabetes (T1D). METHODS PON1 activity was measured by a kinetic method using paraoxon as substrate. The other parameters were determined by automated methods. RESULTS One hundred and nine children and adolescents with T1D and 97 healthy subjects were involved in this study. PON1 activity and PON1/HDL-cholesterol ratio were significantly decreased in diabetics (303 ± 174 vs. 372 ± 180 U/L and 221 ± 139 vs. 298 ± 20 1U/mmol, P=0.006, P=0.002, respectively) compared to controls. A significant increase in total cholesterol, LDL-c and microalbuminuria was observed in diabetics compared to controls. PON1 activity was decreased by 9.5% in patients with diabetes duration ≥ 6 years, by 28.4% for those with fasting glycemia ≥ 7 mmol/L (P<0.001), by 14% in those with HbA1c ≥ 8% and by 12.3% for diabetics with dyslipidemia. PON1 activity is reduced when the number of cardiovascular risk factors increases (P<0.001). CONCLUSION PON1 seems to be associated to cardiovascular risk markers in T1D. This result remains to be seen. Nevertheless, improving PON1 activity could be a significant target for reducing cardiovascular risk.
Collapse
|
9
|
Wu KL, Chang SH, Manousakas I, Huang HH, Teong B, Chuang CW, Kuo SM. Effects of culturing media on hepatocytes differentiation using Volvox sphere as co-culturing vehicle. Biochem Biophys Res Commun 2015; 458:620-625. [DOI: 10.1016/j.bbrc.2015.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
|
10
|
Li YR, Zhu H, Kauffman M, Danelisen I, Misra HP, Ke Y, Jia Z. Paraoxonases function as unique protectors against cardiovascular diseases and diabetes: Updated experimental and clinical data. Exp Biol Med (Maywood) 2014; 239:899-906. [DOI: 10.1177/1535370214535897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Paraoxonase (PON) refers to a family of three enzymes, namely PON1, PON2, and PON3. PON1 and PON3 are found in circulation bound to high-density lipoprotein, whereas PON2 is an intracellular protein. PON1 was first discovered as an enzyme to hydrolyze the organophosphate pesticide paraoxon, an activity that both PON2 and PON3 lack. All three PON enzymes are able to degrade oxidized lipids and protect against oxidative stress. PON enzymes also act to suppress inflammation. Animal studies show a critical role for PON enzymes, especially PON1 in protecting against cardiovascular diseases and related disorders, including diabetes and metabolic syndrome. In line with the findings in experimental animals, accumulating evidence from clinical research also indicates that PON enzymes function as potential protectors in human cardiovascular diseases and related disorders. Identification of PON enzymes as important players in cardiovascular health will facilitate the development of novel preventive and therapeutic modalities targeting PON enzymes to combat cardiovascular diseases and related disorders, which collectively constitute the chief contributors to the global burden of disease. This review describes the biochemical properties and molecular regulation of PON and summarizes the major recent findings on the functions of PON in protecting against cardiovascular diseases and related disorders.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
- Virginia-Tech-Wake Forest University School of Biomedical Engineers and Sciences, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Biology, University of North Carolina Greensboro, NC 27412, USA
| | - Hong Zhu
- Department of Pharmacology, Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | | | - Igor Danelisen
- Department of Pharmacology, Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Hara P Misra
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zhenquan Jia
- Department of Biology, University of North Carolina Greensboro, NC 27412, USA
| |
Collapse
|
11
|
Kim DS, Marsillach J, Furlong CE, Jarvik GP. Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease. Pharmacogenomics 2014; 14:1495-515. [PMID: 24024900 DOI: 10.2217/pgs.13.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL's antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson's disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic L-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA
| | | | | | | |
Collapse
|
12
|
