1
|
Gomes D, Sobolewski C, Conzelmann S, Schaer T, Lefai E, Alfaiate D, Tseligka ED, Goossens N, Tapparel C, Negro F, Foti M, Clément S. ANGPTL4 is a potential driver of HCV-induced peripheral insulin resistance. Sci Rep 2023; 13:6767. [PMID: 37185283 PMCID: PMC10130097 DOI: 10.1038/s41598-023-33728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic hepatitis C (CHC) is associated with the development of metabolic disorders, including both hepatic and extra-hepatic insulin resistance (IR). Here, we aimed at identifying liver-derived factor(s) potentially inducing peripheral IR and uncovering the mechanisms whereby HCV can regulate the action of these factors. We found ANGPTL4 (Angiopoietin Like 4) mRNA expression levels to positively correlate with HCV RNA (r = 0.46, p < 0.03) and HOMA-IR score (r = 0.51, p = 0.01) in liver biopsies of lean CHC patients. Moreover, we observed an upregulation of ANGPTL4 expression in two models recapitulating HCV-induced peripheral IR, i.e. mice expressing core protein of HCV genotype 3a (HCV-3a core) in hepatocytes and hepatoma cells transduced with HCV-3a core. Treatment of differentiated myocytes with recombinant ANGPTL4 reduced insulin-induced Akt-Ser473 phosphorylation. In contrast, conditioned medium from ANGPTL4-KO hepatoma cells prevented muscle cells from HCV-3a core induced IR. Treatment of HCV-3a core expressing HepG2 cells with PPARγ antagonist resulted in a decrease of HCV-core induced ANGPTL4 upregulation. Together, our data identified ANGPTL4 as a potential driver of HCV-induced IR and may provide working hypotheses aimed at understanding the pathogenesis of IR in the setting of other chronic liver disorders.
Collapse
Affiliation(s)
- Diana Gomes
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cyril Sobolewski
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- U1286-INFINITE-Institute for Translational Research in Inflammation, CHU Lille, Inserm, University Lille, 59000, Lille, France
| | - Stéphanie Conzelmann
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tifany Schaer
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Etienne Lefai
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Dulce Alfaiate
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Infectious Diseases, Hôpital de la Croix Rousse, Lyon University Hospitals, Lyon, France
| | - Eirini D Tseligka
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Goossens
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland
| | - Michelangelo Foti
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
2
|
Mizuno S, Seishima R, Yamasaki J, Hattori K, Ogiri M, Matsui S, Shigeta K, Okabayashi K, Nagano O, Li L, Kitagawa Y. Angiopoietin-like 4 promotes glucose metabolism by regulating glucose transporter expression in colorectal cancer. J Cancer Res Clin Oncol 2022; 148:1351-1361. [PMID: 35195748 DOI: 10.1007/s00432-022-03960-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Angiopoietin-like 4 (ANGPTL4) was recently shown to be associated with cancer progression but little is known about its contribution to cancer metabolism. The purpose of this study was to elucidate the role of ANGPTL4 in glucose metabolism in colorectal cancer (CRC). METHODS Immunohistochemical staining of CRC specimens classified 84 patients into two groups according to ANGPTL4 expression. Clinicopathological characteristics, gene mutation status obtained by next-generation sequencing, and fluorodeoxyglucose (FDG) uptake measured by positron emission tomography/computed tomography (PET/CT) were compared between the two groups. Furthermore, the impact of ANGPTL4 expression on cancer metabolism was investigated by a subcutaneous xenograft mouse model using the ANGPTL4 knockout CRC cell line, and glucose transporter (GLUT) expression was evaluated. RESULTS There were significantly more cases of T3/4 tumours (94.3% vs. 57.1%, P < 0.001) and perineural invasion (42.9% vs. 22.4%, P = 0.046) in the ANGPTL4-high group than in the low group. Genetic exploration revealed a higher frequency of KRAS mutation (54.3% vs. 22.4%, P = 0.003) in the ANGPTL4-high tumours. All the FDG uptake parameters were significantly higher in ANGPTL4-high tumours. In vivo analysis showed a significant reduction in tumour size due to ANGPTL4 knockout with lower expression of GLUT1 and GLUT3, and suppression of AKT phosphorylation. CONCLUSION ANGPTL4 regulates the expression of GLUTs by activating the PI3K-AKT pathway and thereby promoting glucose metabolism in CRC. These findings establish a new functional role of ANGPTL4 in cancer progression and lay the foundation for developing a novel therapeutic target.
