1
|
Grunow JJ, Gan T, Lewald H, Martyn JAJ, Blobner M, Schaller SJ. Insulin signaling in skeletal muscle during inflammation and/or immobilisation. Intensive Care Med Exp 2023; 11:16. [PMID: 36967414 PMCID: PMC10040391 DOI: 10.1186/s40635-023-00503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/20/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND The decline in the downstream signal transduction pathway of anabolic hormone, insulin, could play a key role in the muscle atrophy and insulin resistance observed in patients with intensive care unit acquired weakness (ICUAW). This study investigated the impact of immobilisation via surgical knee and ankle fixation and inflammation via Corynebacterium parvum injection, alone and in combination, as risk factors for altering insulin transduction and, therefore, their role in ICUAW. RESULTS Muscle weight was significantly decreased due to immobilisation [estimated effect size (95% CI) - 0.10 g (- 0.12 to - 0.08); p < 0.001] or inflammation [estimated effect size (95% CI) - 0.11 g (- 0.13 to - 0.09); p < 0.001] with an additive effect of both combined (p = 0.024). pAkt was only detectable after insulin stimulation [estimated effect size (95% CI) 85.1-fold (76.2 to 94.0); p < 0.001] irrespective of the group and phosphorylation was not impaired by the different perturbations. Nevertheless, the phosphorylation of GSK3 observed in the control group after insulin stimulation was decreased in the immobilisation [estimated effect size (95% CI) - 40.2 (- 45.6 to - 34.8)] and inflammation [estimated effect size (95% CI) - 55.0 (- 60.4 to - 49.5)] groups. The expression of phosphorylated GS (pGS) was decreased after insulin stimulation in the control group and significantly increased in the immobilisation [estimated effect size (95% CI) 70.6-fold (58.8 to 82.4)] and inflammation [estimated effect size (95% CI) 96.7 (85.0 to 108.5)] groups. CONCLUSIONS Both immobilisation and inflammation significantly induce insulin resistance, i.e., impair the insulin signaling pathway downstream of Akt causing insufficient GSK phosphorylation and, therefore, its activation which caused increased glycogen synthase phosphorylation, which could contribute to muscle atrophy of immobilisation and inflammation.
Collapse
Affiliation(s)
- Julius J Grunow
- Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CVK, CCM), Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Gan
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Ismaninger Straße 22, 81675, Munich, Bavaria, Germany
| | - Heidrun Lewald
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Ismaninger Straße 22, 81675, Munich, Bavaria, Germany
| | - J A Jeevendra Martyn
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, and Harvard Medical School, 51 Blossom Street, Room 206, Boston, 02114, MA, USA
| | - Manfred Blobner
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Ismaninger Straße 22, 81675, Munich, Bavaria, Germany
| | - Stefan J Schaller
- Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CVK, CCM), Charitéplatz 1, 10117, Berlin, Germany.
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Ismaninger Straße 22, 81675, Munich, Bavaria, Germany.
| |
Collapse
|
2
|
Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle. Metabolites 2022; 12:metabo12090800. [PMID: 36144205 PMCID: PMC9506277 DOI: 10.3390/metabo12090800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 01/01/2023] Open
Abstract
Burn injury remains a significant public health issue worldwide. Metabolic derangements are a major complication of burn injury and negatively affect the clinical outcomes of severely burned patients. These metabolic aberrations include muscle wasting, hypermetabolism, hyperglycemia, hyperlactatemia, insulin resistance, and mitochondrial dysfunction. However, little is known about the impact of burn injury on the metabolome profile in skeletal muscle. We have previously shown that farnesyltransferase inhibitor (FTI) reverses burn injury-induced insulin resistance, mitochondrial dysfunction, and the Warburg effect in mouse skeletal muscle. To evaluate metabolome composition, targeted quantitative analysis was performed using capillary electrophoresis mass spectrometry in mouse skeletal muscle. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and hierarchical cluster analysis demonstrated that burn injury induced a global change in metabolome composition. FTI treatment almost completely prevented burn injury-induced alterations in metabolite levels. Pathway analysis revealed that the pathways most affected by burn injury were purine, glutathione, β-alanine, glycine, serine, and threonine metabolism. Burn injury induced a suppressed oxidized to reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio as well as oxidative stress and adenosine triphosphate (ATP) depletion, all of which were reversed by FTI. Moreover, our data raise the possibility that burn injury may lead to increased glutaminolysis and reductive carboxylation in mouse skeletal muscle.