Kim MJ, Jeong HJ, Kim DW, Sohn EJ, Jo HS, Kim DS, Kim HA, Park EY, Park JH, Son O, Han KH, Park J, Eum WS, Choi SY. PEP-1-PON1 protein regulates inflammatory response in raw 264.7 macrophages and ameliorates inflammation in a TPA-induced animal model. PLoS One 2014; 9:e86034. [PMID: 24465855 PMCID: PMC3900452 DOI: 10.1371/journal.pone.0086034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS) or hydrogen peroxide (H2O2)-treated Raw 264.7 cells as well as mice with 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin inflammation. We demonstrated that PEP-1-PON1 protein transduced into Raw 264.7 cells and markedly protected against LPS or H2O2-induced cell death by inhibiting cellular reactive oxygen species (ROS) levels, the inflammatory mediator’s expression, activation of mitogen-activated protein kinases (MAPKs) and cellular apoptosis. Furthermore, topically applied PEP-1-PON1 protein ameliorates TPA-treated mice skin inflammation via a reduction of inflammatory response. Our results indicate that PEP-1-PON1 protein plays a key role in inflammation and oxidative stress in vitro and in vivo. Therefore, we suggest that PEP-1-PON1 protein may provide a potential protein therapy against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Hoon Jae Jeong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwondo, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Chungcheonnamdo, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Pyongchon, Kyunggido, Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
- * E-mail: (WSE); (SYC)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
- * E-mail: (WSE); (SYC)
| |
Collapse
|
13
|
Litvinov D, Mahini H, Garelnabi M. Antioxidant and anti-inflammatory role of paraoxonase 1: implication in arteriosclerosis diseases. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012. [PMID: 23181222 PMCID: PMC3503369 DOI: 10.4103/1947-2714.103310] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Paraoxonase 1 (PON1) is a hydrolytic enzyme with wide range of substrates, and capability to protect against lipid oxidation. Despite of the large number of compounds that can be hydrolyzed by paraoxonase, the biologically relevant substrates are still not clearly determined. There is a massive in vitro and in vivo data to demonstrate the beneficial effects of PON1 in several atherosclerosis-related processes. The enzyme is primarily expressed in liver; however, it is also localized in other tissues. PON1 attracted significant interest as a protein that is responsible for the most of antioxidant properties of high-density lipoprotein (HDL). Several bioactive molecules such as dietary polyphenols, aspirin and its hydrolysis product salicylate, are known to stimulate PON1 transcription activation in mouse liver and HepG2 cell line. Studies on the activity, function, and genetic makeup have revealed a protective role of PON1. Some striking data were obtained in PON1 gene knockout and PON1 transgenic mouse models and in human studies. The goal of this review is to assess the current understanding of PON1 expression, enzymatic and antioxidant activity, and its atheroprotective effects. Results from in vivo and in vitro basic studies; and from human studies on the association of PON1 with coronary artery disease (CAD) and ischemic stroke will be discussed.
Collapse
Affiliation(s)
- Dmitry Litvinov
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | | | | |
Collapse
|
14
|
Regulation of hepatic paraoxonase-1 expression. J Lipids 2012; 2012:684010. [PMID: 22548179 PMCID: PMC3324161 DOI: 10.1155/2012/684010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/29/2012] [Indexed: 02/06/2023] Open
Abstract
Serum paraoxonase-1 (PON1) is a member of the paraoxonases family (PON1, PON2, and PON3). PON1 is synthesized and secreted by the liver, and in circulation it is associated with HDL. PON1 has antioxidative properties, which are associated with the enzyme's capability to decrease oxidative stress in atherosclerotic lesions and to attenuate atherosclerosis development. Epidemiological evidence demonstrates that low PON1 activity is associated with increased risk of cardiovascular events and cardiovascular disease and is an independent risk factor for coronary artery disease. Therefore, pharmacological modulation of PON1 activity or PON1 gene expression could constitute a useful approach for preventing atherosclerosis. A primary determinant of serum PON1 levels is the availability of the enzyme for release by the liver, the principal site of PON1 production. Together with the enzyme secretion rate, enzymatic turnover, and protein stability, the level of PON1 gene expression is a major determinant of PON1 status. This paper summarizes recent progress in understanding the regulation of PON1 expression in hepatocytes.
