1
|
Xiao Q, Wang L, Wang J, Wang M, Wang DW, Ding H. A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3. Mol Metab 2024; 88:102011. [PMID: 39173944 PMCID: PMC11399561 DOI: 10.1016/j.molmet.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
2
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592757. [PMID: 38766156 PMCID: PMC11100735 DOI: 10.1101/2024.05.06.592757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus, Pseudo-nitzschia , during toxic algal bloom events. California sea lions ( Zalophus californianus ) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses. SYNOPSIS Multi-omics evaluations reveal blood apolipoproteins and triglycerides are altered in domoic acid toxicosis in California sea lions. GRAPHIC ABSTRACT
Collapse
|
3
|
Fukase T, Dohi T, Nishio R, Takeuchi M, Takahashi N, Chikata Y, Endo H, Doi S, Nishiyama H, Okai I, Iwata H, Koga S, Okazaki S, Miyauchi K, Daida H, Minamino T. Association between apolipoprotein C-III levels and coronary calcification detected by intravascular ultrasound in patients who underwent percutaneous coronary intervention. Front Cardiovasc Med 2024; 11:1430203. [PMID: 39234605 PMCID: PMC11371589 DOI: 10.3389/fcvm.2024.1430203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
There are few reports on the association between apolipoprotein C-III (ApoC-III) and coronary calcification using intravascular modalities. This study aimed to investigate the impacts of ApoC-III levels on coronary calcification using grayscale intravascular ultrasound (IVUS). Consecutive 263 culprit lesions for 202 patients who underwent percutaneous coronary intervention using grayscale IVUS were included in this study and divided into four groups based on quartile ApoC-III values. This study assessed plaque characteristics, including severe calcification (>180° arc) at the minimum lumen area site and presence of calcified nodules within the culprit lesion using grayscale IVUS, and evaluated whether ApoC-III levels were associated with coronary calcified plaques. The highest ApoC-III quartile [Quartile 4 (Q4)] had a higher proportion of complex lesions, calcified plaques, severe calcification, calcified nodules, plaque burden, and total atheroma volume than the lowest ApoC-III quartile [Quartile 1 (Q1)]. Additionally, multivariable logistic regression analysis showed that Q4 was significantly associated with severe calcification and calcified nodules, with Q1 as the reference (odds ratio [OR]: 2.70, 95% confidence intervals [CIs]: 1.04-7.00, p = 0.042; and OR: 3.72, 95% CIs 1.26-11.0, p = 0.017, respectively). Furthermore, ApoC-III level (1-mg/dl increase) was a strong significant predictor of severe calcification (OR: 1.07, 95% CIs: 1.00-1.15, p = 0.040) and calcified nodules (OR: 1.09, 95% CIs: 1.01-1.19, p = 0.034) according to the multivariable logistic regression analysis. This study is the first to verify that elevated ApoC-III levels are associated with the development of severe calcification and progression to calcified nodules as detected by grayscale IVUS.