Collapse
|
3
|
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am J Physiol Cell Physiol 2021; 321:C58-C71. [PMID: 33909503 DOI: 10.1152/ajpcell.00106.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical, and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Finally, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions that have the potential to significantly improve patient care.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Auger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury. Burns 2020; 46:663-674. [DOI: 10.1016/j.burns.2019.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
|
5
|
|
6
|
Fischer A, Lüersen K, Schultheiß G, de Pascual-Teresa S, Mereu A, Ipharraguerre IR, Rimbach G. Supplementation with nitrate only modestly affects lipid and glucose metabolism in genetic and dietary-induced murine models of obesity. J Clin Biochem Nutr 2019; 66:24-35. [PMID: 32001953 PMCID: PMC6983433 DOI: 10.3164/jcbn.19-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023] Open
Abstract
To gain a better understanding of how nitrate may affect carbohydrate and lipid metabolism, female wild-type mice were fed a high-fat, high-fructose diet supplemented with either 0, 400, or 800 mg nitrate/kg diet for 28 days. Additionally, obese female db/db mice were fed a 5% fat diet supplemented with the same levels and source of nitrate. Nitrate decreased the sodium-dependent uptake of glucose by ileal mucosa in wild-type mice. Moreover, nitrate significantly decreased triglyceride content and mRNA expression levels of Pparγ in liver and Glut4 in skeletal muscle. Oral glucose tolerance as well as plasma cholesterol, triglyceride, insulin, leptin, glucose and the activity of ALT did not significantly differ between experimental groups but was higher in db/db mice than in wild-type mice. Nitrate changed liver fatty acid composition and mRNA levels of Fads only slightly. Further hepatic genes encoding proteins involved in lipid and carbohydrate metabolism were not significantly different between the three groups. Biomarkers of inflammation and autophagy in the liver were not affected by the different dietary treatments. Overall, the present data suggest that short-term dietary supplementation with inorganic nitrate has only modest effects on carbohydrate and lipid metabolism in genetic and dietary-induced mouse models of obesity.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerhard Schultheiß
- Animal Welfare Officer, University of Kiel, Hermann-Rodewald-Strasse 12, 24118 Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Alessandro Mereu
- Yara Iberian, C/ Infanta Mercedes 31 - 2nd floor, 28020 Madrid, Spain
| | - Ignacio R Ipharraguerre
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| |
Collapse
|
7
|
Guo Y, You Y, Lv D, Yan J, Shang FF, Wang X, Zhang C, Fan Q, Luo S. Inducible nitric oxide synthase contributes to insulin resistance and cardiac dysfunction after burn injury in mice. Life Sci 2019; 239:116912. [PMID: 31634465 DOI: 10.1016/j.lfs.2019.116912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022]
Abstract
AIMS Cardiac dysfunction is a major cause of multi-organ dysfunction in critical care units following severe burns. The purpose of this study was to investigate the role of inducible nitric oxide synthase (iNOS) in cardiac dysfunction in burned mice. MATERIALS AND METHODS Wild-type and iNOS-knockout mice were subjected to 30% total body surface area burns. Next, the expression of iNOS was measured at 1, 3 and 7 days post-burn. Cardiac function, insulin sensitivity, inflammation, oxidative stress, and apoptosis in the hearts of the mice were assessed at 3 days post-burn. KEY FINDINGS Compared to control mice, iNOS expression was increased and reached a maximum in the heart of burned mice at 3 days post-burn. iNOS deficiency significantly alleviated the cardiac dysfunction and insulin resistance in burned mice. In addition, burn-induced inflammation, oxidative stress, and apoptosis in the heart were markedly reduced in iNOS-knockout burned mice when compared to corresponding values in wild-type burned mice. SIGNIFICANCE Our study demonstrates that iNOS contributes to insulin resistance in the hearts of mice following burn injury, and iNOS deficiency protects cardiac function against burn injury in mice, suggesting iNOS as a potential therapeutic target to treat burn injuries.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuehua You
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qingdan Fan
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Nakazawa H, Ikeda K, Shinozaki S, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Yorozu T, Inoue S, Kaneki M. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle. FEBS Open Bio 2019; 9:348-363. [PMID: 30761259 PMCID: PMC6356165 DOI: 10.1002/2211-5463.12580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Life Sciences and Bioethics Tokyo Medical and Dental University Japan
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Yong-Ming Yu
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Ronald G Tompkins
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Tomoko Yorozu
- Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan.,Tokyo Metropolitan Institute of Gerontology Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| |
Collapse
|
9
|
Finnerty CC, McKenna CF, Cambias LA, Brightwell CR, Prasai A, Wang Y, El Ayadi A, Herndon DN, Suman OE, Fry CS. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury. J Physiol 2017; 595:6687-6701. [PMID: 28833130 PMCID: PMC5663820 DOI: 10.1113/jp274841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. ABSTRACT Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P < 0.05). Burn injury induced robust atrophy in muscles located both proximal and distal to the injury site (∼30% decrease in fibre cross-sectional area, P < 0.05). Additionally, burn injury induced skeletal muscle regeneration, satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P < 0.05). These findings support an integral role for satellite cells in the aetiology of lean tissue recovery following a severe burn injury.
