1
|
Kilic F. The nature of the binding between insulin receptor and serotonin transporter in placenta (review). Placenta 2023; 133:40-44. [PMID: 36796293 DOI: 10.1016/j.placenta.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The interplay between the insulin receptor (IR) and serotonin transporter (SERT) allows reciprocal regulation of each other's physiological roles to ensure appropriate responses to specific environmental and developmental signals. The studies reported herein provided substantial evidence of how insulin signaling influences the modification and trafficking of SERT to the plasma membrane via enabling its association with specific endoplasmic reticulum (ER) proteins. While insulin signaling is important for the modifications of SERT proteins, the fact that phosphorylation of IR was significantly down-regulated in the placenta of SERT knock out (KO) mice suggests that SERT also regulates IR. Further suggestive of SERT functional regulation of IR, SERT-KO mice developed obesity and glucose intolerance with symptoms similar to those of type 2 diabetes. The picture emerging from those studies proposes that the interplay between IR and SERT maintains conditions supportive of IR phosphorylation and regulates insulin signaling in placenta which ultimately enables the trafficking of SERT to the plasma membrane. IR-SERT association thus appears to play a protective metabolic role in placenta and is impaired under diabetic conditions. This review focuses on recent findings describing the functional and physical associations between IR and SERT in placental cells, and the dysregulation of this process in diabetes.
Collapse
Affiliation(s)
- Fusun Kilic
- Biology Department, Merced College, Merced, CA, USA.
| |
Collapse
|
2
|
Franzago M, Orecchini E, Porreca A, Mondanelli G, Orabona C, Dalla Ragione L, Di Nicola M, Stuppia L, Vitacolonna E, Beccari T, Ceccarini MR. SLC6A4 DNA Methylation Levels and Serum Kynurenine/Tryptophan Ratio in Eating Disorders: A Possible Link with Psychopathological Traits? Nutrients 2023; 15:nu15020406. [PMID: 36678277 PMCID: PMC9866524 DOI: 10.3390/nu15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Background: The incidence of eating disorders (EDs), serious mental and physical conditions characterized by a disturbance in eating or eating-related behaviors, has increased steadily. The present study aims to develop insights into the pathophysiology of EDs, spanning over biochemical, epigenetic, psychopathological, and clinical data. In particular, we focused our attention on the relationship between (i) DNA methylation profiles at promoter-associated CpG sites of the SCL6A4 gene, (ii) serum kynurenine/tryptophan levels and ratio (Kyn/Trp), and (iii) psychopathological traits in a cohort of ED patients. Among these, 45 patients were affected by restricting anorexia nervosa (AN0), 21 by purging AN (AN1), 21 by bulimia (BN), 31 by binge eating disorders (BED), 23 by unspecified feeding or eating disorders (UFED), and finally 14 by other specified eating disorders (OSFED) were compared to 34 healthy controls (CTRs). Results: Kyn level was higher in BED, UFED, and OSFED compared to CTRs (p ≤ 0.001). On the other hand, AN0, AN1, and BN patients showed significatively lower Kyn levels compared to the other three ED groups but were closed to CTRs. Trp was significantly higher in AN0, AN1, and BN in comparison to other ED groups. Moreover, AN1 and BN showed more relevant Trp levels than CTRs (p <0.001). BED patients showed a lower Trp as compared with CTRs (p ≤ 0.001). In addition, Kyn/Trp ratio was lower in the AN1 subtype but higher in BED, UFED, and OSFED patients than in CTRs (p ≤ 0.001). SCL6A4 DNA methylation level at CpG5 was lower in AN0 compared to BED (p = 0.021), and the CpG6 methylation was also significantly lower in AN0 in comparison to CTRs (p = 0.025). The mean methylation levels of the six CpGs analyzed were lower only in the AN0 subgroup compared to CTRs (p = 0.008). Relevant psychological trait EDI-3 subscales were correlated with biochemical and epigenetic data. Conclusions: These findings underline the complexity of psychological and pathophysiological components of EDs.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Laura Dalla Ragione
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, 00128 Rome, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-075-585-7905
| |
Collapse
|
3
|
