1
|
Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol 2024; 327:C587-C598. [PMID: 38981607 PMCID: PMC11427015 DOI: 10.1152/ajpcell.00144.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Metabolic diseases, notably obesity and type 2 diabetes (T2D), have reached alarming proportions and constitute a significant global health challenge, emphasizing the urgent need for effective preventive and therapeutic strategies. In contrast, exercise training emerges as a potent intervention, exerting numerous positive effects on metabolic health through adaptations to the metabolic tissues. Here, we reviewed the major features of our current understanding with respect to the intricate interplay between metabolic diseases and key metabolic tissues, including adipose tissue, skeletal muscle, and liver, describing some of the main underlying mechanisms driving pathogenesis, as well as the role of exercise to combat and treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
2
|
Liu C, Yan X, Zong Y, He Y, Yang G, Xiao Y, Wang S. The effects of exercise on FGF21 in adults: a systematic review and meta-analysis. PeerJ 2024; 12:e17615. [PMID: 38948228 PMCID: PMC11212618 DOI: 10.7717/peerj.17615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) is a key hormone factor that regulates glucose and lipid homeostasis. Exercise may regulate its effects and affect disease states. Therefore, we sought to determine how exercise affects FGF21 concentrations in adults. Methods The review was registered in the International Prospective Systematic Review (PROSPERO, CRD42023471163). The Cochrane Library, PubMed, and Web of Science databases were searched for studies through July 2023. Studies that assessed the effects of exercise training on FGF21 concentration in adults were included. The random effect model, data with standardized mean difference (SMD), and 95% confidence intervals (CI) were used to evaluate the pooled effect size of exercise training on FGF21. The risk of heterogeneity and bias were evaluated. A total of 12 studies involving 401 participants were included. Results The total effect size was 0.3 (95% CI [-0.3-0.89], p = 0.33) when comparing participants who exercised to those who were sedentary. However, subgroup analysis indicated that concurrent exercise and a duration ≥10 weeks significantly decreased FGF21 concentrations with an effect size of -0.38 (95% CI [-0.74--0.01], p < 0.05) and -0.38 (95% CI [-0.63--0.13], p < 0.01), respectively. Conclusion Concurrent exercise and longer duration may be more efficient way to decrease FGF21 concentrations in adults with metabolic disorder.
Collapse
Affiliation(s)
- Chuannan Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xujie Yan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yue Zong
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yanan He
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Guan Yang
- School of Physical Education, South China University of Technology, Guangzhou, China
| | - Yue Xiao
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
4
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Riahy S. The effects of 12 weeks of high-intensity interval training and moderate-intensity continuous training on FGF21, irisin, and myostatin in men with type 2 diabetes mellitus. Growth Factors 2024; 42:24-35. [PMID: 37945531 DOI: 10.1080/08977194.2023.2279163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
This study investigated the influence of a 12-week high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on irisin, fibroblast growth factor 21 (FGF21), and myostatin (MSTN) among men with type 2 diabetes mellitus (T2DM). Forty-five adult men with T2DM were randomly selected and assigned to receive and perform HIIT (4 × 4 min at 85-95% HRmax with three min of active rest at 50-60% HRmax in between) and MICT (walking/running continuously for 47 min at 60-70% HRmax) three sessions per week for 12 weeks, or to act as a non-exercise control (CON) group. The subjects' blood samples were collected at baseline and 48 hours after the last intervention session. Our research revealed that both interventions resulted in similar decreases in FGF21 and MSTN when compared to the CON (p < .01). However, only the HIIT group showed a significant increase in irisin (p < .01) compared to the CON. Further, improvements in insulin resistance, body composition, and VO2 peak were noted in both intervention groups compared with those of the CON group (p < .01). It seems that while either aerobic exercise strategy could be seen as a therapy for men with T2DM, HIIT had a more advantageous effect on the irisin response.