Collapse
Affiliation(s)
- Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
| | - Colleen F. McKenna
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| | - Lauren A. Cambias
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| | - Camille R. Brightwell
- Division of Rehabilitation SciencesUniversity of Texas Medical Branch, GalvestonTXUSA
| | - Anesh Prasai
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Ye Wang
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Amina El Ayadi
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
| | - Oscar E. Suman
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Shriners Hospital for ChildrenGalvestonTXUSA
| | - Christopher S. Fry
- Shriners Hospital for ChildrenGalvestonTXUSA
- Institute for Translational ScienceUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
10
|
Abreu P, Leal-Cardoso JH, Ceccatto VM, Hirabara SM. Regulation of muscle plasticity and trophism by fatty acids: A short review. Rev Assoc Med Bras (1992) 2017; 63:148-155. [PMID: 28355376 DOI: 10.1590/1806-9282.63.02.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/26/2016] [Indexed: 11/22/2022] Open
Abstract
The skeletal muscle tissue has a remarkable ability to alter its plastic structural and functional properties after a harmful stimulus, regulating the expression of proteins in complex events such as muscle regeneration. In this context, considering that potential therapeutic agents have been widely studied, nutritional strategies have been investigated in order to improve the regenerative capacity of skeletal muscle. There is evidence of the modulatory action of fatty acids, such that oleic and linoleic acids, that are abundant in Western diets, on muscle function and trophism. Thus, fatty acids appear to be potential candidates to promote or impair the recovery of muscle mass and function during regeneration, since they modulate intracellular pathways that regulate myogenesis. This study is the first to describe and discuss the effect of fatty acids on muscle plasticity and trophism, with emphasis on skeletal muscle regeneration and in vitro differentiation of muscle cells.
Collapse
Affiliation(s)
- Phablo Abreu
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Henrique Leal-Cardoso
- Department of Physiology, Institute for Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Vânia Marilande Ceccatto
- Department of Physiology, Institute for Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Sandro Massao Hirabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil.,Interdisciplinary Graduate Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation. Sci Rep 2017; 7:6618. [PMID: 28747716 PMCID: PMC5529411 DOI: 10.1038/s41598-017-07011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Metabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia. Nonetheless, the molecular pathogenesis and the relation between these diverse metabolic alterations are poorly understood. We have previously shown that burn increases farnesyltransferase (FTase) expression and protein farnesylation and that FTase inhibitor (FTI) prevents burn-induced hyperlactatemia, insulin resistance, and increased proteolysis in mouse skeletal muscle. In this study, we found that burn injury activated mTORC1 and hypoxia-inducible factor (HIF)-1α, which paralleled dysfunction, morphological alterations (i.e., enlargement, partial loss of cristae structure) and impairment of respiratory supercomplex assembly of the mitochondria, and ER stress. FTI reversed or ameliorated all of these alterations in burned mice. These findings indicate that these burn-induced changes, which encompass various aspects of metabolism, may be linked to one another and require protein farnesylation. Our results provide evidence of involvement of the mTORC1-HIF-1α pathway in burn-induced metabolic derangements. Our study identifies protein farnesylation as a potential hub of the signaling network affecting multiple aspects of metabolic alterations after burn injury and as a novel potential molecular target to improve the clinical outcome of severely burned patients.