Collapse
Affiliation(s)
- Tatsuya Fukase
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Ryota Nishio
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Mitsuhiro Takeuchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Norihito Takahashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yuichi Chikata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Hirohisa Endo
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Shinichiro Doi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Hiroki Nishiyama
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Iwao Okai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Hiroshi Iwata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Seiji Koga
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Shinya Okazaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
- Department of Radiological Technology, Faculty of Health Science, Juntendo University Graduate School, Bunkyo-ku, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Chiyoda-ku, Japan
| |
Collapse
|
4
|
Teixeira N, Jimenes D, Schultz C, Almeida D, Mathias P, Berti J. Moderate-intensity continuous training reduces triglyceridemia and improves oxygen consumption in dyslipidemic apoCIII transgenic mice. Braz J Med Biol Res 2024; 57:e13202. [PMID: 39082576 PMCID: PMC11290816 DOI: 10.1590/1414-431x2024e13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
This study aimed to investigate metabolism modulation and dyslipidemia in genetic dyslipidemic mice through physical exercise. Thirty-four male C57Bl/6 mice aged 15 months were divided into non-transgenic (NTG) and transgenic overexpressing apoCIII (CIII) groups. After treadmill adaptation, the trained groups (NTG Ex and CIII Ex) underwent an effort test to determine running performance and assess oxygen consumption (V̇O2), before and after the training protocol. The exercised groups went through an 8-week moderate-intensity continuous training (MICT) program, consisting of 40 min of treadmill running at 60% of the peak velocity achieved in the test, three times per week. At the end of the training, animals were euthanized, and tissue samples were collected for ex vivo analysis. ApoCIII overexpression led to hypertriglyceridemia (P<0.0001) and higher concentrations of total plasma cholesterol (P<0.05), low-density lipoprotein (LDL) cholesterol (P<0.01), and very low-density lipoprotein (VLDL) cholesterol (P<0.0001) in the animals. Furthermore, the transgenic mice exhibited increased adipose mass (P<0.05) and higher V̇O2peak compared to their NTG controls (P<0.0001). Following the exercise protocol, MICT decreased triglyceridemia and cholesterol levels in dyslipidemic animals (P<0.05), and reduced adipocyte size (P<0.05), increased muscular glycogen (P<0.001), and improved V̇O2 in all trained animals (P<0.0001). These findings contribute to our understanding of the effects of moderate and continuous exercise training, a feasible non-pharmacological intervention, on the metabolic profile of genetically dyslipidemic subjects.
Collapse
Affiliation(s)
- N.R. Teixeira
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - D.R. Jimenes
- Departamento de Educação Física, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C. Schultz
- Departamento de Biociências e Fisiopatologia, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - D.L. Almeida
- Laboratório Experimental em DOHaD, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - P.C.F. Mathias
- Laboratório Experimental em DOHaD, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J.A. Berti
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
5
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
6
|
Wen Y, Chen YQ, Konrad RJ. Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism. Curr Opin Lipidol 2024; 35:58-65. [PMID: 37962908 DOI: 10.1097/mol.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
7
|
Liao J, Wang Y, Wang Y, Zhang J, Wu F, Liu G, Huang W, Zhang Y. Human ApoC3 overexpression aggravates hyperlipidemia but mitigates diet-induced coronary atherosclerotic disease in SR-BI and LDL receptor double knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159449. [PMID: 38163622 DOI: 10.1016/j.bbalip.2023.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China; Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Jinjin Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Feng Wu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - George Liu
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Wei Huang
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Ying Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|
8
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Zhou J, Mo H, Feng Q, Li L, La J. ApoC3 is expressed in oocytes and increased expression is associated with PCOS progression. J Ovarian Res 2023; 16:188. [PMID: 37689737 PMCID: PMC10493025 DOI: 10.1186/s13048-023-01263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a lifelong metabolic disorder and the most common cause of anovulatory infertility affecting women in reproductive age. Our recent study reported that apolipoprotein C3 (ApoC3) could be a potential diagnostic serum marker for metabolism disturbance in PCOS patients, but whether it is present in the ovaries and what role it plays has not yet been described. OBJECTIVE Aimed to investigate ApoC3 expression in ovary of PCOS, and to discuss its potential role in PCOS progression. METHODS ApoC3 expression in ovarian tissue samples from 12 PCOS patients along with 12 healthy controls were measured via immunohistochemistry (IHC). Also, the level of ApoC3 in follicular fluid from 14 patients diagnosed with PCOS and 13 control subjects were detected by ELISA. The expression and location of ApoC3 in ovaries of PCOS mice were tested weekly for three consecutive weeks during PCOS formation using real time PCR, Western Blot, IHC and immunofluorescence. The relation of ApoC3 and sex hormones was analyzed in mouse plasma. Additionally, the dynamic changes of ApoC3 level in ovaries of healthy mice during postnatal development was also investigated. RESULTS ApoC3 levels in ovarian tissue and follicular fluid were significantly higher in PCOS patients than in controls (33.87 ± 4.11 vs. 27.71 ± 3.65, P < 0.01; 0.87 ± 0.09 vs. 0.51 ± 0.32 ng/mL, P < 0.05), respectively. In ovary, ApoC3 was found to be located in the cytoplasm of oocyte, and its expression gradually increased with PCOS progression (P < 0.05). Furthermore, correlation analysis showed that plasma ApoC3 level was closely associated with luteinizing hormone (r = 0.709, P = 0.001), testosterone (r = 0.627, P = 0.005) and anti-mullerian hormone (r = 0.680, P = 0.002) in PCOS mice. In addition, ApoC3 level in oocyte was physiologically increased and peaked on postnatal age 21 (P21), then decreased following P21 in healthy mice. CONCLUSIONS We identified ApoC3 expression in oocyte. It may be involved in PCOS progression and possibly participate in the regulation of oocyte development.