Collapse
Affiliation(s)
- Simin Riahy
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wen R, Huang R, Xu K, Cheng Y, Yi X. Beneficial effects of Apelin-13 on metabolic diseases and exercise. Front Endocrinol (Lausanne) 2023; 14:1285788. [PMID: 38089606 PMCID: PMC10714012 DOI: 10.3389/fendo.2023.1285788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Apelin, a novel endogenous ligand of the G-protein-coupled receptor APJ, is encoded by the APLN gene and can be hydrolyzed into multiple subtypes, with Apelin-13 being one of the most active subtypes of the Apelin family. Recent studies have revealed that Apelin-13 functions as an adipokine that participates in the regulation of different biological processes, such as oxidative stress, inflammation, apoptosis, and energy metabolism, thereby playing an important role in the prevention and treatment of various metabolic diseases. However, the results of recent studies on the association between Apelin-13 and various metabolic states remain controversial. Furthermore, Apelin-13 is regulated or influenced by various forms of exercise and could therefore be categorized as a new type of exercise-sensitive factor that attenuates metabolic diseases. Thus, in this review, our purpose was to focus on the relationship between Apelin-13 and related metabolic diseases and the regulation of response movements, with particular reference to the establishment of a theoretical basis for improving and treating metabolic diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
8
|
Crudele L, Garcia-Irigoyen O, Cariello M, Piglionica M, Scialpi N, Florio M, Piazzolla G, Suppressa P, Sabbà C, Gadaleta RM, Moschetta A. Total serum FGF-21 levels positively relate to visceral adiposity differently from its functional intact form. Front Endocrinol (Lausanne) 2023; 14:1159127. [PMID: 37409233 PMCID: PMC10319105 DOI: 10.3389/fendo.2023.1159127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Objective Increased Fibroblast Growth Factor-21 (FGF-21) circulating levels have been described in obesity. In this observational study, we analysed a group of subjects with metabolic disorders to unravel the putative link between visceral adiposity and FGF-21 serum levels. Methods Total and intact serum FGF-21 concentration was measured with an ELISA assay respectively in 51 and 46 subjects, comparing FGF-21 levels in dysmetabolic conditions. We also tested Spearman's correlations between FGF-21 serum levels and biochemical and clinical metabolic parameters. Results FGF-21 was not significantly increased in high-risk conditions such as visceral obesity, Metabolic Syndrome, diabetes, smoking, and atherosclerosis. Waist Circumference (WC), but not BMI, positively correlated with total FGF-21 levels (r=0.31, p <0.05), while HDL-cholesterol (r=-0.29, p <0.05) and 25-OH Vitamin D (r=-0.32, p <0.05) showed a significant negative correlation with total FGF-21. ROC analysis of FGF-21 in prediction of increased WC, showed that patients with total FGF-21 level over cut-off value of 161.47 pg/mL presented with impaired FPG. Conversely, serum levels of the intact form of FGF-21 did not correlate with WC and other metabolic biomarkers. Conclusion Our newly calculated cut-off for total FGF-21 according to visceral adiposity identified subjects with fasting hyperglycemia. However, waist circumference correlates with total FGF-21 serum levels but does not correlate with intact FGF-21, suggesting that functional FGF-21 does not necessarily relate with obesity and metabolic features.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Natasha Scialpi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- National Institute for Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
9
|
Heinle JW, DiJoseph K, Sabag A, Oh S, Kimball SR, Keating S, Stine JG. Exercise Is Medicine for Nonalcoholic Fatty Liver Disease: Exploration of Putative Mechanisms. Nutrients 2023; 15:nu15112452. [PMID: 37299416 DOI: 10.3390/nu15112452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise remains a key component of nonalcoholic fatty liver disease (NAFLD) treatment. The mechanisms that underpin improvements in NAFLD remain the focus of much exploration in our attempt to better understand how exercise benefits patients with NAFLD. In this review, we summarize the available scientific literature in terms of mechanistic studies which explore the role of exercise training in modulating fatty acid metabolism, reducing hepatic inflammation, and improving liver fibrosis. This review highlights that beyond simple energy expenditure, the activation of key receptors and pathways may influence the degree of NAFLD-related improvements with some pathways being sensitive to exercise type, intensity, and volume. Importantly, each therapeutic target of exercise training in this review is also the focus of previous or ongoing drug development studies in patients with nonalcoholic steatohepatitis (NASH), and even when a regulatory-agency-approved drug comes to market, exercise will likely remain an integral component in the clinical management of patients with NAFLD and NASH.