Collapse
Affiliation(s)
- Shodai Mizuno
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Juntaro Yamasaki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Hattori
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masayo Ogiri
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shimpei Matsui
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kohei Shigeta
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Liang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
3
|
Effects of High-Intensity Interval Training on Inflammatory Biomarkers in Patients with Type 2 Diabetes. A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312644. [PMID: 34886369 PMCID: PMC8656922 DOI: 10.3390/ijerph182312644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
Background: Due to the prevalence and incidence worldwide of type 2 diabetes, and the significant role physical activity plays in these patients, a systematic review has been conducted to find out the effects that high-intensity interval training has on inflammatory biomarkers in subjects with type 2 diabetes. This project aims to determine the effect this training modality has on inflammatory biomarkers, in addition to observing its effects on the values of body composition and determining if this is a more effective, less effective or equally effective alternative to standard aerobic or resistance training. Methods: A search was conducted in the months of November and December 2020 on different databases: Pubmed, WoS and PEDro. A protocol for this systematic review was registered in PROSPERO (Registration number: CRD42021281186). The studies selected met the previously defined inclusion criteria, and the methodological quality of the papers used was evaluated according to the Downs and Black Checklist. Results: Out of 46 studies found, seven were included. The most relevant data concerning the characteristics of the clinical trials and HIIT characteristics, the values of body composition and the biomarkers under study were extracted from each study. Moreover, the results obtained from the different studies were described. Conclusions: HIIT could have an effect on inflammatory biomarkers. There is likely to be a relationship between changes in inflammatory profile and fat loss. A controlled diet may be a good complement to reduce the inflammatory profile. Further studies are required to determine whether HIIT is a better, worse or an equivalent alternative to medium-intensity aerobic exercise to improve the inflammatory profile.
Collapse
|
4
|
Wang HH, Luo WY, Lin M, Li XJ, Xiang GD, D Triganti S. Plasma asprosin, CCDC80 and ANGPTL4 levels are associated with metabolic and cardiovascular risk in patients with inflammatory bowel disease. Physiol Res 2021; 70:203-211. [PMID: 33676388 PMCID: PMC8820570 DOI: 10.33549/physiolres.934547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
Asprosin, coiled-coil domain-containing 80(CCDC80) and angiopoietin-like4(ANGPTL4) are newly discovered adipocytokine that affects glucose tolerance, insulin resistance and cardiovascular diseases. The goal of this study was to investigate if a relationship exists among asprosin, CCDC80 and ANGPTL4 and inflammatory bowel disease (IBD). Fifty subjects with newly diagnosed IBD and fifty healthy individuals were enrolled. Patients were treated with standard therapies for 3 months. Plasma asprosin, CCDC80 and ANGPTL4 levels were measured with enzyme-linked immunosorbent assay. High resolution ultrasound was used to measure brachial artery diameter at rest, after reactive hyperemia (flow-mediated dilation, FMD) and after sublingual glyceryltrinitrate.Compare with healthy individuals, plasma CCDC80,erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) levels and homeostasis modelassessment of insulin resistance (HOMA-IR) were significantly higher (p < 0.05, respectively), whereas plasma asprosin,ANGPTL4 levels and FMD were significantly lower inboth UC and CD patients(p <0.05). Plasma CCDC80 levels were significantly higher in patients with CD (p<0.05), while plasma asprosin and ANGPTL4 levels were lower (p<0.05) as compared with those in patients with UC. Standard therapies increased plasma asprosin, ANGPTL4 levels and FMD in both UC and CD (p<0.05),UC and CD patientswhile decreased plasma CCDC80, ESR, CRP levels and HOMA-IR (p<0.05). The changes in HOMA-IR and FMD were correlated with the changes in plasma asprosin, CCDC80 and ANGPTL4 levels over the study period (p<0.05). Plasma asprosin, CCDC80 and ANGPTL4 levels may be applied as a significant marker for early stage of insulin resistance and atherosclerosis in IBD, especially of CD.
Collapse
Affiliation(s)
- Hao-Hua Wang
- Department of Endocrinology, Tungwah Hospitalof Sun Yat-Sen University, Dongguan, China.