Collapse
Affiliation(s)
- Jiahe Zhou
- Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Mo
- Faculty of Chinese Medicines, Macau University of Science and Technology, Macao, 000853, China
| | - Qian Feng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Li Li
- Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jiahui La
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
10
|
Ying Q, Croyal M, Chan DC, Blanchard V, Pang J, Krempf M, Watts GF. Effect of Omega-3 Fatty Acid Supplementation on the Postprandial Metabolism of Apolipoprotein(a) in Familial Hypercholesterolemia. J Atheroscler Thromb 2023; 30:274-286. [PMID: 35676030 PMCID: PMC9981347 DOI: 10.5551/jat.63587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Lipoprotein(a) (Lp(a)) is a low-density lipoprotein-like particle containing apolipoprotein(a) (apo(a)) that increases the risk of atherosclerotic cardiovascular disease (ASCVD) in familial hypercholesterolemia (FH). Postprandial redistribution of apo(a) protein from Lp(a) to triglyceride-rich lipoproteins (TRLs) may also increase the atherogenicity of TRL particles. Omega-3 fatty acid (ω3FA) supplementation improves postprandial TRL metabolism in FH subjects. However, its effect on postprandial apo(a) metabolism has yet to be investigated. METHODS We carried out an 8-week open-label, randomized, crossover trial to test the effect of ω3FA supplementation (4 g/day) on postprandial apo(a) responses in FH patients following ingestion of an oral fat load. Postprandial plasma total and TRL-apo(a) concentrations were measured by liquid chromatography with tandem mass spectrometry, and the corresponding areas under the curve (AUCs) (0-10h) were determined using the trapezium rule. RESULTS Compared with no ω3FA treatment, ω3FA supplementation significantly lowered the concentrations of postprandial TRL-apo(a) at 0.5 (-17.9%), 1 (-18.7%), 2 (-32.6%), and 3 h (-19.2%) (P<0.05 for all). Postprandial TRL-apo(a) AUC was significantly reduced with ω3FA by 14.8% (P<0.05). By contrast, ω3FA had no significant effect on the total AUCs of apo(a), apoC-III, and apoE (P>0.05 for all). The decrease in postprandial TRL-apo(a) AUC was significantly associated with changes in the AUC of triglycerides (r=0.600; P<0.01) and apoB-48 (r=0.616; P<0.01). CONCLUSIONS Supplementation with ω3FA reduces postprandial TRL-apo(a) response to a fat meal in FH patients; this novel metabolic effect of ω3FA may have implications on decreasing the risk of ASCVD in patients with FH, especially in those with elevated plasma triglyceride and Lp(a) concentrations. However, the clinical implications of these metabolic findings require further evaluation in outcome or surrogate endpoint trials.
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Mikaël Croyal
- Nantes Universite, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France,Nantes Universite, CHU Nantes, INSERM, CNRS, SFR Sante, INSERM UMS 016, CNRS UMS 3556, F-44000 Nantes, France,CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France
| | - Dick C Chan
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Valentin Blanchard
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, Vancouver, Canada
| | - Jing Pang
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | | | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Western Australia, Australia,Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
11
|
CD14 +-Monocytes Exposed to Apolipoprotein CIII Express Tissue Factor. Int J Mol Sci 2023; 24:ijms24032223. [PMID: 36768547 PMCID: PMC9916694 DOI: 10.3390/ijms24032223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1β and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review will briefly revise the evidence concerning the pharmacological inhibition of Apolipoprotein CIII (ApoCIII) in patients with hypertriglyceridemia. RECENT FINDINGS ApoCIII is a plasma apolipoprotein playing a major role in the metabolism of triglyceride-rich lipoproteins, namely chylomicrons and very-low-density lipoproteins as well as in the pathological processes involved in atherosclerosis. Therefore, ApoCIII is a potential new target for reducing plasma levels of TRLs and, thereby, cardiovascular risk. In recent years, there have been extensive preclinical and clinical pharmacological studies aimed at testing drugs directed against ApoCIII. SUMMARY In this review, firstly we will summarize the molecular function of ApoCIII in lipoprotein metabolism. Then, we will examine the lipid-lowering potential of the pharmacological inhibition of ApoCIII based on the results of clinical trial employing Volansesorsen, the first approved antisense therapeutic oligonucleotide against ApoCIII mRNA. The future perspectives for ApoCIII inhibition will be also revised.