Collapse
|
15
|
Bilen Ç, Beyaztaş S, Arslan O, Güler ÖÖ. Investigation of heavy metal effects on immobilized paraoxanase by glutaraldehyde. J Enzyme Inhib Med Chem 2012; 28:440-6. [PMID: 22233542 DOI: 10.3109/14756366.2011.647007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serum paraoxonase 1 (PON1) was purified from bovine serum using hydrophobic interaction chromotography on Sepharose 4B-coupled l-tyrosine 1-naphthylamine gel, and monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Paraoxonase enzyme was immobilized using different ratios of glutaraldehyde and the maximum activity was observed with 7% glutaraldehyde. The effects of inhibition by Mn(+2), Co(+2) and Cu(+2) heavy metals on the immobilized and free enzyme activities were studied. At the optimum pH and temperature, the K(m) and V(max) kinetic values for bovine serum paraoxonase and immobilized paraoxonase towards paraoxon substrate were determined as 0.296 × 10(-3) M & 37.04 EU vs. 0.727-10(-3) M & 36.36 EU, respectively.
Collapse
Affiliation(s)
- Çiğdem Bilen
- Department of Chemistry/Biochemistry div., Balikesir University Science and Art Faculty , Balikesir , Turkey
| | | | | | | |
Collapse
|
16
|
Giroix MH, Irminger JC, Lacraz G, Noll C, Calderari S, Ehses JA, Coulaud J, Cornut M, Kassis N, Schmidlin F, Paul JL, Kergoat M, Janel N, Halban PA, Homo-Delarche F. Hypercholesterolaemia, signs of islet microangiopathy and altered angiogenesis precede onset of type 2 diabetes in the Goto-Kakizaki (GK) rat. Diabetologia 2011; 54:2451-62. [PMID: 21744291 DOI: 10.1007/s00125-011-2223-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/23/2011] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS The adult non-obese Goto-Kakizaki (GK) rat model of type 2 diabetes, particularly females, carries in addition to hyperglycaemia a genetic predisposition towards dyslipidaemia, including hypercholesterolaemia. As cholesterol-induced atherosclerosis may be programmed in utero, we looked for signs of perinatal lipid alterations and islet microangiopathy. We hypothesise that such alterations contribute towards defective pancreas/islet vascularisation that might, in turn, lead to decreased beta cell mass. Accordingly, we also evaluated islet inflammation and endothelial activation in both prediabetic and diabetic animals. METHODS Blood, liver and pancreas were collected from embryonic day (E)21 fetuses, 7-day-old prediabetic neonates and 2.5-month-old diabetic GK rats and Wistar controls for analysis/quantification of: (1) systemic variables, particularly lipids; (2) cholesterol-linked hepatic enzyme mRNA expression and/or activity; (3) pancreas (fetuses) or collagenase-isolated islet (neonates/adults) gene expression using Oligo GEArray microarrays targeted at rat endothelium, cardiovascular disease biomarkers and angiogenesis, and/or RT-PCR; and (4) pancreas endothelial immunochemistry: nestin (fetuses) or von Willebrand factor (neonates). RESULTS Systemic and hepatic cholesterol anomalies already exist in GK fetuses and neonates. Hyperglycaemic GK fetuses exhibit a similar percentage decrease in total pancreas and islet vascularisation and beta cell mass. Normoglycaemic GK neonates show systemic inflammation, signs of islet pre-microangiopathy, disturbed angiogenesis, collapsed vascularisation and altered pancreas development. Concomitantly, GK neonates exhibit elevated defence mechanisms. CONCLUSIONS/INTERPRETATION These data suggest an autoinflammatory disease, triggered by in utero programming of cholesterol-induced islet microangiopathy interacting with chronic hyperglycaemia in GK rats. During the perinatal period, GK rats show also a marked deficient islet vascularisation in conjunction with decreased beta cell mass.
