1
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
2
|
Luo Y, Wen Y, Huang J, Chen B, Lv S, Qiu H, Li S, Liu S, Yang Q, He L, Yu Z, Zhao M, He M, Li D, Gu C. Matcha alleviates obesity by modulating gut microbiota and its metabolites. Curr Res Food Sci 2024; 9:100823. [PMID: 39253721 PMCID: PMC11381447 DOI: 10.1016/j.crfs.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Matcha shows promise for diabetes, obesity, and gut microbiota disorders. Studies suggest a significant link between gut microbiota, metabolites, and obesity. Thus, matcha may have a positive impact on obesity by modulating gut microbiota and metabolites. This study used 16S rDNA sequencing and untargeted metabolomics to examine the cecal contents in mice. By correlation analysis, we explored the potential mechanisms responsible for the positive effects of matcha on obesity. The results indicated that matcha had a mitigating effect on the detrimental impacts of a high-fat diet (HFD) on multiple physiological indicators in mice, including body weight, adipose tissue weight, serum total cholesterol (TC), and low-density lipoprotein (LDL) levels, as well as glucose tolerance. Moreover, it was observed that matcha had an impact on the structural composition of gut microbiota and gut metabolites. Specifically, matcha was able to reverse the alterations in the abundance of certain obesity-improving bacteria, such as Alloprevotella, Ileibacterium, and Rikenella, as well as the abundance of obesity-promoting bacteria Romboutsia, induced by a HFD. Furthermore, matcha can influence the levels of metabolites, including formononetin, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate, within the gastrointestinal tract. Additionally, matcha enhances caffeine metabolism and the HIF-1 signaling pathway in the KEGG pathway. The results of the correlation analysis suggest that formononetin, theobromine, 1,3,7-trimethyluric acid, and Vitamin C displayed negative correlation with both the obesity phenotype and microbiota known to exacerbate obesity, while demonstrating positive correlations with microbiota that alleviated obesity. However, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate had the opposite effect. In conclusion, the impact of matcha on gut metabolites may be attributed to its modulation of the abundance of Alloprevotella, Ileibacterium, Rikenella, and Romboutsia within the gastrointestinal tract, thereby potentially contributing to the amelioration of obesity.
Collapse
Affiliation(s)
- Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Songwei Liu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Dong Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 643002, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Heianza Y, Xue Q, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and improvements in lipid metabolism and atherosclerotic cardiovascular disease risk: the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial. Am J Clin Nutr 2024; 119:1293-1300. [PMID: 38428740 PMCID: PMC11130658 DOI: 10.1016/j.ajcnut.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Distinct circulating bile acid (BA) subtypes may play roles in regulating lipid homeostasis and atherosclerosis. OBJECTIVES We investigated whether changes in circulating BA subtypes induced by weight-loss dietary interventions were associated with improved lipid profiles and atherosclerotic cardiovascular disease (ASCVD) risk estimates. METHODS This study included adults with overweight or obesity (n = 536) who participated in a randomized weight-loss dietary intervention trial. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 mo after the weight-loss diet intervention. The ASCVD risk estimates were calculated using the validated equations. RESULTS At baseline, higher concentrations of specific BA subtypes were related to higher concentrations of atherogenic very low-density lipoprotein lipid subtypes and ASCVD risk estimates. Weight-loss diet-induced decreases in primary BAs were related to larger reductions in triglycerides and total cholesterol [every 1 standard deviation (SD) decrease of glycocholate, glycochenodeoxycholate, or taurochenodeoxycholate was related to β (standard error) -3.3 (1.3), -3.4 (1.3), or -3.8 (1.3) mg/dL, respectively; PFDR < 0.05 for all]. Greater decreases in specific secondary BA subtypes were also associated with improved lipid metabolism at 6 mo; there was β -4.0 (1.1) mg/dL per 1-SD decrease of glycoursodeoxycholate (PFDR =0.003) for changes in low-density lipoprotein cholesterol. We found significant interactions (P-interaction < 0.05) between dietary fat intake and changes in BA subtypes on changes in ASCVD risk estimates; decreases in primary and secondary BAs (such as conjugated cholate or deoxycholate) were significantly associated with improved ASCVD risk after consuming a high-fat diet, but not after consuming a low-fat diet. CONCLUSIONS Decreases in distinct BA subtypes were associated with improved lipid profiles and ASCVD risk estimates, highlighting the importance of changes in circulating BA subtypes as significant factors linked to improved lipid metabolism and ASCVD risk estimates in response to weight-loss dietary interventions. Habitual dietary fat intake may modify the associations of changes in BAs with ASCVD risk. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
4
|