Tůma P, Sommerová B, Koval D, Šiklová M, Koc M. Plasma levels of creatine, 2-aminobutyric acid, acetyl-carnitine and amino acids during fasting measured by counter-current electrophoresis in PAMAPTAC capillary. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Day time-restricted feeding shows differential synchronizing effects on age-related changes of serotonin metabolism in SCN and the pineal gland in male Wistar rats. Biogerontology 2022; 23:771-788. [PMID: 36322233 DOI: 10.1007/s10522-022-09994-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The circadian timing system is synchronized by the environmental photic and non-photic signals. Light is the major cue that entrains the master circadian oscillator located in suprachiasmatic nucleus (SCN). With aging condition ocular light impairs because of the age-related deficiencies in the eye as a result the clock becomes less sensitive to light. In such case non-photic cues may play a major role in synchronizing the clock. Earlier studies have linked altered meal timings to induce many physiological changes including serotonin in different brain regions such as hypothalamus, brain stem and striatum. Much is not known about the effect of timed food restriction as a non-photic stimulus on serotonergic system in SCN under aging condition. We report here the synchronizing effects of time-restricted feeding (TRF) as a non-photic stimulus on serotonin and its related metabolites in the SCN and pineal gland of male Wistar rats upon aging. Under food restriction daily rhythmicity of serotonin 5-HT and 5-HTOH was abolished whereas NAS, 5-MIAA and NAT showed a significant decrease in their daily pulses upon food restriction in 3 months (m) old rats. Under forced day time feeding schedule the mean 24 h levels of serotonin have significantly decreased in 12 and 24 m old animals in SCN and pineal gland. Most of the serotonin metabolites in the SCN and pineal gland of 12 and 24 m old ad libitum fed group rats have shown rhythmicity. 5-HT, NAS, MEL and NAT have shown daily rhythm in the SCN of 12 and 24 m old rats whereas 5-MIAA and 5-MTOH did not show daily rhythm in both the age groups. The mean 24 h levels of 5-HTP, 5-HIAA, 5-MIAA, 5-MTOH, MEL and NAT were increased in the pineal gland of 12 and 24 months old rats. This work help demonstrate the role of TRF in synchronising age induced desynchronization in serotonin metabolome.
Collapse
|
5
|
Polyzos SA, Hill MA, Fuleihan GEH, Gnudi L, Kim YB, Larsson SC, Masuzaki H, Matarese G, Sanoudou D, Tena-Sempere M, Mantzoros CS. Metabolism, Clinical and Experimental: seventy years young and growing. Metabolism 2022; 137:155333. [PMID: 36244415 DOI: 10.1016/j.metabol.2022.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Ghada El-Hajj Fuleihan
- Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, World Health Organization Collaborating Center for Metabolic Bone Disorders, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, UK
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiroaki Masuzaki
- Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy; Laboratorio di Immunogenetica dei Trapianti & Registro Regionale dei Trapianti di Midollo, AOU "Federico II", Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Raphe serotonin projections dynamically regulate feeding behavior through targeting inhibitory circuits from rostral zona incerta to paraventricular thalamus. Mol Metab 2022; 66:101634. [PMID: 36351530 PMCID: PMC9672487 DOI: 10.1016/j.molmet.2022.101634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Rostral zona incerta (ZIR) evokes feeding by sending GABA transmission to paraventricular thalamus (PVT). Although central serotonin (5-HT) signaling is known to play critical roles in the regulation of food intake and eating disorders, it remains unknown whether raphe 5-HT neurons functionally innervate ZIR-PVT neural pathway for feeding control. Here, we sought to reveal how raphe 5-HT signaling regulates both ZIR and PVT for feeding control. METHODS We used retrograde neural tracers to map 5-HT projections in Sert-Cre mice and slice electrophysiology to examine the mechanism by which 5-HT modulates ZIR GABA neurons. We also used optogenetics to test the effects of raphe-ZIR and raphe-PVT 5-HT projections on feeding motivation and food intake in mice regularly fed, 24 h fasted, and with intermittent high-fat high-sugar (HFHS) diet. In addition, we applied RNAscope in situ hybridization to identify 5-HT receptor subtype mRNA in ZIR. RESULTS We show raphe 5-HT neurons sent projections to both ZIR and PVT with partial collateral axons. Photostimulation of 5-HT projections inhibited ZIR but excited PVT neurons to decrease motivated food consumption. However, both acute food deprivation and intermittent HFHS diet downregulated 5-HT inhibition on ZIR GABA neurons, abolishing the inhibitory regulation of raphe-ZIR 5-HT projections on feeding motivation and food intake. Furthermore, we found high-level 5-HT1a and 5-HT2c as well as low-level 5-HT7 mRNA expression in ZIR. Intermittent HFHS diet increased 5-HT7 but not 5-HT1a or 5-HT2c mRNA levels in the ZIR. CONCLUSIONS Our results reveal that raphe-ZIR 5-HT projections dynamically regulate ZIR GABA neurons for feeding control, supporting that a dynamic fluctuation of ZIR 5-HT inhibition authorizes daily food intake but a sustained change of ZIR 5-HT signaling leads to overeating induced by HFHS diet.