Collapse
|
12
|
Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Shimokado K, Kaneki M. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS One 2017; 12:e0170391. [PMID: 28099528 PMCID: PMC5242494 DOI: 10.1371/journal.pone.0170391] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023] Open
Abstract
Inflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g., burn)-induced insulin resistance. However, it remains to be determined how iNOS induces insulin resistance. Moreover, the interrelation between inflammatory response and apoptosis is poorly understood, although they often develop simultaneously. Nuclear factor (NF)-κB and p53 are key regulators of inflammation and apoptosis, respectively. Sirt1 inhibits p65 NF-κB and p53 by deacetylating these transcription factors. Recently, we have shown that iNOS induces S-nitrosylation of Sirt1, which inactivates Sirt1 and thereby increases acetylation and activity of p65 NF-κB and p53 in various cell types, including skeletal muscle cells. Here, we show that iNOS enhances burn-induced inflammatory response and apoptotic change in mouse skeletal muscle along with S-nitrosylation of Sirt1. Burn injury induced robust expression of iNOS in skeletal muscle and gene disruption of iNOS significantly inhibited burn-induced increases in inflammatory gene expression and apoptotic change. In parallel, burn increased Sirt1 S-nitrosylation and acetylation and DNA-binding capacity of p65 NF-κB and p53, all of which were reversed or ameliorated by iNOS deficiency. These results indicate that iNOS functions not only as a downstream effector but also as an upstream enhancer of burn-induced inflammatory response, at least in part, by Sirt1 S-nitrosylation-dependent activation (acetylation) of p65 NF-κB. Our data suggest that Sirt1 S-nitrosylation may play a role in iNOS-mediated enhanced inflammatory response and apoptotic change, which, in turn, contribute to muscle wasting and supposedly to insulin resistance after burn injury.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Kyungho Chang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takashi Yasukawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Kazuhiro Ishimaru
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Yong-Ming Yu
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. A. Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Ronald. G. Tompkins
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kentaro Shimokado
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yu Y, Li X, Liu L, Chai J, Haijun Z, Chu W, Yin H, Ma L, Duan H, Xiao M. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1. Int J Biol Sci 2016; 12:1213-1224. [PMID: 27766036 PMCID: PMC5069443 DOI: 10.7150/ijbs.15496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Xiao Li
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Lingying Liu
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Jiake Chai
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Zhang Haijun
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Wanli Chu
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Huinan Yin
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Li Ma
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Hongjie Duan
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Mengjing Xiao
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| |
Collapse
|
14
|
Sah SP, Singh B, Choudhary S, Kumar A. Animal models of insulin resistance: A review. Pharmacol Rep 2016; 68:1165-1177. [PMID: 27639595 DOI: 10.1016/j.pharep.2016.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.
Collapse
Affiliation(s)
- Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Barinder Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Supriti Choudhary
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
15
|
Voluntary Exercise Can Ameliorate Insulin Resistance by Reducing iNOS-Mediated S-Nitrosylation of Akt in the Liver in Obese Rats. PLoS One 2015; 10:e0132029. [PMID: 26172834 PMCID: PMC4501761 DOI: 10.1371/journal.pone.0132029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 06/09/2015] [Indexed: 12/11/2022] Open
Abstract
Voluntary exercise can ameliorate insulin resistance. The underlying mechanism, however, remains to be elucidated. We previously demonstrated that inducible nitric oxide synthase (iNOS) in the liver plays an important role in hepatic insulin resistance in the setting of obesity. In this study, we tried to verify our hypothesis that voluntary exercise improves insulin resistance by reducing the expression of iNOS and subsequent S-nitrosylation of key molecules of glucose metabolism in the liver. Twenty-one Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus, and 18 non-diabetic control Long-Evans Tokushima Otsuka (LETO) rats were randomly assigned to a sedentary group or exercise group subjected to voluntary wheel running for 20 weeks. The voluntary exercise significantly reduced the fasting blood glucose and HOMA-IR in the OLETF rats. In addition, the exercise decreased the amount of iNOS mRNA in the liver in the OLETF rats. Moreover, exercise reduced the levels of S-nitrosylated Akt in the liver, which were increased in the OLETF rats, to those observed in the LETO rats. These findings support our hypothesis that voluntary exercise improves insulin resistance, at least partly, by suppressing the iNOS expression and subsequent S-nitrosylation of Akt, a key molecule of the signal transduction pathways in glucose metabolism in the liver.