Geng T, Lu Q, Jiang L, Guo K, Yang K, Liao YF, He M, Liu G, Tang H, Pan A. Circulating concentrations of bile acids and prevalent chronic kidney disease among newly diagnosed type 2 diabetes: a cross-sectional study. Nutr J 2024; 23:28. [PMID: 38429722 PMCID: PMC10908139 DOI: 10.1186/s12937-024-00928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The relationship between circulating bile acids (BAs) and kidney function among patients with type 2 diabetes is unclear. We aimed to investigate the associations of circulating concentrations of BAs, particularly individual BA subtypes, with chronic kidney disease (CKD) in patients of newly diagnosed type 2 diabetes. METHODS In this cross-sectional study, we included 1234 newly diagnosed type 2 diabetes who participated in an ongoing prospective study, the Dongfeng-Tongji cohort. Circulating primary and secondary unconjugated BAs and their taurine- or glycine-conjugates were measured using ultraperformance liquid chromatography-tandem mass spectrometry. CKD was defined as eGFR < 60 ml/min per 1.73 m2. Logistic regression model was used to compute odds ratio (OR) and 95% confidence interval (CI). RESULTS After adjusting for multiple testing, higher levels of total primary BAs (OR per standard deviation [SD] increment: 0.78; 95% CI: 0.65-0.92), cholate (OR per SD: 0.78; 95% CI: 0.66-0.92), chenodeoxycholate (OR per SD: 0.81; 95% CI: 0.69-0.96), glycocholate (OR per SD: 0.81; 95% CI: 0.68-0.96), and glycochenodeoxycholate (OR per SD: 0.82; 95% CI: 0.69-0.97) were associated with a lower likelihood of having CKD in patients with newly diagnosed type 2 diabetes. No significant relationships between secondary BAs and odds of CKD were observed. CONCLUSIONS Our findings showed that higher concentrations of circulating unconjugated primary BAs and their glycine-conjugates, but not taurine-conjugates or secondary BAs, were associated with lower odds of having CKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limiao Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kunquan Guo
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Yang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Zhu Z, Xu Y, Xia Y, Jia X, Chen Y, Liu Y, Zhang L, Chai H, Sun L. Review on chronic metabolic diseases surrounding bile acids and gut microbiota: What we have explored so far. Life Sci 2024; 336:122304. [PMID: 38016578 DOI: 10.1016/j.lfs.2023.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Bile acid, the final product of cholesterol breakdown, functions as a complex regulator and signaling factor in human metabolism. Chronic metabolic diseases pose significant medical challenges. Growing research underscores bile acids' capacity to enhance metabolism via diverse pathways, regulating disorders and offering treatment potential. Numerous bile-acid-triggered pathways have become treatment targets. This review outlines bile acid synthesis, its role as a signal in chronic metabolic diseases, and highlights its interaction with gut microbiota in different metabolic conditions. Exploring host-bacteria-bile acid links emerges as a valuable future research direction with clinical implications.
Collapse
Affiliation(s)
- Zhenzheng Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuemiao Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixin Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyue Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Hui Chai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Qi L, Heianza Y, Li X, Sacks FM, Bray GA. Toward Precision Weight-Loss Dietary Interventions: Findings from the POUNDS Lost Trial. Nutrients 2023; 15:3665. [PMID: 37630855 PMCID: PMC10458797 DOI: 10.3390/nu15163665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The POUNDS Lost trial is a 2-year clinical trial testing the effects of dietary interventions on weight loss. This study included 811 adults with overweight or obesity who were randomized to one of four diets that contained either 15% or 25% protein and 20% or 40% fat in a 2 × 2 factorial design. By 2 years, participants on average lost from 2.9 to 3.6 kg in body weight in the four intervention arms, while no significant difference was observed across the intervention arms. In POUNDS Lost, we performed a series of ancillary studies to detect intrinsic factors particular to genomic, epigenomic, and metabolomic markers that may modulate changes in weight and other cardiometabolic traits in response to the weight-loss dietary interventions. Genomic variants identified from genome-wide association studies (GWASs) on obesity, type 2 diabetes, glucose and lipid metabolisms, gut microbiome, and dietary intakes have been found to interact with dietary macronutrients (fat, protein, and carbohydrates) in relation to weight loss and changes of body composition and cardiometabolic traits. In addition, we recently investigated epigenomic modifications, particularly blood DNA methylation and circulating microRNAs (miRNAs). We reported DNA methylation levels at NFATC2IP, CPT1A, TXNIP, and LINC00319 were related to weight loss or changes of glucose, lipids, and blood pressure; we also reported thrifty miRNA expression as a significant epigenomic marker related to changes in insulin sensitivity and adiposity. Our studies have also highlighted the importance of temporal changes in novel metabolomic signatures for gut microbiota, bile acids, and amino acids as predictors for achievement of successful weight loss outcomes. Moreover, our studies indicate that biochemical, behavioral, and psychosocial factors such as physical activity, sleep disturbance, and appetite may also modulate metabolic changes during dietary interventions. This review summarized our major findings in the POUNDS Lost trial, which provided preliminary evidence supporting the development of precision diet interventions for obesity management.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - George A. Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|