1
|
Liu D, Dou W, Song H, Deng H, Tian Z, Chen R, Liu Z, Jiao Z, Akhberdi O. Insights into the functional mechanism of the non-specific lipid transfer protein nsLTP in Kalanchoe fedtschenkoi (Lavender scallops). Protein Expr Purif 2024; 226:106607. [PMID: 39260807 DOI: 10.1016/j.pep.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Plant non-specific lipid transfer protein (nsLTP) is able to bind and transport lipids and essential oils, as well as engage in various physiological processes, including defense against phytopathogens. Kalanchoe fedtschenkoi (Lavender Scallops) is an attractive and versatile succulent. To investigate the functional mechanism of Kalanchoe fedtschenkoi nsLTP (Ka-nsLTP), we expressed, purified and successfully obtained monomeric Ka-nsLTP. Mutational experiments revealed that the C6A variant retained the same activity as the wild-type (WT) Ka-nsLTP. Ka-nsLTP showed weak antiphytopathogenic bacterial activity, but inhibited fungal growth. Ka-nsLTP possessed a hydrophobic cavity effectively binding lauric acid. Our results offer novel molecular insights into the functional mechanism of nsLTP, which broadens our knowledge of the biological function of nsLTP in crops and provides a useful locus for genetic improvement of plants.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Wenrui Dou
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Hongying Song
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huashui Deng
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhu Tian
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Rong Chen
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Zhen Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Ziwei Jiao
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China.
| | - Oren Akhberdi
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China.
| |
Collapse
|
2
|
Cholico GN, Nault R, Zacharewski T. Cell-specific AHR-driven differential gene expression in the mouse liver cell following acute TCDD exposure. BMC Genomics 2024; 25:809. [PMID: 39198768 PMCID: PMC11351262 DOI: 10.1186/s12864-024-10730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of β-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
3
|
Pogoda W, Koczur J, Stachowicz A, Madej J, Olszanecki R, Suski M. Multi-layered metabolic effects of trehalose on the liver proteome in apoE-knockout mice model of liver steatosis. Pharmacol Rep 2024; 76:902-909. [PMID: 38913153 PMCID: PMC11294376 DOI: 10.1007/s43440-024-00615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease has been well documented as a key independent risk factor for the development of atherosclerosis. A growing body of evidence suggests that due to its numerous favorable molecular effects, trehalose may exert beneficial effects in counteracting liver steatosis. In our previous study, we described the antiatherosclerotic and antisteatotic properties of trehalose, which we attributed to the induction of autophagy. Considering the pleiotropic activities of trehalose, our present study aimed to extend our preliminary results with the comprehensive examination of proteome-wide changes in the livers of high-fat-fed apoE-/- mice. METHODS Thus, we applied modern, next-generation proteomic methodology to comprehensively analyze the effects of trehalose on the alterations of liver proteins in apoE-/- mice. RESULTS Our proteomic analysis showed that the administration of trehalose elicited profound changes in the liver proteome of apoE-/- mice. The collected data allowed the identification and quantitation of 3 681 protein groups of which 129 were significantly regulated in the livers of trehalose-treated apoE-/- mice. CONCLUSIONS The presented results are the first to highlight the effects of disaccharide on the induction of proteins mainly related to the metabolism and elimination of lipids, especially by peroxisomal β-oxidation. Our study provides evidence for the pleiotropic activity of trehalose, extending our initial observations of its potential mechanisms responsible for mitigating of liver steatosis, which paves the way for new pharmacological strategies in fatty liver disease.
Collapse
Affiliation(s)
- Weronika Pogoda
- Proteomics Laboratory, Centre for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Koczur
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Madej
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Suski
- Proteomics Laboratory, Centre for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Krakow, Poland.