Collapse
Affiliation(s)
- James Westley Heinle
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Kara DiJoseph
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Angelo Sabag
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sechang Oh
- Department of Physical Therapy, Faculty of Rehabilitation, R Professional University of Rehabilitation, Tsuchiura 300-0032, Ibaraki, Japan
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Shelley Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Kysel P, Haluzíková D, Pleyerová I, Řezníčková K, Laňková I, Lacinová Z, Havrlantová T, Mráz M, Kasperová BJ, Kovářová V, Thieme L, Trnovská J, Svoboda P, Hubáčková SŠ, Vilikus Z, Haluzík M. Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training. Nutrients 2023; 15:nu15071720. [PMID: 37049560 PMCID: PMC10096784 DOI: 10.3390/nu15071720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Myokines represent important regulators of muscle metabolism. Our study aimed to explore the effects of a cyclical ketogenic reduction diet (CKD) vs. a nutritionally balanced reduction diet (RD) combined with regular resistance/aerobic training in healthy young males on serum concentrations of myokines and their potential role in changes in physical fitness. Twenty-five subjects undergoing regular resistance/aerobic training were randomized to the CKD (n = 13) or RD (n = 12) groups. Anthropometric and spiroergometric parameters, muscle strength, biochemical parameters, and serum concentrations of myokines and cytokines were assessed at baseline and after 8 weeks of intervention. Both diets reduced body weight, body fat, and BMI. Muscle strength and endurance performance were improved only by RD. Increased musclin (32.9 pg/mL vs. 74.5 pg/mL, p = 0.028) and decreased osteonectin levels (562 pg/mL vs. 511 pg/mL, p = 0.023) were observed in RD but not in the CKD group. In contrast, decreased levels of FGF21 (181 pg/mL vs. 86.4 pg/mL, p = 0.003) were found in the CKD group only. Other tested myokines and cytokines were not significantly affected by the intervention. Our data suggest that changes in systemic osteonectin and musclin levels could contribute to improved muscle strength and endurance performance and partially explain the differential effects of CKD and RD on physical fitness.
Collapse
Affiliation(s)
- Pavel Kysel
- Department of Sports Medicine, First Faculty of Medicine and General University Hospital, 128 08 Prague, Czech Republic
| | - Denisa Haluzíková
- Department of Sports Medicine, First Faculty of Medicine and General University Hospital, 128 08 Prague, Czech Republic
| | - Iveta Pleyerová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Kateřina Řezníčková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Ivana Laňková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Zdeňka Lacinová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, 121 11 Prague, Czech Republic
| | - Tereza Havrlantová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Miloš Mráz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Barbora Judita Kasperová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Viktorie Kovářová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Lenka Thieme
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Jaroslava Trnovská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Soňa Štemberková Hubáčková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Zdeněk Vilikus
- Department of Sports Medicine, First Faculty of Medicine and General University Hospital, 128 08 Prague, Czech Republic
- Correspondence: (Z.V.); (M.H.)
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, 121 11 Prague, Czech Republic
- Correspondence: (Z.V.); (M.H.)
| |
Collapse
|
11
|
Rodriguez-Ayllon M, Plaza-Florido A, Mendez-Gutierrez A, Altmäe S, Solis-Urra P, Aguilera CM, Catena A, Ortega FB, Esteban-Cornejo I. The effects of a 20-week exercise program on blood-circulating biomarkers related to brain health in overweight or obese children: The ActiveBrains project. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:175-185. [PMID: 36529369 PMCID: PMC10105026 DOI: 10.1016/j.jshs.2022.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Emerging research supports the idea that exercise positively affects neurodevelopment. However, the mechanisms linking exercise with brain health are largely unknown. We aimed to investigate the effect of exercise on (a) blood biomarkers selected based on previous evidence (brain-derived neurotrophic factor, β-hydroxybutyrate (BHB), cathepsin B (CTSB), kynurenine, fibroblast growth factor 21 (FGF21), soluble vascular cell adhesion molecule-1 (sVCAM-1)); and (b) a panel of 92 neurology-related proteins (discovery analysis). We also investigated whether changes in these biomarkers mediate the effects of exercise on brain health (hippocampal structure and function, cognitive performance, and mental health). METHODS We randomized 81 overweight/obese children (10.1 ± 1.1 years, 41% girls) into 2 groups: either 20 weeks of aerobic plus resistance exercise or control. Candidate biomarkers were assessed using enzyme-linked immunosorbent assay (ELISA) for kynurenine, FGF21, and CTSB; colorimetry for β-hydroxybutyrate; and XMap for brain-derived neurotrophic factor and soluble vascular cell adhesion molecule-1. The 92 neurology-related proteins were analyzed by an antibody-based proteomic analysis. RESULTS Our intervention had no significant effect on candidate biomarkers (all p > 0.05). In the discovery analysis, a reduction in circulating macrophage scavenger receptor type-I was observed (standardized differences between groups = -0.3, p = 0.001). This effect was validated using ELISA methods (standardized difference = -0.3, p = 0.01). None of the biomarkers mediated the effects of exercise on brain health. CONCLUSIONS Our study does not support a chronic effect of exercise on candidate biomarkers. We observed that while chronic exercise reduced the levels of macrophage scavenger receptor type-I, it did not mediate the effects of exercise on brain health. Future studies should explore the implications of this novel biomarker for overall health.