Collapse
Affiliation(s)
- Daniele Tramontano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
13
|
Abstract
The exogenous lipoprotein pathway starts with the incorporation of dietary lipids into chylomicrons in the intestine. Chylomicron triglycerides are metabolized in muscle and adipose tissue and chylomicron remnants are formed, which are removed by the liver. The endogenous lipoprotein pathway begins in the liver with the formation of very low-density lipoprotein particles (VLDL). VLDL triglycerides are metabolized in muscle and adipose tissue forming intermediate-density lipoprotein (IDL), which may be taken up by the liver or further metabolized to low-density lipoprotein (LDL). Reverse cholesterol transport begins with the formation of nascent high-density lipoprotein (HDL) by the liver and intestine that acquire cholesterol from cells resulting in mature HDL. The HDL then transports the cholesterol to the liver either directly or indirectly by transferring the cholesterol to VLDL or LDL.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Department of Medicine, University of California-San Francisco, San Francisco, California, 94117, USA.
| |
Collapse
|
14
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
15
|
Rodríguez M, Rehues P, Iranzo V, Mora J, Balsells C, Guardiola M, Ribalta J. Distribution of seven ApoC-III glycoforms in plasma, VLDL, IDL, LDL and HDL of healthy subjects. J Proteomics 2022; 251:104398. [PMID: 34688878 DOI: 10.1016/j.jprot.2021.104398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
Glycosylation of ApoC-III modulates its function in TG metabolism, with some variants being associated with a more atherogenic lipid profile. These associations have been studied in whole plasma but rarely in individual lipoprotein fractions. In this study, we aimed to measure the relative content of ApoC-III glycoforms in each lipoprotein fraction as a potential biomarker for TG metabolism and cardiovascular risk. Lipoprotein fractions were separated by differential ultracentrifugation of plasma samples from healthy subjects. Relative concentrations of seven ApoC-III variants were measured by MSIA. ApoC-III1, ApoC-III0b and ApoC-III2 were the most abundant glycoforms. There was high interindividual variability in the distribution of glycoforms across the study population but a uniform proportion in all lipoprotein fractions of each given subject. Two ApoC-III variants, ApoC-III0b and ApoC-III1d, negatively correlated with plasma and VLDL triglycerides irrespectively of VLDL size and were associated with increased LDL size when transported in LDL particles. ApoC-III0b also showed a negative correlation with lipoprotein-insulin resistance score. We have been able to measure seven ApoC-III glycoforms in each lipoprotein fraction, setting the basis for future studies exploring their role on cardiovascular risk. Some glycoforms suggest a less proatherogenic role on TG and lipoprotein metabolism. SIGNIFICANCE: Apo CIII has an important role on plasma TG metabolism through different mechanisms and it is also involved in type 1 and type 2 Diabetes Mellitus. Different glycosylated forms of Apo CIII exist and they show different roles. For this reason, this protein has gained interest in the las years and the relationship between ApoC-III glycoforms and lipids, lipoproteins and metabolic disorders has been increasingly studied in the last years. Apo CIII glycoforms have been previously analysed in plasma, and the function of the main four glycoforms has been assessed in a variety of cohorts; but in the present study, ApoC-III glycoforms are measured in each lipoprotein fraction, which may be of clinical interest.