Collapse
Affiliation(s)
- M-H Giroix
- Laboratoire B2PE, Biologie et Pathologie du Pancréas Endocrine, Unité Biologie Fonctionnelle et Adaptative-EAC CNRS 4413, Université Paris-Diderot, Bâtiment Lamarck, Case 7104, 5 rue Marie-Andrée Lagroua Weill-Hallé, 75205, Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Costa LG, Giordano G, Furlong CE. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem Pharmacol 2010; 81:337-44. [PMID: 21093416 DOI: 10.1016/j.bcp.2010.11.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 12/15/2022]
Abstract
Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated enzyme displaying esterase and lactonase activity. PON1 hydrolyzes several organophosphorus (OP) insecticides and nerve agents, a number of exogenous and endogenous lactones, and metabolizes toxic oxidized lipids of low density lipoproteins (LDL) and HDL. As such, PON1 plays a relevant role in determining susceptibility to OP toxicity, cardiovascular diseases and several other diseases. Serum PON1 activity in a given population can vary by at least 40-fold. Most of this variation can be accounted for by genetic polymorphisms in the coding region (Q192R, L55M) and in the promoter region (T-108C). However, exogenous factors may also modulate PON1 activity and/or level of expression. This paper examines various factors that have been found to positively modulate PON1. Certain drugs (e.g. hypolipemic and anti-diabetic compounds), dietary factors (antioxidants, polyphenols), and life-style factors (moderate alcohol consumption) appear to increase PON1 activity. Given the relevance of PON1 in protecting from certain environmental exposure and from cardiovascular and other diseases, there is a need for further mechanistic, animal, and clinical research in this area, and for consideration of possible alternative strategies for increasing the levels and activity of PON1.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
18
|
Wójcicka G, Jamroz-Wiśniewska A, Marciniak A, Łowicka E, Bełtowski J. The differentiating effect of glimepiride and glibenclamide on paraoxonase 1 and platelet-activating factor acetylohydrolase activity. Life Sci 2010; 87:126-32. [PMID: 20638992 DOI: 10.1016/j.lfs.2010.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 01/11/2023]
Abstract
AIMS The present study was designed to examine the effect of sulphonylureas, glimepiride (GM) and glibenclamide (GB), on paraoxonase 1 (PON1) and platelet activating factor acetylohydrolase (PAF-AH) activity in normal and streptozotocin (STZ)-induced (50 mg/kg) diabetic rats. MAIN METHODS In treated groups, glimepiride (0.1 mg/kg) or glibenclamide (2 mg/kg) was given orally for 4 weeks. A PON1 and PAF-AH activity were estimated by spectrophotometric method. KEY FINDINGS Hyperglycemia was accompanied by a significant decrease in plasma PON1 activity toward paraoxon (P < 0.001) and phenyl acetate (P < 0.01) and increase in plasma PAF-AH activity (P < 0.01). In STZ-induced diabetic rats the administration of both GM and GB had no effect on plasma PON1 activity but reversed elevated plasma PAF-AH activity (GM: P < 0.05, GB: P < 0.01). In non-diabetic rats after either GM or GB administration the decreased PON1 activity in the plasma was observed (GM: P < 0.001, GB: P < 0.05), but plasma PAF-AH activity remained unchanged. Both GM and GB had no effect on total plasma antioxidant capacity in diabetic and control treated groups. Additionally, both drugs increased PON1 activity toward phenyl acetate in the liver, in diabetic rats (GM: P < 0.05, GB:ns) as well as in non-diabetic rats (GM: P < 0.001, GB: P < 0.001), and reduced lipid peroxidation in the liver. SIGNIFICANCE These results demonstrate that in streptozotocin-induced diabetic rats as well as in normal rats glimepiride and glibenclamide have no beneficial effects on circulating PON1 and PAF-AH activities, but both drugs increase PON1 activity in the liver.
Collapse
Affiliation(s)
- Grazyna Wójcicka
- Department of Pathophysiology, Medical University, ul Jaczewskiego 8, 20-090 Lublin, Poland.
| | | | | | | | | |
Collapse
|