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
4
|
Su Q, Raza SHA, Gao Z, Zhang F, Wu Z, Ji Q, He T, Aloufi BH, El-Mansi AA, Eldesoqui M, Sabir DK, Gui L. Profiling and functional analysis of circular RNAs in yaks intramuscular fat. J Anim Physiol Anim Nutr (Berl) 2024; 108:1016-1027. [PMID: 38432684 DOI: 10.1111/jpn.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression. However, the regulatory mechanisms of lipid metabolism in yaks involved in circRNAs remain poorly understood. The IMF plays a crucial role in the quality of yak meat, to greatly improve the meat quality. In this study, the fatty acid profiles of yak IMF were determined and circRNAs were sequenced. The results showed that the total of polyunsaturated fatty acid (PUFA) content of adult yak muscle was significantly higher than that in yak calves (p < 0.05). A total of 29,021 circRNAs were identified in IMF tissue, notably, 99 differentially expressed (DE) circRNAs were identified, to be associated with fat deposition, the most significant of which were circ_12686, circ_6918, circ_3582, ci_106 and ci_123 (A circRNA composed of exons is labelled 'circRNA' and a circRNA composed of introns is labelled 'ciRNA'). KEGG pathway enrichment analysis showed that the differential circRNAs were enriched in four pathways associated with fat deposition (e.g., the peroxisome proliferator-activated receptor signalling, fatty acid degradation, sphingolipid metabolism and sphingolipid signalling pathways). We also constructed co-expression networks of DE circRNA-miRNA using high-throughput sequencing in IMF deposition, from which revealed that ci_106 target binding of bta-miR-130b, bta-miR-148a, bta-miR-15a, bta-miR-34a, bta-miR-130a, bta-miR-17-5p and ci_123 target binding of bta-miR-150 were involved in adipogenesis. The study revealed the role of the circRNAs in the IMF deposition in yak and its influence on meat quality the findings demonstrated the circRNA differences in the development of IMF with the increase of age, thus providing a theoretical basis for further research on the molecular mechanism of IMF deposition in yaks.
Collapse
Affiliation(s)
- Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safet, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - ZhenLing Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - QiuRong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - TingLi He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
5
|
Zhang H, Axinbai M, Zhao Y, Wei J, Qu T, Kong J, He Y, Zhang L. Bioinformatics analysis of ferroptosis-related genes and immune cell infiltration in non-alcoholic fatty liver disease. Eur J Med Res 2023; 28:605. [PMID: 38115130 PMCID: PMC10729346 DOI: 10.1186/s40001-023-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The morbidity and mortality rates of patients with non-alcoholic fatty liver disease (NAFLD) have been steadily increasing in recent years. Previous studies have confirmed the important role of ferroptosis in NAFLD development; however, the precise mechanism through which ferroptosis influences NAFLD occurrence remains unclear. The present study aimed to identify and validate ferroptosis-related genes involved in NAFLD pathogenesis and to investigate the underlying molecular mechanisms of NAFLD. METHODS We downloaded microarray datasets GSE72756 and GSE24807 to identify differentially expressed genes (DEGs) between samples from healthy individuals and patients with NAFLD. From these DEGs, we extracted ferroptosis-related DEGs. GSE89632, another microarray dataset, was used to validate the expression of ferroptosis-related genes. A protein-protein interaction (PPI) network of ferroptosis-related genes was then constructed. The target genes were also subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Finally, competing endogenous RNA networks were constructed. We used the CIBERSORT package to evaluate the infiltration of immune cells infiltration in NAFLD. RESULTS Five ferroptosis-related genes (SCP2, MUC1, DPP4, SLC1A4, and TF) were identified as promising diagnostic biomarkers for NAFLD. Enrichment analyses revealed that these genes are mainly involved in metabolic processes. NEAT1-miR-1224-5p-SCP2, NEAT1-miR-485-5p-MUC1, MALAT1-miR-485-5p-MUC1, and CNOT6-miR-145-5p-SLC1A4 are likely to be the potential RNA regulatory pathways that affect NAFLD development. Principal component analysis indicated significant differences in immune cell infiltration between the two groups. CONCLUSIONS This study identified five ferroptosis-related genes as potential biomarkers for diagnosing NAFLD. The correlations between the expression of ferroptosis-related genes and immune cell infiltration might shed light on the study of the molecular mechanism underlying NAFLD development.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Malina Axinbai
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Xinjiang Medical University, Urumqi, China
| | - Yuqing Zhao
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaoyang Wei
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Tongshuo Qu
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingmin Kong
- Department of Emergency, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Yongqiang He
- Department of Digestion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Liping Zhang
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Zhu Z, Hu X, Liu K, Li J, Fan K, Wang H, Wang L, He L, Ma Y, Guan R, Wang Z. E3 ubiquitin ligase Siah1 aggravates NAFLD through Scp2 ubiquitination. Int Immunopharmacol 2023; 124:110897. [PMID: 37696143 DOI: 10.1016/j.intimp.2023.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders and accompanied by multiple metabolic dysfunctions. Although excessive lipid accumulation in hepatocytes has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are very complicated and remain largely unknown. In this study, we reported that upregulated expression of the seven in absentia homolog 1 (Siah1) in the liver exacerbated NAFLD progression. Conversely, Siah1 downregulation markedly alleviated the high fat diet-induced accumulation of hepatic fat and expression of genes related to lipid metabolism in vitro and in vivo. The mechanistic study revealed that Siah1 interacted with sterol carrier protein 2 (Scp2) and promotes its ubiquitination and degradation, suggesting that Siah1 is an important activator of Scp2 ubiquitination in the context of NAFLD. Our results demonstrated that Siah1 regulated the lipid accumulation in NAFLD by interacting with Scp2. Thus, this study presents Siah1 as a promising therapeutic target in the development of NAFLD.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiao Hu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Kehan Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Jingpei Li
- Department of Thoracic Surgery/Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200000, PR China
| | - Huafei Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Li Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lulu He
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China.