| | | | | | | | | | | |
Collapse
|
5
|
Li G, Tan X, Zhang B, Guan L, Zhang Y, Yin L, Gao M, Zhu S, Xu L. Hengshun Aromatic Vinegar Improves Glycolipid Metabolism in Type 2 Diabetes Mellitus via Regulating PGC-1α/PGC-1β Pathway. Front Pharmacol 2021; 12:641829. [PMID: 33981226 PMCID: PMC8109051 DOI: 10.3389/fphar.2021.641829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hengshun aromatic vinegar (HSAV), produced by typical solid-state or liquid-state fermentation techniques, is consumed worldwide as a food condiment. HSAV shows multiple bioactivities, but its activity in type 2 diabetes mellitus (T2DM) and possible mechanisms have not been reported. In this study, the effects of HSAV against T2DM were evaluated in insulin-induced HepG2 cells and high-fat diet (HFD) and streptozotocin (STZ) induced T2DM rats. Then, the mechanisms of HSAV against T2DM were explored by Real-time PCR, Western blot, immunofluorescence assays, siRNA transfection and gene overexpression experiments. Results indicated that HSAV significantly improved glucose consumption and reduced triglycerides (TG) contents in metabolic disordered HepG2 cells. Meanwhile, HSAV obviously alleviated general status, liver and kidney functions of T2DM rats, and decreased hyperglycemia and hyperlipidemia, improved insulin resistance, and reduced lipid accumulation in liver. Mechanism studies indicated that HSAV markedly down-regulated the expression of proliferator-activated receptor γ coactivator-1α (PGC-1α), then regulated peroxisome proliferators-activated receptor α (PPAR-α)/protein kinase B (AKT) signal pathway mediated gluconeogenesis and glycogen synthesis. Meanwhile, HSAV significantly up-regulated proliferator-activated receptor γ coactivator-1β (PGC-1β), and subsequently decreased sterol regulatory element binding protein-1c (SREBP-1c) pathway mediated lipogenesis. In conclusion, HSAV showed potent anti-T2DM activity in ameliorating dysfunction of glycolipid metabolism through regulating PGC-1α/PGC-1β pathway, which has a certain application prospect as an effective diet supplement for T2DM therapy in the future.
Collapse
Affiliation(s)
- Guoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Xuemei Tan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bao Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yidan Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shenghu Zhu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Yuan X, Chen R, Zhang Y, Lin X, Yang X, McCormick KL. Gut Microbiota of Chinese Obese Children and Adolescents With and Without Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:636272. [PMID: 33815293 PMCID: PMC8018175 DOI: 10.3389/fendo.2021.636272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The intestinal flora of gut microbiota in obese Chinese children and adolescents with and without insulin resistance (IR) was analyzed, as well as associations between the gut microbiota and two serum cytokines related to glucose metabolism, adropin and angiopoietin-like 4 (ANGPTL4). METHODS Clinical data, fecal bacterial composition, glucose-related hormones, and serum adipokines (adropin and ANGPTL4) were analyzed in 65 Chinese children with exogenous obesity. The composition of the gut microbiota was determined by 16S rRNA-based metagenomics and IR was calculated using the homeostasis model assessment (HOMA). RESULTS The 65 obese subjects were divided into two groups: insulin sensitive (IS) (n=40, 57.5% males) or IR (n=25, 60% males). Principal coordinates analysis revealed that the gut microbiota samples from the IS group clustered together and separated partly from the IR group (p=0.008). By Mann-Whitney U-test, at a phylum level, a reduction of Firmicutes and an increase of Bacteroidetes in the IR subjects was observed. LEfSe analysis revealed that IS subject, when compared to their IR counterparts, harbored members of the order Coriobacteriales, Turicibacterales, Pasteurellales and family Turicibacteraceae, that were significantly more abundant. In contrast, the IR subjects had members of family Peptococcaceae that were significantly more prevalent than the IS subjects (all p<0.05). Spearman's correlation analysis revealed that serum ANGPTL4 was positively associated with genus Bacteroides, Butyricimonas, and Alistipes, and adropin was positively associated with genus Anaerostipes and Alistipes, and negatively associated with genus Blautia (all p<0.05). CONCLUSION In obese children, the gut microbiome in IR subjects was significantly discordant from the IS subjects, and the abundance of some metabolism-related bacteria correlated with the serum concentrations of adropin and ANGPTL4. These observations infer that the gut microbiota may be involved in the regulation of glucose metabolism in obesity.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Ruimin Chen,
| | - Ying Zhang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaohong Yang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Kenneth L. McCormick
- Division of Pediatric Endocrinology and Diabetes, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Wang YK, Tang JN, Han L, Liu XD, Shen YL, Zhang CY, Liu XB. Elevated FURIN levels in predicting mortality and cardiovascular events in patients with acute myocardial infarction. Metabolism 2020; 111:154323. [PMID: 32730764 DOI: 10.1016/j.metabol.2020.154323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Proprotein convertase subtilisin/kexin (PCSK) family member 3 (FURIN) has been suggested to be involved in the development of atherosclerosis. The aim of this study was to investigate the prognostic implication of FURIN in patients after acute myocardial infarction (AMI). METHODS This prospective study analyzed data from a total of 1312 consecutive patients hospitalized with ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction from August 2013 to June 2016. FURIN levels were analyzed in plasma obtained from AMI patients. RESULTS The study included 1312 AMI patients. The patient population was predominantly male (63%) with a median age of 66 years (IQR: 19 years), and 59% were STEMI patients. During a follow-up of 2 years, 117 patients died, and 377 patients reached the combined endpoints of major adverse cardiac events (MACE). Patients with elevated FURIN levels had increased risk of MACE, all-cause mortality, recurrent MI and hospitalization for HF (log-rank test, p < 0.0001). After adjusting for clinical risk factors and established markers, the association of FURIN concentrations with the risk of MACE and its individual components and cardiovascular death was statistically significant in the higher tertile of FURIN concentrations. After the addition of FURIN to the models, FURIN showed additive prognostic significance for 2-year clinical outcomes. Variable importance plots of the models showed that FURIN was of high importance to predict both occurrence of MACE and all-cause mortality. CONCLUSIONS We found that FURIN was associated with all-cause mortality and recurrent cardiovascular events in AMI patients independent of conventional risk factors and established markers.