Collapse
Affiliation(s)
- Marina Rodríguez
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Pere Rehues
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Víctor Iranzo
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain
| | - Jorge Mora
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain
| | - Clara Balsells
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain
| | - Montse Guardiola
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain.
| | - Josep Ribalta
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain.
| |
Collapse
|
16
|
|
17
|
Pinzon Grimaldos A, Bini S, Pacella I, Rossi A, Di Costanzo A, Minicocci I, D’Erasmo L, Arca M, Piconese S. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin Exp Immunol 2021; 208:181-192. [PMID: 35020862 PMCID: PMC9188345 DOI: 10.1093/cei/uxab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.
Collapse
Affiliation(s)
| | | | - Ilenia Pacella
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silvia Piconese
- Correspondence: Silvia Piconese, Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
18
|
Huang CH, Huang YL, Shen ZQ, Lin CH, Tsai TF. Cisd2 Preserves the Youthful Pattern of the Liver Proteome during Natural Aging of Mice. Biomedicines 2021; 9:biomedicines9091229. [PMID: 34572415 PMCID: PMC8470730 DOI: 10.3390/biomedicines9091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022] Open
Abstract
Cisd2 (CDGSH iron sulfur domain 2) is a pro-longevity gene that extends the lifespan and health span of mice, ameliorates age-associated structural damage and limits functional decline in multiple tissues. Non-alcoholic fatty liver disease (NAFLD), which plays an important role in age-related liver disorders, is the most common liver disease worldwide. However, no medicines that can be used to specifically and effectively treat NAFLD are currently approved for this disease. Our aim was to provide pathological and molecular evidence to show that Cisd2 protects the liver from age-related dysregulation of lipid metabolism and protein homeostasis. This study makes four major discoveries. Firstly, a persistently high level of Cisd2 protects the liver from age-related fat accumulation. Secondly, proteomics analysis revealed that Cisd2 ameliorates age-related dysregulation of lipid metabolism, including lipid biosynthesis and β-oxidation, in mitochondria and peroxisomes. Thirdly, Cisd2 attenuates aging-associated oxidative modifications of proteins. Finally, Cisd2 regulates intracellular protein homeostasis by maintaining the functionality of molecular chaperones and protein synthesis machinery. Our proteomics findings highlight Cisd2 as a novel molecular target for the development of therapies targeting fatty liver diseases, and these new therapies are likely to help prevent subsequent malignant progression to cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
| | - Yi-Long Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-H.L.); (T.-F.T.); Tel.: +886-2-2826-67280 (C.-H.L.); +886-2-2826-67293 (T.-F.T.)
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan
- Correspondence: (C.-H.L.); (T.-F.T.); Tel.: +886-2-2826-67280 (C.-H.L.); +886-2-2826-67293 (T.-F.T.)
| |
Collapse
|
19
|
D'Erasmo L, Bini S, Arca M. Rare Treatments for Rare Dyslipidemias: New Perspectives in the Treatment of Homozygous Familial Hypercholesterolemia (HoFH) and Familial Chylomicronemia Syndrome (FCS). Curr Atheroscler Rep 2021; 23:65. [PMID: 34468855 PMCID: PMC8410715 DOI: 10.1007/s11883-021-00967-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Purpose of Review This review aims to summarize the most recent published literature concerning lomitapide and volanesorsen that are approved for the use in HoFH and FCS patients, respectively. Moreover, it will briefly revise the published evidence on novel, non-approved treatments that are under evaluation for the management of these rare forms of dyslipidemias Recent Findings The definition of rare dyslipidemias identifies a large number of severe disorders of lipid metabolism of genetic origin. Among them were homozygous familial hypercholesterolemia (HoFH) (OMIM #143890) and familial chylomicronemia syndrome (FCS) (OMIM #238600), which are characterized by a markedly impaired cholesterol- and triglyceride-containing lipoproteins metabolism. They are being particularly associated with poor health outcomes and quality of life. Considering the severity of these diseases, common lipid-lowering drugs are often ineffective or do not allow to achieve the recommended lipid targets to prevent the development of complications. Nowadays, several new drugs have been found to effectively treat HoFH and FCS with an acceptable safety profile. Summary Treating patients with HoFH and FCS remains very challenging. However, novel treatment options are emerging and might be considered in addition to conventional therapy for managing these diseases. These novel drugs will possibly change the natural history of these two rare and life-threatening diseases.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, 00161, Rome, Italy.
