Zakrzewski-Fruer JK, Thackray AE. Enhancing cardiometabolic health through physical activity and breakfast manipulations in children and adolescents: good for humans, good for the planet.
Proc Nutr Soc 2023;
82:272-285. [PMID:
36356640 DOI:
10.1017/s0029665122002804]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human health benefits of cardiometabolic disease prevention can be accompanied by planetary co-benefits. Focusing efforts towards young people, including children and adolescents, is conducive to disease prevention. In the context of cardiometabolic disease prevention, this review paper critically summarises the available literature on the acute cardiometabolic responses to physical activity and breakfast manipulations among young people. Given the seriousness of global climate change, which will disproportionally affect our younger generations, this review paper offers new insights into the inherent interactions between child-adolescent behaviour and cardiometabolic health from an environmental sustainability perspective to aid climate change mitigation efforts, including exploring future research avenues. A growing evidence base suggests acute moderate- to high-intensity exercise bouts can attenuate postprandial plasma glucose, insulin and triacylglycerol concentrations for up to 24-48 h in young people. Whether accumulating physical activity throughout the day with short, frequent bouts promotes cardiometabolic risk marker attenuations is unclear. Breakfast consumption may enhance free-living physical activity and reduce glycaemic responses to subsequent meals for a possible additive impact. If repeated habitually, attenuations in these cardiometabolic risk factors would be conducive to disease prevention, reducing the greenhouse gas emissions associated with disease diagnosis and treatment. To progress current understanding with high public health and planetary relevance, research among samples of 'at risk' young people that span cellular-level responses to ecologically valid settings and address human and planetary health co-benefits is needed. Indeed, certain physical activity opportunities, such as active travel to school, offer important direct co-benefits to humans and planetary health.
Collapse