Collapse
|
7
|
Liu B, Ruz‐Maldonado I, Toczyska K, Olaniru OE, Zariwala MG, Hopkins D, Zhao M, Persaud SJ. The selective serotonin reuptake inhibitor fluoxetine has direct effects on beta cells, promoting insulin secretion and increasing beta-cell mass. Diabetes Obes Metab 2022; 24:2038-2050. [PMID: 35676820 PMCID: PMC9545812 DOI: 10.1111/dom.14791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
AIM This study investigated whether therapeutically relevant concentrations of fluoxetine, which have been shown to reduce plasma glucose and glycated haemoglobin independent of changes in food intake and body weight, regulate beta-cell function and improve glucose homeostasis. METHODS Cell viability, insulin secretion, beta-cell proliferation and apoptosis were assessed after exposure of MIN6 beta cells or isolated mouse and human islets to 0.1, 1 or 10 μmol/L fluoxetine. The effect of fluoxetine (10 mg/kg body weight) administration on glucose homeostasis and islet function was also examined in ob/ob mice. RESULTS Exposure of MIN6 cells and mouse islets to 0.1 and 1 μmol/L fluoxetine for 72 hours did not compromise cell viability but 10 μmol/L fluoxetine significantly increased Trypan blue uptake. The dose of 1 μmol/L fluoxetine significantly increased beta-cell proliferation and protected islet cells from cytokine-induced apoptosis. In addition, 1 μmol/L fluoxetine induced rapid and reversible potentiation of glucose-stimulated insulin secretion from islets isolated from mice, and from lean and obese human donors. Finally, intraperitoneal administration of fluoxetine to ob/ob mice over 14 days improved glucose tolerance and resulted in significant increases in beta-cell proliferation and enhanced insulin secretory capacity. CONCLUSIONS These data are consistent with a role for fluoxetine in regulating glucose homeostasis through direct effects on beta cells. Fluoxetine thus demonstrates promise as a preferential antidepressant for patients with concomitant occurrence of depression and diabetes.
Collapse
Affiliation(s)
- Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Inmaculada Ruz‐Maldonado
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
- Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program (VBT) Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM)Yale University School of MedicineNew HavenConnecticutUSA
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Oladapo E. Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | | - David Hopkins
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Shanta J. Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
8
|
Striatal Dopamine Transporter Availability Is Not Associated with Food Craving in Lean and Obese Humans; a Molecular Imaging Study. Brain Sci 2021; 11:brainsci11111428. [PMID: 34827426 PMCID: PMC8615750 DOI: 10.3390/brainsci11111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Brain dopamine signaling is essential for the motivation to eat, and obesity is associated with altered dopaminergic signaling and increased food craving. We used molecular neuroimaging to explore whether striatal dopamine transporter (DAT) availability is associated with craving as measured with the General Food Craving Questionnaire-Trait (G-FCQ-T). We here show that humans with obesity (n = 34) experienced significantly more craving for food compared with lean subjects (n = 32), but food craving did not correlate significantly with striatal DAT availability as assessed with 123I-FP-CIT single-photon emission computed tomography. We conclude that food craving is increased in obesity, but the scores for food craving are not related to changes in striatal DAT availability.
Collapse
|