1
|
Shi Y, Chen J, Qu D, Sun Q, Yu Y, Zhang H, Liu Z, Sha J, Sun Y. Ginsenoside Rg 5 Activates the LKB1/AMPK/mTOR Signaling Pathway and Modifies the Gut Microbiota to Alleviate Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet. Nutrients 2024; 16:842. [PMID: 38542753 PMCID: PMC10974897 DOI: 10.3390/nu16060842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 01/05/2025] Open
Abstract
The primary objective of this investigation was to elucidate the manner in which ginsenoside Rg5 (Rg5) ameliorates nonalcoholic fatty liver disease (NAFLD) via the modulation of the gut microbiota milieu. We administered either a standard diet (ND) or a high-fat diet (HFD), coupled with 12-week treatment employing two distinct doses of Rg5 (50 and 100 mg/kg/d), to male C57BL/6J mice. In comparison to the HFD cohort, the Rg5-treated group demonstrated significant enhancements in biochemical parameters, exemplified by a substantial decrease in lipid concentrations, as well as the reduced expression of markers indicative of oxidative stress and liver injury. This signifies a mitigation of hepatic dysfunction induced by an HFD. Simultaneously, Rg5 demonstrates the capacity to activate the LKB1/AMPK/mTOR signaling pathway, instigating energy metabolism and consequently hindering the progression of NAFLD. Furthermore, we underscored the role of Rg5 in the treatment of NAFLD within the gut-microbiota-liver axis. Analysis via 16S rRNA sequencing unveiled that Rg5 intervention induced alterations in gut microbiota composition, fostering an increase in beneficial bacteria, such as Bacteroides and Akkermansia, while concurrently reducing the relative abundance of detrimental bacteria, exemplified by Olsenella. Furthermore, employing fecal microbiota transplantation (FMT) experiments, we observed analogous outcomes in mice subjected to fecal bacterial transplants, providing additional verification of the capacity of Rg5 to mitigate NAFLD in mice by actively participating in the restoration of gut microbiota via FMT. Drawing from these data, the regulation of the gut microbiota is recognized as an innovative strategy for treating or preventing NAFLD and metabolic syndrome. Consequently, these research findings suggest that Rg5 holds promise as a potential therapeutic agent for NAFLD management.
Collapse
Affiliation(s)
- Yingying Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Qiang Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Yang Yu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Zhengbo Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Jiyue Sha
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Yinshi Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| |
Collapse
|
2
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Xu L, Jois S, Cui H. Metformin and Gegen Qinlian Decoction boost islet α-cell proliferation of the STZ induced diabetic rats. BMC Complement Med Ther 2022; 22:193. [PMID: 35858880 PMCID: PMC9301855 DOI: 10.1186/s12906-022-03674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background The traditional Chinese medicine Gegen Qinlian Decoction (GQD), as well as metformin, had been reported with anti-diabetic effects in clinical practice. Objective To verify whether these two medicines effectively ameliorate hyperglycemia caused by deficiency of islet β-cell mass which occurs in both type 1 and type 2 diabetes. Methods SD rats were injected with a single dose of STZ (55 mg/kg) to induce β-cell destruction. The rats were then divided into control, diabetes, GQD and metformin group. GQD and metformin groups were administered with GQD extract or metformin for 6 weeks. The islet α-cell or β-cell mass changes were tested by immunohistochemical and immunofluorescent staining. The potential targets and mechanisms of GQD and metformin on cell proliferation were tested using in silico network pharmacology. Real-time PCR was performed to test the expression of islet cells related genes and targets related genes. Results Both GQD and metformin did not significantly reduce the FBG level caused by β-cell mass reduction, but alleviated liver and pancreas histopathology. Both GQD and metformin did not change the insulin positive cell mass but increased α-cell proliferation of the diabetic rats. Gene expression analysis showed that GQD and metformin significantly increased the targets gene cyclin-dependent kinase 4 (Cdk4) and insulin receptor substrate (Irs1) level. Conclusion This research indicates that GQD and metformin significantly increased the α-cell proliferation of β-cell deficiency induced diabetic rats by restoring Cdk4 and Irs1 gene expression.