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
7
|
Calderari S, Archilla C, Jouneau L, Daniel N, Peynot N, Dahirel M, Richard C, Mourier E, Schmaltz-Panneau B, Vitorino Carvalho A, Rousseau-Ralliard D, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Couturier-Tarrade A, Duranthon V, Chavatte-Palmer P. Alteration of the embryonic microenvironment and sex-specific responses of the preimplantation embryo related to a maternal high-fat diet in the rabbit model. J Dev Orig Health Dis 2023; 14:602-613. [PMID: 37822211 DOI: 10.1017/s2040174423000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment. In oocytes from females on HH diet, transcriptomic analysis revealed a weak modification in the content of transcripts mainly involved in meiosis and translational control. The effect of maternal HH diet on the embryonic microenvironment was investigated by identifying the metabolite composition of uterine and embryonic fluids collected in vivo by biomicroscopy. Metabolomic analysis revealed differences in the HH uterine fluid surrounding the embryo, with increased pyruvate concentration. Within the blastocoelic fluid, metabolomic profiles showed decreased glucose and alanine concentrations. In addition, the blastocyst transcriptome showed under-expression of genes and pathways involved in lipid, glucose and amino acid transport and metabolism, most pronounced in female embryos. This work demonstrates that the maternal HH diet disrupts the in vivo composition of the embryonic microenvironment, where the presence of nutrients is increased. In contrast to this nutrient-rich environment, the embryo presents a decrease in nutrient sensing and metabolism suggesting a potential protective process. In addition, this work identifies a very early sex-specific response to the maternal HH diet, from the blastocyst stage.
Collapse
Affiliation(s)
- Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Michele Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Eve Mourier
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Barbara Schmaltz-Panneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Anaïs Vitorino Carvalho
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Franck Lager
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Carmen Marchiol
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Gilles Renault
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Julie Gatien
- Research and Development Department, Eliance, Nouzilly, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
- PST-ASB, University of Tours, Tours, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| |
Collapse
|
8
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Deciphering Complex Interactions in Bioactive Lipid Signaling. Molecules 2023; 28:molecules28062622. [PMID: 36985594 PMCID: PMC10057854 DOI: 10.3390/molecules28062622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipids are usually viewed as metabolic fuel and structural membrane components. Yet, in recent years, different families of lipids able to act as authentic messengers between cells and/or intracellularly have been discovered. Such lipid signals have been shown to exert their biological activity via specific receptors that, by triggering distinct signal transduction pathways, regulate manifold pathophysiological processes in our body. Here, endogenous bioactive lipids produced from arachidonic acid (AA) and other poly-unsaturated fatty acids will be presented, in order to put into better perspective the relevance of their mutual interactions for health and disease conditions. To this end, metabolism and signal transduction pathways of classical eicosanoids, endocannabinoids and specialized pro-resolving mediators will be described, and the intersections and commonalities of their metabolic enzymes and binding receptors will be discussed. Moreover, the interactions of AA-derived signals with other bioactive lipids such as shingosine-1-phosphate and steroid hormones will be addressed.