| |
Collapse
|
20
|
Dongiovanni P, Paolini E, Corsini A, Sirtori CR, Ruscica M. Nonalcoholic fatty liver disease or metabolic dysfunction-associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. Eur J Clin Invest 2021; 51:e13519. [PMID: 33583033 DOI: 10.1111/eci.13519] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND A consensus of experts has proposed to replace the term nonalcoholic fatty liver disease (NAFLD), whose global prevalence is 25%, with metabolic dysfunction-associated fatty liver disease (MAFLD), to describe more appropriately the liver disease related to metabolic derangements. MAFLD is closely intertwined with type 2 diabetes, obesity, dyslipidaemia, all linked to a rise in the risk of cardiovascular disease (CVDs). Since controversy still stands on whether or not NAFLD/MAFLD raises the odds of CVD, the present review aims to evaluate the impact of NAFLD/MAFLD aetiologies on CV health and the potential correction by dietary and drug approaches. RESULTS Epidemiological studies indicate that NAFLD raises risk of fatal or non-fatal CVD events. NAFLD patients have a higher prevalence of arterial plaques and stiffness, coronary calcification, and endothelial dysfunction. Although genetic and environmental factors strongly contribute to NAFLD pathogenesis, a Mendelian randomization analysis indicated that the PNPLA3 genetic variant leading to NAFLD may not be causally associated with CVD risk. Among other genetic variants related to NAFLD, TM6SF2 appears to be protective, whereas MBOAT7 may favour venous thromboembolism. CONCLUSIONS NAFLD is correlated to a higher CVD risk which may be ameliorated by dietary interventions. This is not surprising, since new criteria defining MAFLD include other metabolic risk abnormalities fuelling development of serious adverse extrahepatic outcomes, for example CVD. The present lack of a targeted pharmacological approach makes the identification of patients with liver disease at higher CVD risk (eg diabetes, hypertension, obesity or high levels of C-reactive protein) of major clinical interest.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,Multimedica IRCCS, Sesto San Giovanni (MI), Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Wang H, Huang X, Xu P, Liu X, Zhou Z, Wang F, Li J, Wang Y, Xian X, Liu G, Huang W. Apolipoprotein C3 aggravates diabetic nephropathy in type 1 diabetes by activating the renal TLR2/NF-κB pathway. Metabolism 2021; 119:154740. [PMID: 33639183 DOI: 10.1016/j.metabol.2021.154740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Apolipoprotein C3 (ApoC3) is a regulator of triglyceride metabolism and inflammation, and its plasma levels are positively correlated with the progression of diabetic nephropathy (DN) in patients. However, the role and underlying mechanism of ApoC3 in DN remain unclear. METHODS Diabetes was induced in ApoC3 transgenic (Tg) and knockout (KO) mice by injection of streptozotocin. We studied the effect of ApoC3 on type 1 DN after 4 months of diabetes. Plasma glucose and lipid levels, renal function parameters and inflammation- and fibrogenesis-related gene and protein expression levels were studied. In vitro, human mesangial cells (HMCs) were incubated with high levels of glucose or/and triglyceride-rich lipoproteins (TRLs) with a high or low ApoC3 content isolated from Tg or wild-type (WT) mice, respectively, to explore the mechanisms of ApoC3 on development of DN. RESULTS We found that compared to WT mice, Tg mice exhibited hypertriglyceridemia (HTG), aggravated early renal function injury and inflammation, enlarged glomerular and mesangial surface areas, renal lipid deposition and elevated fibrogenesis-related gene expression levels after 4 months of diabetes. ApoC3 overexpression activated the renal Toll-like receptor 2 (TLR2) and nuclear factor-κB (NF-κB) signaling pathways and increased the renal gene and protein expression levels of the downstream inflammatory factors TNF-α, VCAM-1 and MCP-1. Unfortunately, we did not find that ApoC3 deficiency had an obvious protective effect against DN. In vitro, we found that TRLs with a high ApoC3 content increased the gene and protein expression levels of inflammation- and fibrogenesis-related factors in HMCs compared to those following administration of the same concentration of TRLs with a low ApoC3 content. These effects of ApoC3 were inhibited by blockade of TLR2 or NF-κB. CONCLUSIONS These findings suggest that ApoC3 aggravates early-stage DN by activating the renal TLR2/NF-κB pathway which is partially independent of HTG.
