1
|
Rasmi Y, di Bari I, Faisal S, Haque M, Aramwit P, da Silva A, Roshani Asl E. Herbal-based therapeutics for diabetic patients with SARS-Cov-2 infection. Mol Biol Rep 2024; 51:316. [PMID: 38376656 DOI: 10.1007/s11033-024-09291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide, being responsible for about 3.5 million deaths so far. Despite ongoing investigations, there is still more to understand the mechanism of COVID-19 infection completely. However, it has been evidenced that SARS-CoV-2 can cause Coronavirus disease (COVID-19) notably in diabetic people. Approximately 35% of the patients who died of this disease had diabetes. A growing number of studies have evidenced that hyperglycemia is a significant risk factor for severe SARS-CoV-2 infection and plays a key role in COVID-19 mortality and diabetes comorbidity. The uncontrolled hyperglycemia can produce low-grade inflammation and impaired immunity-mediated cytokine storm that fail multiple organs and sudden death in diabetic patients with SARS-CoV-2 infection. More importantly, SARS-CoV-2 infection and interaction with ACE2 receptors also contribute to pancreatic and metabolic impairment. Thus, using of diabetes medications has been suggested to be beneficial in the better management of diabetic COVID-19 patients. Herbal treatments, as safe and affordable therapeutic agents, have recently attracted a lot of attention in this field. Accordingly, in this review, we intend to have a deep look into the molecular mechanisms of diabetic complications in SARS-CoV-2 infection and explore the therapeutic potentials of herbal medications and natural products in the management of diabetic COVID-19 patients based on recent studies and the existing clinical evidence.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Orūmīyeh, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Orūmīyeh, Iran
| | - Ighli di Bari
- Section of Nephrology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Shah Faisal
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Munima Haque
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Aline da Silva
- Department of Soil and Rural, Centre for Agrarian Science, Campus II, Federal University of Paraiba, Areia, João Pessoa, Brazil.
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
2
|
Velásquez PA, Hernandez JC, Galeano E, Hincapié-García J, Rugeles MT, Zapata-Builes W. Effectiveness of Drug Repurposing and Natural Products Against SARS-CoV-2: A Comprehensive Review. Clin Pharmacol 2024; 16:1-25. [PMID: 38197085 PMCID: PMC10773251 DOI: 10.2147/cpaa.s429064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a betacoronavirus responsible for the COVID-19 pandemic, causing respiratory disorders, and even death in some individuals, if not appropriately treated in time. To face the pandemic, preventive measures have been taken against contagions and the application of vaccines to prevent severe disease and death cases. For the COVID-19 treatment, antiviral, antiparasitic, anticoagulant and other drugs have been reused due to limited specific medicaments for the disease. Drug repurposing is an emerging strategy with therapies that have already tested safe in humans. One promising alternative for systematic experimental screening of a vast pool of compounds is computational drug repurposing (in silico assay). Using these tools, new uses for approved drugs such as chloroquine, hydroxychloroquine, ivermectin, zidovudine, ribavirin, lamivudine, remdesivir, lopinavir and tenofovir/emtricitabine have been conducted, showing effectiveness in vitro and in silico against SARS-CoV-2 and some of these, also in clinical trials. Additionally, therapeutic options have been sought in natural products (terpenoids, alkaloids, saponins and phenolics) with promising in vitro and in silico results for use in COVID-19 disease. Among these, the most studied are resveratrol, quercetin, hesperidin, curcumin, myricetin and betulinic acid, which were proposed as SARS-CoV-2 inhibitors. Among the drugs reused to control the SARS-CoV2, better results have been observed for remdesivir in hospitalized patients and outpatients. Regarding natural products, resveratrol, curcumin, and quercetin have demonstrated in vitro antiviral activity against SARS-CoV-2 and in vivo, a nebulized formulation has demonstrated to alleviate the respiratory symptoms of COVID-19. This review shows the evidence of drug repurposing efficacy and the potential use of natural products as a treatment for COVID-19. For this, a search was carried out in PubMed, SciELO and ScienceDirect databases for articles about drugs approved or under study and natural compounds recognized for their antiviral activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Paula Andrea Velásquez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Elkin Galeano
- Grupo Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jaime Hincapié-García
- Grupo de investigación, Promoción y prevención farmacéutica, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
3
|
Karampela I. Perspectives in vaccines, immune response, therapeutic interventions and COVID-19. Metabol Open 2022; 17:100223. [PMID: 36570684 PMCID: PMC9758070 DOI: 10.1016/j.metop.2022.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Burlou-Nagy C, Bănică F, Jurca T, Vicaș LG, Marian E, Muresan ME, Bácskay I, Kiss R, Fehér P, Pallag A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091244. [PMID: 35567246 PMCID: PMC9102300 DOI: 10.3390/plants11091244] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/25/2023]
Abstract
Echinacea purpurea (L.) Moench (EP)is a perennial herbaceous flowering plant, commonly known as purple coneflower and it belongs to the Asteraceae family. The Echinacea genus is originally from North America, in the United States, and its species are widely distributed throughout. There are nine different species of Echinacea, but only three of them are used as medicinal plants with wide therapeutic uses: Echinacea purpurea (L.) Moench, Echinacea pallida (Nutt.) Nutt. and Echinacea angustifolia DC. Several significant groups of bioactive compounds with pharmacological activities have been isolated from Echinacea species. Numerous beneficial effects have been demonstrated about these compounds. The immunomodulatory effect was initially demonstrated, but over time other effects have also been highlighted. The present review gives a comprehensive summary of the chemical constituents, bioactive compounds, biological effects and therapeutical uses of purple coneflower. Research shows that such a well-known and recognized species needs to be further studied to obtain efficient products with a guarantee of the safety.
Collapse
Affiliation(s)
- Cristina Burlou-Nagy
- Doctoral School of Pharmaceutical Sciences, University of Oradea, 410087 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Florin Bănică
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Tünde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Mariana Eugenia Muresan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (I.B.); (P.F.)
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (I.B.); (P.F.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| |
Collapse
|
5
|
Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: A review article. Metabol Open 2021; 12:100141. [PMID: 34693242 PMCID: PMC8519661 DOI: 10.1016/j.metop.2021.100141] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause pandemic of coronavirus disease 2019 (COVID-19). For many thousands of years, herbal products and dietary plants have been prescribed for various diseases by traditional healers. Thus, the aim of this review is to present main herbal products, their source, characteristics, and potential antiviral actions concerning COVID-19. Publications on herbal products related to antiviral effects were searched from different databases, such as Web of Science, Google Scholar, Medline, Scopus, and PubMed, until August 2021, using English key terms. According to different studies, there are so many important medicinal plants with antiviral activity, which can be used for viral infections or can be prescribed as supportive treatment. lack of information on the safety profile and amount of dose for different diseases is some of the limitations of medicinal plants. herbal medicine can interfere with COVID-19 pathogenesis by inhibiting SARS-CoV-2 replication and entry to host cells. Some of the antiviral medicinal plant species are citrus Spp., orange (C. Sinensis), Allium sativum, Allium cepa, Mentha piperita, and nigella sativa are the most desirable herbal drink or fruit that can introduce effective adjuvant components in COVID-19 management.
Collapse
Affiliation(s)
- Chilot Abiyu Demeke
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alem Endashaw Woldeyohanins
- Department of Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Response to Dr. DF Naude. Explore (NY) 2021; 18:150-151. [PMID: 34642105 PMCID: PMC8487096 DOI: 10.1016/j.explore.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|