Collapse
|
16
|
Erekat NS. Apoptotic Mediators are Upregulated in the Skeletal Muscle of Chronic/Progressive Mouse Model of Parkinson's Disease. Anat Rec (Hoboken) 2015; 298:1472-8. [DOI: 10.1002/ar.23124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy; Faculty of Medicine; Jordan University of Science and Technology (JUST); Irbid Jordan
| |
Collapse
|
17
|
Nakazawa H, Yamada M, Tanaka T, Kramer J, Yu YM, Fischman AJ, Martyn JAJ, Tompkins RG, Kaneki M. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle. PLoS One 2015; 10:e0116633. [PMID: 25594415 PMCID: PMC4296934 DOI: 10.1371/journal.pone.0116633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/11/2014] [Indexed: 01/04/2023] Open
Abstract
Objective Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. Methods A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. Results Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. Conclusions Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn-induced metabolic dysfunction and inflammatory response. Our study identifies FTase as a novel potential molecular target to reverse or ameliorate metabolic derangements in burn patients.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Tomokazu Tanaka
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Joshua Kramer
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yong-Ming Yu
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan J. Fischman
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - J. A. Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Ronald G. Tompkins
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yu Y, Chai J. The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance (review). Int J Mol Med 2014; 35:305-10. [PMID: 25484249 DOI: 10.3892/ijmm.2014.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Burns are common accidental injuries. The main clinical manifestations of severe burn injury are insulin resistance and high metabolism. Insulin resistance results in hyperglycemia, which may lead to skeletal muscle wasting and suspended wound healing. It also elevates the risk of infection and sepsis. Studies have indicated that insulin receptor (IR) and insulin receptor substrate 1 (IRS1) are essential factors involved in the regulation of blood glucose levels. Moreover, the suppression of the IR/IRS1 signaling pathway results in insulin resistance. Recent studies have also indicated that miRNAs, which are small non-coding RNAs consisting of 20-23 nucleotides, target the 3'-untranslated region (3'-UTR) of IRS1 mRNA and attenuate protein translation. miRNAs also play an important role in the development of type II diabetes (T2D) and obesity-induced insulin resistance. In the present review, we discuss the involvement of miRNAs in burn-induced insulin resistance through the targeting of the IR/IRS1 signaling pathway. We also discuss the possibility of miRNAs a novel therapeutic target in insulin resistance in burn patients.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Jiake Chai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
19
|
Quintana HT, Bortolin JA, da Silva NT, Ribeiro FAP, Liberti EA, Ribeiro DA, de Oliveira F. Temporal study following burn injury in young rats is associated with skeletal muscle atrophy, inflammation and altered myogenic regulatory factors. Inflamm Res 2014; 64:53-62. [PMID: 25413930 DOI: 10.1007/s00011-014-0783-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/01/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Burn injury (BI) greater than 40% has been associated with protein catabolism and it is characterized by a hypermetabolic response followed for muscle loss. OBJECTIVE The purpose of this study was to investigate the temporal effects of extensive experimental BI in the skeletal muscle distant from lesion, through morphological analysis, expression of genes related to muscle atrophy, inflammation and the myogenic regulatory factors. MATERIALS AND METHODS A total of 60 young male wistar rats were distributed into two groups, control (C) and subjected to scald burn injury (SBI). The animals were euthanized 1, 4 and 14 days post-sham or 45% of the total body surface BI. The medial head of gastrocnemii muscles were submitted to histopathological, morphometric (muscle fibers area and density), MyoD and myogenin immunoexpression, and gene expression for TNF-α, iNOS and E3 ubiquitin ligases (MuRF1 and MAFbx). RESULTS Histopathological findings were consistent with increased amount of connective tissue and inflammatory process. Muscle fiber area of SBI groups was smaller than C and no differences were found in fiber muscle density. TNF-α was higher in SBI groups, one and 14 days post-injury; iNOS expression was higher on the first and fourth day post-injury. MuRF-1 was higher on the day four and MAFbx on the day 14. CONCLUSION In conclusion, BI causes inflammation, atrophy and myogenesis stimulation in muscle as a result of systemic host response.