Collapse
|
10
|
Zhuang S, Zhang J, Lin X, Wang X, Yu W, Shi H. Dendrobium mixture ameliorates type 2 diabetes mellitus with non-alcoholic fatty liver disease through PPAR gamma: An integrated study of bioinformatics analysis and experimental verification. Front Pharmacol 2023; 14:1112554. [PMID: 36874030 PMCID: PMC9978952 DOI: 10.3389/fphar.2023.1112554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Dendrobium mixture (DM) is a patented Chinese herbal medicine indicated which has anti-inflammatory and improved glycolipid metabolism. However, its active ingredients, targets of action, and potential mechanisms are still uncertain. Here, we investigate the role of DM as a prospective modulator of protection against non-alcoholic fatty liver disease (NAFLD) induced by type 2 diabetes mellitus (T2DM) and illustrate the molecular mechanisms potentially involved. The network pharmacology and TMT-based quantitative protomics analysis were conducted to identify potential gene targets of the active ingredients in DM against NAFLD and T2DM. DM was administered to the mice of DM group for 4 weeks, and db/m mice (control group) and db/db mice (model group) were gavaged by normal saline. DM was also given to Sprague-Dawley (SD) rats, and the serum was subjected to the palmitic acid-induced HepG2 cells with abnormal lipid metabolism. The mechanism of DM protection against T2DM-NAFLD is to improve liver function and pathological morphology by promoting peroxisome proliferator-activated receptor γ (PPARγ) activation, lowering blood glucose, improving insulin resistance (IR), and reducing inflammatory factors. In db/db mice, DM reduced RBG, body weight, and serum lipids levels, and significantly alleviated histological damage of liver steatosis and inflammation. It upregulated the PPARγ corresponding to the prediction from the bioinformatics analysis. DM significantly reduced inflammation by activating PPARγ in both db/db mice and palmitic acid-induced HepG2 cells.
Collapse
Affiliation(s)
- Shuting Zhuang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jieping Zhang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaohui Lin
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenzhen Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hong Shi
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Aygün S, Düzlü Ö, Yıldırım A. Molecular Characterization and Expression Analysis of the Sterol-carrier Protein-2 Fragment in Anopheles sacharovi Generations. TURKIYE PARAZITOLOJII DERGISI 2022; 46:312-321. [PMID: 36444407 DOI: 10.4274/tpd.galenos.2022.68553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objective It was aimed to characterize the sterol carrier protein-2 (SCP-2) gene in Anopheles sacharovi using molecular methods for the first time, and to reveal the expression levels of An. sacharovi in the developmental stages and female generation in different tissues such as salivary gland, midgut and adipose tissue. Methods The adult female An. sacharovi collected from the Sultan Sazlığı region and the development stages in the insectarium constituted the study material. cDNA isolation was performed following total RNA extraction from An. sacharovi strains. The 216 bp fragment of the SCP-2 gene was amplified with optimized primers in cDNA templates and was sequenced. Genetic characterization of the sequences was provided in silico analysis. Results Twelve of the SCP-2 nucleotide sequences of 14 isolates included in the sequence analysis were 100% identical and the SCP-2 sequences of the other two isolates that were homologous to each other showed a single nucleotide change at base 183. The 216 bp fragment of the SCP-2 gene region was found encoding the 72 amino acid chain. SCP-2 gene sequences clustered the isolates monophyletically on the basis of mosquito species and strains, and that Anopheles sacharovi isolates formed a subcluster together with Anopheles stephensi and Anopheles funestus within the Anopheles cluster in phylogenetic analysis. Because of q-polymerase chain reaction-mediated expression analysis, SCP-2 gene was expressed highest in adult males, followed by an adult female, ss L4, L3, L2, L1, and pupal stages, respectively. In adult female tissues, the SCP-2 gene was expressed the highest in the fat body, followed by the midgut and salivary glands, respectively. Conclusion SCP2, which is an important vaccine candidate or target drug site for Anopheles sacharovi with high vector potential, was firstly characterized in this study and the developmental stages and expression differences in the tissues of the mosquito were revealed.
Collapse
Affiliation(s)
- Sümeyye Aygün
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| | - Önder Düzlü
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| | - Alparslan Yıldırım
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| |
Collapse
|