Collapse
Affiliation(s)
- María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health through physical activity" research group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada 18071, Spain; Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Abel Plaza-Florido
- PROFITH "PROmoting FITness and Health through physical activity" research group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada 18071, Spain
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health through physical activity" research group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada 18071, Spain; Nuclear Medicine Services, Virgen de Las Nieves University Hospital, Granada 18014, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - Andrés Catena
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada 18011, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health through physical activity" research group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada 18071, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Bioscience and Nutrition, Karolinska Institutet, Huddinge, SE 141 57, Sweden.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health through physical activity" research group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada 18071, Spain
| |
Collapse
|
12
|
Ketogenic Diet Combined with Moderate Aerobic Exercise Training Ameliorates White Adipose Tissue Mass, Serum Biomarkers, and Hepatic Lipid Metabolism in High-Fat Diet-Induced Obese Mice. Nutrients 2023; 15:nu15010251. [PMID: 36615908 PMCID: PMC9823610 DOI: 10.3390/nu15010251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity is a serious public health issue worldwide. Growing evidence demonstrates the efficacy of the ketogenic diet (KD) for weight loss, but there may be some adverse side effects such as dyslipidemia and hepatic steatosis. Aerobic exercise is a widely recognized approach for improving these metabolic markers. Here we explored the combined impacts of KD and moderate aerobic exercise for an 8-week intervention on body weight and fat loss, serum biomarkers, and hepatic lipid metabolism in a mouse model of high-fat diet-induced obesity. Both KD and KD combined with exercise significantly reduced body weight and fat mass. No significant adverse effects of KD were observed in serum biomarkers or hepatic lipid storage, except for an increase in circulating triglyceride level. However, aerobic exercise lowered serum triglyceride levels, and further ameliorated serum parameters, and hepatic steatosis in KD-fed mice. Moreover, gene and protein expression analysis indicated that KD combined with exercise was associated with increased expression of lipolysis-related genes and protein levels, and reduced expression of lipogenic genes relative to KD without exercise. Overall, our findings for mice indicate that further work on humans might reveal that KD combined with moderate aerobic exercise could be a promising therapeutic strategy for obesity.
Collapse
|
13
|
Hamasaki H. Effects of Exercise on Circulating Muscle-related Cytokines in Adults with Type 2 Diabetes and/or Obesity. Curr Diabetes Rev 2023; 19:e121222211873. [PMID: 36515029 DOI: 10.2174/1573399819666221212145712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Skeletal muscle is an endocrine organ that plays an important role in metabolic health by secreting a variety of myokines. Recent studies have shown that exercise significantly decreases interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in patients with type 2 diabetes (T2D). This paper explores the effect of chronic exercise on myokines in patients with T2D and/or obesity. METHODS The author searched for relevant English-language articles in PubMed. A total of 14 randomized controlled studies were found to be eligible for this short review. RESULTS It has been observed that chronic exercise does not change brain-derived neurotrophic factor (BDNF), irisin, and secreted protein acidic and rich in cysteine levels, whereas it decreases TNF-α levels in patients with T2D. Combined aerobic exercise (AE) and resistance training (RT) or sprint interval training increase insulin-like growth factor 1 (IGF-1) levels and decrease IL-6 and IL-15 levels in patients with T2D. Combined AE and RT may also increase IL-15 levels in obese individuals. In addition, RT alone may increase BDNF, IGF-1, and IL-7 levels in overweight individuals. However, AE alone does not change circulating myokine levels in patients with T2D, while it may increase myonectin levels in obese individuals. CONCLUSION This short review demonstrated that exercise appears to have favorable effects on some myokines in patients with T2D and/or obesity. However, it remains inconclusive due to the heterogeneity in subject characteristics and exercise modalities.