Collapse
|
4
|
Metformin Attenuates Hypoxia-induced Endothelial Cell Injury by Activating the AMP-Activated Protein Kinase Pathway. J Cardiovasc Pharmacol 2021; 77:862-874. [PMID: 33929389 DOI: 10.1097/fjc.0000000000001028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Metformin reduces the incidence of cardiovascular diseases, and potential underlying mechanisms of action have been suggested. Here, we investigated the role of metformin in endothelial cell injury and endothelial-mesenchymal transition (EndMT) induced by hypoxia. All experiments were performed in human cardiac microvascular endothelial cells (HCMECs). HCMECs were exposed to hypoxic conditions for 24, 48, 72, and 96 hours, and we assessed the cell viability by cell counting kit 8; metformin (2, 5, 10, and 20 mmol/L) was added to the cells after exposure to the hypoxic conditions for 48 hours. The cells were randomly divided into the control group, hypoxia group, hypoxia + metformin group, hypoxia + control small interfering RNA group, hypoxia + small interfering Prkaa1 (siPrkaa1) group, and hypoxia + siPrkaa1 + metformin group. Flow cytometry and cell counting kit 8 were used to monitor apoptosis and assess cell viability. Immunofluorescence staining was used to identify the CD31+/alpha smooth muscle actin+ double-positive cells. Quantitative real-time-PCR and Western blot were used for mRNA and protein expression analyses, respectively. Hypoxia contributed to endothelial injuries and EndMT of HCMECs in a time-dependent manner, which was mainly manifested as decreases in cell viability, increases in apoptotic rate, and changes in expression of apoptosis-related and EndMT-related mRNAs and proteins. Furthermore, metformin could attenuate the injuries and EndMT caused by hypoxia. After metformin treatment, phosphorylated-AMPK (pAMPK) and p-endothelial nitric oxide synthase expression increased, whereas p-mammalian target of rapamycin expression decreased. However, results obtained after transfection with siPrkaa1 were in contrast to the results of metformin treatment. In conclusion, metformin can attenuate endothelial injuries and suppress EndMT of HCMECs under hypoxic conditions because of its ability to activate the AMPK pathway, increase p-AMPK/AMP-activated protein kinase, and inhibit mammalian target of rapamycin.
Collapse
|
5
|
Guo J, Pereira TJ, Mori Y, Gonzalez Medina M, Breen DM, Dalvi PS, Zhang H, McCole DF, McBurney MW, Heximer SP, Tsiani EL, Dolinsky VW, Giacca A. Resveratrol Inhibits Neointimal Growth after Arterial Injury in High-Fat-Fed Rodents: The Roles of SIRT1 and AMPK. J Vasc Res 2020; 57:325-340. [PMID: 32777783 DOI: 10.1159/000509217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
We have shown that both insulin and resveratrol (RSV) decrease neointimal hyperplasia in chow-fed rodents via mechanisms that are in part overlapping and involve the activation of endothelial nitric oxide synthase (eNOS). However, this vasculoprotective effect of insulin is abolished in high-fat-fed insulin-resistant rats. Since RSV, in addition to increasing insulin sensitivity, can activate eNOS via pathways that are independent of insulin signaling, such as the activation of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), we speculated that unlike insulin, the vasculoprotective effect of RSV would be retained in high-fat-fed rats. We found that high-fat feeding decreased insulin sensitivity and increased neointimal area and that RSV improved insulin sensitivity (p < 0.05) and decreased neointimal area in high-fat-fed rats (p < 0.05). We investigated the role of SIRT1 in the effect of RSV using two genetic mouse models. We found that RSV decreased neointimal area in high-fat-fed wild-type mice (p < 0.05), an effect that was retained in mice with catalytically inactive SIRT1 (p < 0.05) and in heterozygous SIRT1-null mice. In contrast, the effect of RSV was abolished in AMKPα2-null mice. Thus, RSV decreased neointimal hyperplasia after arterial injury in both high-fat-fed rats and mice, an effect likely not mediated by SIRT1 but by AMPKα2.
Collapse
Affiliation(s)
- June Guo
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Troy J Pereira
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yusaku Mori
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | | | - Danna M Breen
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Biology Department, Morosky College of Health Professions and Sciences, Gannon University, Erie, Pennsylvania, USA
| | - Hangjun Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W McBurney
- Program in Cancer Therapeutics, Ottawa Hospital Research Institute, Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott P Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Evangelia L Tsiani
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada, .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, .,Banting and Best Diabetes Centre, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada,
| |
Collapse
|
6
|
Deng M, Su D, Xu S, Little PJ, Feng X, Tang L, Shen A. Metformin and Vascular Diseases: A Focused Review on Smooth Muscle Cell Function. Front Pharmacol 2020; 11:635. [PMID: 32457625 PMCID: PMC7227439 DOI: 10.3389/fphar.2020.00635] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin has been used in diabetes for more than 60 years and has excellent safety in the therapy of human type 2 diabetes (T2D). There is growing evidence that the beneficial health effects of metformin are beyond its ability to improve glucose metabolism. Metformin not only reduces the incidence of cardiovascular diseases (CVD) in T2D patients, but also reduces the burden of atherosclerosis (AS) in pre-diabetes patients. Vascular smooth muscle cells (VSMCs) function is an important factor in determining the characteristics of the entire arterial vessel. Its excessive proliferation contributes to the etiology of several types of CVD, including AS, restenosis, and pulmonary hypertension. Current studies show that metformin has a beneficial effect on VSMCs function. Therefore, this review provides a timely overview of the role and molecular mechanisms by which metformin acts through VSMCs to protect CVD.
