1
|
Beig M, Parvizi E, Navidifar T, Bostanghadiri N, Mofid M, Golab N, Sholeh M. Geographical mapping and temporal trends of Acinetobacter baumannii carbapenem resistance: A comprehensive meta-analysis. PLoS One 2024; 19:e0311124. [PMID: 39680587 DOI: 10.1371/journal.pone.0311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is of critical concern in healthcare settings, leading to limited treatment options. In this study, we conducted a comprehensive meta-analysis to assess the prevalence of CRAB by examining temporal, geographic, and bias-related variations. METHODS We systematically searched prominent databases, including Scopus, PubMed, Web of Science, and EMBASE. Quality assessment was performed using the JBI checklist. Subgroup analyses were performed based on the COVID-19 timeframes, years, countries, continents, and bias levels, antimicrobial susceptivity test method and guidelines. RESULTS Our comprehensive meta-analysis, which included 795 studies across 80 countries from 1995 to 2023, revealed a surge in carbapenem resistance among A. baumannii, imipenem (76.1%), meropenem (73.5%), doripenem (73.0%), ertapenem (83.7%), and carbapenems (74.3%). Temporally, 2020-2023 witnessed significant peaks, particularly in carbapenems (81.0%) and meropenem (80.7%), as confirmed by meta-regression, indicating a steady upward trend. CONCLUSION This meta-analysis revealed an alarmingly high resistance rate to CRAB as a global challenge, emphasizing the urgent need for tailored interventions. Transparency, standardized methodologies, and collaboration are crucial for the accurate assessment and maintenance of carbapenem efficacy.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Tahereh Navidifar
- Shoushtar Faculty of Medical Sciences, Department of Basic Sciences, Shoushtar, Iran
| | - Narjes Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Ghahramani A, Naghadian Moghaddam MM, Kianparsa J, Ahmadi MH. Overall status of carbapenem resistance among clinical isolates of Acinetobacter baumannii: a systematic review and meta-analysis. J Antimicrob Chemother 2024; 79:3264-3280. [PMID: 39392464 DOI: 10.1093/jac/dkae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Resistance to carbapenems, the first-line treatment for infections caused by Acinetobacter baumannii, is increasing throughout the world. The aim of the present study was to determine the global status of resistance to carbapenems in clinical isolates of this pathogen, worldwide. METHODS Electronic databases were searched using the appropriate keywords, including: 'Acinetobacter' 'baumannii', 'Acinetobacter baumannii' and 'A. baumannii', 'resistance', 'antibiotic resistance', 'antibiotic susceptibility', 'antimicrobial resistance', 'antimicrobial susceptibility', 'carbapenem', 'carbapenems', 'imipenem', 'meropenem' and 'doripenem'. Finally, following some exclusions, 177 studies from various countries were included in this study. The data were then subjected to a meta-analysis. RESULTS The average resistance rate of A. baumannii to imipenem, meropenem and doripenem was 44.7%, 59.4% and 72.7%, respectively. A high level of heterogeneity (I2 > 50%, P value < 0.05) was detected in the studies representing resistance to imipenem, meropenem and doripenem in A. baumannii isolates. Begg's and Egger's tests did not indicate publication bias (P value > 0.05). CONCLUSIONS The findings of the current study indicate that the overall resistance to carbapenems in clinical isolates of A. baumannii is relatively high and prevalent throughout the world. Moreover, time trend analysis showed that the resistance has increased from the year 2000 to 2023. This emphasizes the importance of conducting routine antimicrobial susceptibility testing before selecting a course of treatment, as well as monitoring and controlling antibiotic resistance patterns in A. baumannii strains, and seeking novel treatment options to lessen the emergence and spread of resistant strains and to reduce the treatment failure.
Collapse
Affiliation(s)
- Ali Ghahramani
- Student Research Committee, School of Medicine, Shahed University, Tehran, Iran
| | | | - Joben Kianparsa
- Student Research Committee, School of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
3
|
Ha VN, Huy HT, Đac TN, Nguyen PA, Cuong LD. Genomic epidemiology and resistant genes of Acinetobacter baumannii clinical strains in Vietnamese hospitals. J Med Microbiol 2024; 73:001922. [PMID: 39475466 PMCID: PMC11524319 DOI: 10.1099/jmm.0.001922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a common cause of multidrug-resistant (MDR) nosocomial infections worldwide, including Vietnam.Hypothesis. Analysis of crucial genetic factors may link to epidemiological characteristics and antibiotic resistance of A. baumannii clinical strains in Vietnamese hospitals.Methodology. Fifty-one A. baumannii clinical strains from six different tertiary hospitals in Vietnam were analysed using whole genome sequencing (WGS), between 2017 and 2019.Results. Eleven sequence types (STs) were identified, including four STs reported for the first time in Vietnam based on the PubMLST database and three new STs not previously documented. ST1336, ST1260 and ST575 were found exclusively in Vietnam. These STs were widely distributed in all hospitals in Vietnam, with ST2 and ST571 being the most dominant. Resistant rates to eight antibiotics, belonging to four antibiotic groups, were very high (72.5-94.1 %) with high MIC values, while resistance to colistin was 29.4%. Fifty-one isolates were identified as MDR, with 100% (51/51) isolates carrying antimicrobial-resistant (AMR) genes, and 52 antibiotic-resistant genes were detected among these strains, including β-lactam (22 genes), chloramphenicol (5 genes), lincosamide (2 genes), aminoglycoside (11 genes), rifampicin (1 gene), quinolone (2 genes), sulfonamide and trimethoprim (4 genes) and tetracycline (5 genes) resistance. The most commonly found mobile structures carried partial or complete transposons: ISaba24/ISEc29/ISEc35 contains a series of antibiotic-resistant genes.Conclusion. The WGS results of the 51 strains of A. baumannii provided important information regarding the distribution of STs and associated antibiotic-resistant genes among A. baumannii strains.