Collapse
Affiliation(s)
- Hananiah Tardivo Quintana
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Rua Silva Jardim, 136-Lab 328, Santos, SP, 11015-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
UNLABELLED Creation of lethal and synthetic lethal mutations in an experimental organism is a cornerstone of genetic dissection of gene function, and is related to the concept of an essential gene. Common inbred mouse strains carry background mutations, which can act as genetic modifiers, interfering with the assignment of gene essentiality. The inbred strain C57BL/6J, commonly known as "Black Six", stands out, as it carries a spontaneous homozygous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene [GenBank: AH009385.2], resulting in impairment of steroidogenic mitochondria of the adrenal gland, and a multitude of indirect modifier effects, coming from alteration of glucocorticoid-regulated processes. Over time, the popular strain has been used, by means of gene targeting technology, to assign "essential" and "redundant" qualifiers to numerous genes, thus creating an internally consistent "parallel universe" of knowledge. It is unrealistic to suggest phasing-out of this strain, given the scope of shared resources built around it, however, continuing on the road of "strain-unawareness" will result in profound waste of effort, particularly where translational research is concerned. The review analyzes the historical roots of this phenomenon and proposes that building of "parallel universes" should be urgently made visible to a critical reader by obligatory use of unambiguous and persistent tags in publications and databases, such as hypertext links, pointing to a vendor's strain description web page, or to a digital object identifier (d.o.i.) of the original publication, so that any research done exclusively in C57BL/6J, could be easily identified. REVIEWERS This article was reviewed by Dr. Neil Smalheiser and Dr. Miguel Andrade-Navarro.
Collapse
Affiliation(s)
- Alexander Kraev
- Charles H, Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| |
Collapse
|
21
|
Hosokawa S, Koseki H, Nagashima M, Maeyama Y, Yomogida K, Mehr C, Rutledge M, Greenfeld H, Kaneki M, Tompkins RG, Martyn JAJ, Yasuhara SE. Title efficacy of phosphodiesterase 5 inhibitor on distant burn-induced muscle autophagy, microcirculation, and survival rate. Am J Physiol Endocrinol Metab 2013; 304:E922-33. [PMID: 23512808 DOI: 10.1152/ajpendo.00078.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle wasting is an exacerbating factor in the prognosis of critically ill patients. Using a systemic burn injury model in mice, we have established a role of autophagy in the resulting muscle wasting that is distant from the burn trauma. We provide evidence that burn injury increases the autophagy turnover in the distal skeletal muscle by conventional postmortem tissue analyses and by a novel in vivo microscopic method using an autophagy reporter gene (tandem fluorescent LC3). The effect of tadalafil, a phosphodiesterase 5 inhibitor (PDE5I), on burn-induced skeletal muscle autophagy is documented and extends our published results that PDE5Is attenuates muscle degeneration in a muscular dystrophy model. We also designed a translational experiment to examine the impact of PDE5I on whole body and demonstrated that PDE5I administration lessened muscle atrophy, mitigated microcirculatory disturbance, and improved the survival rate after burn injury.
Collapse
Affiliation(s)
- Sachiko Hosokawa
- Department of Anesthesiology and Critical Care and Pain Medicine, Shriners Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaneki M, Fukushima Y, Shinozaki S, Fukaya M, Habiro M, Shimizu N, Chang K, Yasuhara S, Martyn JAJ. iNOS inhibitor, L-NIL, reverses burn-induced glycogen synthase kinase-3β activation in skeletal muscle of rats. Metabolism 2013; 62:341-6. [PMID: 22995863 PMCID: PMC4090935 DOI: 10.1016/j.metabol.2012.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Recent studies suggest that activation of glycogen synthase kinase (GSK)-3β may be involved in burn injury-induced metabolic derangements and protein breakdown in skeletal muscle. However, the mechanism for GSK-3β activation after burn injury is unknown. To investigate the role of inducible nitric oxide synthase (iNOS) in this scenario, a major mediator of inflammation, we examined the effects of a specific inhibitor for iNOS, L-NIL, on GSK-3β activity in skeletal muscle of burned rats. MATERIALS/METHODS Full-thickness third degree burn injury comprising 40% of total body surface area was produced under anesthesia in male Sprague-Dawley rats (160-190g) by immersing the back of the trunk for 15s and the abdomen for 8s in 80°C water. Burned and sham-burned rats were treated with L-NIL (60mg/kg BW, b.i.d., IP) or phosphate-buffered saline for three days. GSK-3β activity in skeletal muscle was evaluated by immune complex kinase assay, and by phosphorylation status of GSK-3β and its endogenous substrate, glycogen synthase. RESULTS GSK-3β activity was increased in a time-dependent manner in skeletal muscle after burn injury, concomitant with the induction of iNOS expression. iNOS inhibitor, L-NIL, reverted the elevated GSK-3β activity in skeletal muscle of burned rats, although L-NIL did not alter GSK-3β activity in sham-burned rats. CONCLUSIONS Our results clearly indicate that iNOS plays an important role in burn injury-induced GSK-3β activation in skeletal muscle. These findings suggest that iNOS may contribute to burn injury-induced metabolic derangements, in part, by activating GSK-3β.
Collapse
Affiliation(s)
- Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|