Collapse
Affiliation(s)
- Hidetaka Hamasaki
- Department of Diabetes and Endocrinology, Hamasaki Clinic 2-21-4 Nishida, Kagoshima 890-0046, Japan
| |
Collapse
|
14
|
Zhu JY, Chen M, Mu WJ, Luo HY, Guo L. Higd1a facilitates exercise-mediated alleviation of fatty liver in diet-induced obese mice. Metabolism 2022; 134:155241. [PMID: 35750235 DOI: 10.1016/j.metabol.2022.155241] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common liver disease. Exercise is an effective strategy against NAFLD, but its underlying molecular mechanism is not completely understood. METHODS Higd1a, a mitochondrial inner membrane protein, was knocked down or overexpressed in mice livers by tail vein injection of adeno-associated virus (AAV) vectors. High fat diet-induced obese mice were subjected to treadmill training. Alpha mouse liver 12 (AML12) cells were used for in vitro studies. RESULTS Higd1a was upregulated in mice livers after treadmill exercise training. Knockdown of Higd1a in diet-induced obese mice livers impaired exercise-mediated alleviation of hepatic steatosis, liver injury and inflammation. On the contrary, hepatic overexpression of Higd1a ameliorated fatty liver, liver injury and inflammation in synergy with exercise. Mechanistically, deficiency of Higd1a in hepatocytes promoted free fatty acids (FFAs)-induced apoptosis and oxidative stress, and elevated the cytosolic level of oxidized mitochondrial DNA (ox-mtDNA) to activate NLRP3 inflammasome and JNK signaling, leading to decreased expression of critical genes involved in fatty acid oxidation (FAO), such as Ppara, Cpt1a and Acadm. Overexpression of Higd1a in hepatocytes blunted the above effects, which ultimately increased FAO genes expression and alleviated fat accumulation in hepatocytes. CONCLUSION These results identify a Higd1a-mediated inhibition of cytosolic ox-mtDNA/NLRP3 inflammasomes/JNK pathway that facilitates exercise-mediated alleviation of hepatosteatosis.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Min Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Wang-Jing Mu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Hong-Yang Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
15
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
16
|
Kim YJ, Kim HJ, Lee SG, Kim DH, In Jang S, Go HS, Lee WJ, Seong JK. Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: A study in mice. Metabolism 2022; 130:155178. [PMID: 35227728 DOI: 10.1016/j.metabol.2022.155178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The relationship between exercise training and health benefits is under thorough investigation. However, the effects of exercise training on the maintenance of metabolic health are unclear. METHODS Our experimental design involved initial exercise training followed by a high-fat diet (HFD) challenge. Eight-week-old male was trained under voluntary wheel running aerobic exercise for eight weeks to determine the systemic metabolic changes induced by exercise training and whether such changes persisted even after discontinuing exercise. The mice were given either a normal chow diet (NCD) or HFD ad libitum for one week after discontinuation of exercise (CON-NCD, n = 29; EX-NCD, n = 29; CON-HFD, n = 30; EX-HFD, n = 31). RESULTS Our study revealed that metabolic stress following the transition to an HFD in mice that discontinued training failed to reverse the aerobic exercise training-induced improvement in metabolism. We report that the mice subjected to exercise training could better counteract weight gain, adipose tissue hypertrophy, insulin resistance, fatty liver, and mitochondrial dysfunction in response to an HFD compared with untrained mice. This observation could be attributed to the fact that exercise enhances the browning of white fat, whole-body oxygen uptake, and heat generation. Furthermore, we suggest that the effects of exercise persist due to PPARα-FGF21-FGFR1 mechanisms, although additional pathways cannot be excluded and require further research. Although our study suggests the preventive potential of exercise, appropriate human trials are needed to demonstrate the efficacy in subjects who cannot perform sustained exercise; this may provide an important basis regarding human health.
Collapse
Affiliation(s)
- Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Jin Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Sang Gyu Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Do Hyun Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Su In Jang
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Sun Go
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Won Jun Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, 08826 Seoul, Republic of Korea.
| |
Collapse
|