Collapse
Affiliation(s)
- Mingying Deng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Su
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liqin Tang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aizong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Zhang WX, Tai GJ, Li XX, Xu M. Inhibition of neointima hyperplasia by the combined therapy of linagliptin and metformin via AMPK/Nox4 signaling in diabetic rats. Free Radic Biol Med 2019; 143:153-163. [PMID: 31369842 DOI: 10.1016/j.freeradbiomed.2019.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 07/28/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neointima hyperplasia is the pathological basis of atherosclerosis and restenosis which have been associated with diabetes mellitus (DM). It is controversial for linagliptin and metformin to protect against vascular neointimal hyperplasia caused by DM. Given the combined therapy of linagliptin and metformin in clinical practice, we investigated whether the combination therapy inhibited neointimal hyperplasia in the carotid artery in diabetic rats. METHODS AND RESULTS Neointima hyperplasia in the carotid artery was induced by balloon-injury in the rats fed with high fat diet (HFD) combined with low dose streptozotocin (STZ) administration. In vitro, vascular smooth muscle cells (VSMCs) were incubated with high glucose (HG, 30 mM) and the proliferation, migration, apoptosis and collagen deposition were analyzed in VSMCs. We found that the combined therapy, not the monotherapy of linagliptin and metformin significantly inhibited the neointima hyperplasia and improved the endothelium-independent contraction in the balloon-injured cardia artery of diabetic rats, which was associated with the inhibition of superoxide (O2-.) production in the cardia artery. In vitro, HG-induced VSMC remodeling was shown as the remarkable upregulation of PCNA, collagan1, MMP-9, Bcl-2 and migration rate as well as the decreased apoptosis rate. Such abnormal changes were dramatically reversed by the combined use of linagliptin and metformin. Moreover, the AMP-activated protein kinase (AMPK)/Nox4 signal pathway was found to mediate VSMC remodeling responding to HG. Linagliptin and metformin were synergistical to target AMPK/Nox4 signal pathway in VSMCs incubated with HG and in the cardia artery of diabetic rats, which was superior to the monotherapy. CONCLUSIONS We demonstrated that the potential protection of the combined use of linagliptin and metformin on VSMC remodeling through AMPK/Nox4 signal pathway, resulting in the improvement of neointima hyperplasia in diabetic rats. This study provided new therapeutic strategies for vascular stenosis associated with diabetes.
Collapse
Affiliation(s)
- Wen-Xu Zhang
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Xue Li
- Department of Pharmacology, Southeast University School of Medicine, Nanjing, 210009, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Yuan T, Li J, Zhao WG, Sun W, Liu SN, Liu Q, Fu Y, Shen ZF. Effects of metformin on metabolism of white and brown adipose tissue in obese C57BL/6J mice. Diabetol Metab Syndr 2019; 11:96. [PMID: 31788033 PMCID: PMC6880501 DOI: 10.1186/s13098-019-0490-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate effects of metformin on the regulation of proteins of white adipose tissue (WAT) and brown adipose tissue (BAT) in obesity and explore the underlying mechanisms on energy metabolism. METHODS C57BL/6J mice were fed with normal diet (ND, n = 6) or high-fat diet (HFD, n = 12) for 22 weeks. HFD-induced obese mice were treated with metformin (MET, n = 6). After treatment for 8 weeks, oral glucose tolerance test (OGTT) and hyperinsulinemic-euglycemic clamp were performed to evaluate the improvement of glucose tolerance and insulin sensitivity. Protein expressions of WAT and BAT in mice among ND, HFD, and MET group were identified and quantified with isobaric tag for relative and absolute quantification (iTRAQ) coupled with 2D LC-MS/MS. The results were analyzed by MASCOT, Scaffold and IPA. RESULTS The glucose infusion rate in MET group was increased significantly compared with HFD group. We identified 4388 and 3486 proteins in WAT and BAT, respectively. As compared MET to HFD, differential expressed proteins in WAT and BAT were mainly assigned to the pathways of EIF2 signaling and mitochondrial dysfunction, respectively. In the pathways, CPT1a in WAT, CPT1b and CPT2 in BAT were down-regulated by metformin significantly. CONCLUSIONS Metformin improved the body weight and insulin sensitivity of obese mice. Meanwhile, metformin might ameliorate endoplasmic reticulum stress in WAT, and affect fatty acid metabolism in WAT and BAT. CPT1 might be a potential target of metformin in WAT and BAT.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of The National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Gang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of The National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Diabetes Research Center of Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Diabetes Research Center of Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of The National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhu-Fang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Diabetes Research Center of Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|