Collapse
MESH Headings
- Animals
- Apolipoprotein C-III/genetics
- Apolipoprotein C-III/physiology
- Cells, Cultured
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Disease Progression
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NF-kappa B/metabolism
- Signal Transduction/genetics
- Streptozocin
- Toll-Like Receptor 2/metabolism
Collapse
Affiliation(s)
- Huan Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Pengfei Xu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuejing Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihao Zhou
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fuhua Wang
- Department of Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingyi Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
22
|
Reyes-Soffer G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease risk: current status and treatments. Curr Opin Endocrinol Diabetes Obes 2021; 28:85-89. [PMID: 33481422 DOI: 10.1097/med.0000000000000619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The role of triglyceride-rich lipoproteins (TRLs) in the development of atherosclerotic cardiovascular disease (ASCVD) is at the forefront of current research and treatment development programs. Despite extreme lowering of LDL-cholesterol there remains a high risk of cardiovascular disease and mortality. Recent large epidemiological, genomic wide association studies and Mendelian randomization studies have identified novel mechanisms and targets regulating TRL. This review will focus on recent and ongoing clinical trials that aim to reduce cardiovascular risk by decreasing plasma levels of TRL. RECENT FINDINGS Ongoing efforts of basic and clinical scientist have described novel TRL regulating mechanism. The concentration on lifestyle changes is key to prevention and treatment guidelines. There is continue evidence that supports previous guidelines using fibrates alone and in combination with niacin to reduce TRLs, in special cases. The recent results from the REDUCE-IT study support the use of eicosapentaenoic acid (EPA) for risk reduction and ASCVD, but recently presented data from the Long-Term Outcome Study to Assess Statin Residual Risk Reduction With Epanova in High Cardiovascular Risk Patients with Hypertriglyceridemia and Omega-3 Fatty Acids in Elderly Patients With Acute Myocardial Infarction studies do not support the use of combination EPA/docosahexaenoic acid. The latter highlights the need for further studies into the pathways regulating ASCVD risk reduction after EPA administration. The identification of novel targets, such as apolipoprotein C3 and angiopoietin-like protein-3, are driving the development of novel treatments, and is the focus of this review. SUMMARY The current management of elevated triglyceride levels and the effect on cardiovascular outcomes is an emerging area of research. New data from fish oil studies suggest differences in EPA vs. EPA/docosahexaenoic acid cardio protection outcomes. The preliminary data from ongoing clinical trials of novel triglyceride-lowering therapeutics are promising. These programs will ultimately provide foundations for future triglyceride-lowering guidelines.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Department of Medicine, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
23
|
Abstract
Purpose of review Based on the recent data of the DA VINCI study, it is clear that, besides utilization of statins, there is a need to increase non-statin lipid lowering approaches to reduce the cardiovascular burden in patients at highest risk. Recent findings For hypercholesterolemia, the small synthetic molecule bempedoic acid has the added benefit of selective liver activation, whereas inclisiran, a hepatic inhibitor of the PCSK9 synthesis, has comparable effects with PCSK9 monoclonal antibodies. For hypertriglyceridemia, cardiovascular benefit has been achieved by the use of icosapent ethyl, whereas results with pemafibrate, a selective agonist of PPAR-α, are eagerly awaited. In the era of RNA-based therapies, new options are offered to dramatically reduce levels of lipoprotein(a) (APO(a)LRX) and of triglycerides (ANGPTL3LRX and APOCIII-LRx). Summary Despite the demonstrated benefits of statins, a large number of patients still remain at significant risk because of inadequate LDL-C reduction or elevated blood triglyceride-rich lipoproteins or lipoprotein(a). The area of lipid modulating agents is still ripe with ideas and major novelties are to be awaited in the next few years.
Collapse
|