Collapse
Affiliation(s)
- Yun Kai Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Jia Ni Tang
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Lu Han
- Department of Cardiology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong Province, China
| | - Xian Dong Liu
- Department of Emergency, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yun Li Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chun Yu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Bo Liu
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Barchetta I, Chiappetta C, Ceccarelli V, Cimini FA, Bertoccini L, Gaggini M, Cristofano CD, Silecchia G, Lenzi A, Leonetti F, Baroni MG, Gastaldelli A, Cavallo MG. Angiopoietin-Like Protein 4 Overexpression in Visceral Adipose Tissue from Obese Subjects with Impaired Glucose Metabolism and Relationship with Lipoprotein Lipase. Int J Mol Sci 2020; 21:ijms21197197. [PMID: 33003532 PMCID: PMC7582588 DOI: 10.3390/ijms21197197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) regulates lipid partitioning by inhibiting circulating and tissue lipoprotein lipase (LPL); ANGPTL4 loss-of-function variants improve insulin sensitivity and reduce type 2 diabetes (T2D) risk with mechanisms partially unknown. This study was designed to explore metabolic implications of differential ANGPTL4 and LPL expression in human adipose tissue (AT). We recruited eighty-eight obese individuals, with and without abnormal glucose metabolism (AGM), undergoing bariatric surgery; visceral AT (VAT) fragments were obtained intra-operatively and analyzed by immunohistochemistry and mRNA by rt-PCR. Data on hepatic ANGPTL4 mRNA were available for 40 participants. VAT ANGPTL4 expression was higher in AGM individuals than in those with normal glucose tolerance (NGT) and associated with VAT inflammation, insulin resistance, and presence of adipocyte size heterogeneity. Increased ANGPTL4 was associated with AGM with OR = 5.1 (95% C.I.: 1.2–23; p = 0.02) and AUROC = 0.76 (95% C.I.: 1.2–23; p < 0.001). High LPL was associated with the detection of homogeneous adipocyte size, reduced microvessel density, and higher HIF-1α levels and inversely correlated to blood transaminases. In conclusion, in obese individuals, VAT ANGPTL4 levels are increased in the presence of local inflammation and AGM. Conversely, higher LPL expression describes a condition of increased lipid storage in adipocytes, which may serve as a protective mechanism against ectopic fat accumulation and related metabolic disease in obesity.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA) University of L’Aquila, 67100 Coppito (AQ) Italy;
- IRCCS Neuromed, 86077 Pozzilli (Is), Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|
9
|
Ruppert PMM, Michielsen CCJR, Hazebroek EJ, Pirayesh A, Olivecrona G, Afman LA, Kersten S. Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol Metab 2020; 40:101033. [PMID: 32504883 PMCID: PMC7334813 DOI: 10.1016/j.molmet.2020.101033] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. Methods Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. Results Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (−60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (−94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (−79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. Conclusion ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767. 24-h fast in humans reduces LPL activity in subcutaneous adipose tissue. 24-h fast in humans increases adipose ANGPTL4 mRNA, protein, and plasma ANGPTL4 levels. Cortisol, fatty acids, and insulin regulate ANGPTL4 in vitro. ANGPTL4 mediates the reduction in adipose LPL activity during fasting. 24-h fast in humans decreases adipose ANGPTL8 mRNA and plasma ANGPTL8 levels.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, the Netherlands; Nutrition and Disease Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ali Pirayesh
- Amsterdam Plastic Surgery, Amsterdam, the Netherlands
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|