Collapse
Affiliation(s)
- Vu Nhi Ha
- Thai Nguyen University of Medicine and Pharmacy, No. 284 Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Hoang Tran Huy
- National Institute of Hygiene and Epidemiology, 1st Yersin, Hanoi city, Vietnam
| | - Trung Nguyen Đac
- Thai Nguyen University of Medicine and Pharmacy, No. 284 Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Phuong Anh Nguyen
- Department of Experiment Medicine, 108 Military Central Hospital, 1st Tran Hung Dao Street, Bach Dang Ward, Hai Ba Trung District, Hanoi City, Vietnam
| | - Le Duy Cuong
- Department of Experiment Medicine, 108 Military Central Hospital, 1st Tran Hung Dao Street, Bach Dang Ward, Hai Ba Trung District, Hanoi City, Vietnam
| |
Collapse
|
4
|
Zhang HL, Nizamani MM, Wang Y, Cui X, Xiu H, Qayyum M, Sun Q. Analysis of antimicrobial resistance and genetic diversity of Acinetobacter baumannii in a tertiary care hospital in Haikou City. Sci Rep 2024; 14:22068. [PMID: 39333332 PMCID: PMC11437051 DOI: 10.1038/s41598-024-73258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
This study addresses the distribution and antimicrobial resistance of Acinetobacter baumannii (A. baumannii) in a medical facility in Haikou City, aiming to provide essential insights for enhancing in-hospital treatment and prevention strategies. We conducted a retrospective analysis of 513 A. baumannii isolates collected from a tertiary care hospital in Haikou between January 2018 and December 2020, focusing on their antimicrobial resistance patterns. Random Amplified Polymorphic DNA (RAPD) analysis was performed on 48 randomly selected A. baumannii strains. Using Gel-pro4.0 and NTSYSspc2.10 software, we constructed dendrograms to assess the genetic diversity of these strains. Our results indicate that males between 60 and 70 years old are particularly vulnerable to A. baumannii infections, which are most frequently detected in sputum samples, with a detection rate exceeding 70%. Alarmingly, over 50% of the isolates were identified as multi-drug resistant. The RAPD-PCR fingerprinting cluster analysis demonstrated substantial genetic diversity among the strains. Using primer OPA-02 at a 45% similarity coefficient, the strains were categorized into four groups (A-D), with group A being predominant (39 strains). high-prevalence areas like the Neurosurgery and Intensive Care Medicine Wards require enhanced surveillance and targeted interventions to manage Group C infections effectively. Additionally, the varied presence of other groups necessitates customized strategies to address the specific risks in each ward. Similarly, primer 270 at a 52% similarity coefficient classified the strains into five groups (E-I), with group E being most common (36 strains). The study highlights a concerning prevalence of antimicrobial resistance, particularly multi-drug resistance, among A. baumannii strains in the Haikou hospital. The significant genetic diversity, especially within groups A and E, underscores the need for tailored hospital treatment protocols and prevention measures. These findings contribute to the growing body of research on antimicrobial resistance, emphasizing the urgent need for effective management strategies in healthcare settings.
Collapse
Affiliation(s)
- Hai-Li Zhang
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Mir Muhammad Nizamani
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Yanjing Wang
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- The First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Hai Kou, 571199, Hainan, China
| | - Xiaoli Cui
- Autobio Diagnostics Co., Ltd, Zhengzhou, 450000, China
| | - Hao Xiu
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- The First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Hai Kou, 571199, Hainan, China
| | - Muhammad Qayyum
- School of Economics and Statistics, Guangzhou University, Guangzhou, China
| | - Qinghui Sun
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China.
- The First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Hai Kou, 571199, Hainan, China.
| |
Collapse
|
5
|
Abarca-Coloma L, Puga-Tejada M, Nuñez-Quezada T, Gómez-Cruz O, Mawyin-Muñoz C, Barungi S, Perán M. Risk Factors Associated with Mortality in Acinetobacter baumannii Infections: Results of a Prospective Cohort Study in a Tertiary Public Hospital in Guayaquil, Ecuador. Antibiotics (Basel) 2024; 13:213. [PMID: 38534648 DOI: 10.3390/antibiotics13030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Antibiotic overuse and the resulting antimicrobial resistance pose significant global public health challenges, providing an avenue for opportunistic pathogens like Acinetobacter baumannii to thrive. This study will report the trends of Acinetobacter baumannii antimicrobial resistance patterns at the Hospital Teodoro Maldonado Carbo, Ecuador. An observational, analytical, longitudinal, and prospective study was conducted involving patients diagnosed with hospital-acquired infections. Antimicrobial susceptibility testing was performed, followed by molecular analysis of carbapenemase genes in Acinetobacter baumannii isolates. We included 180 patients aged from 16 to 93 years. The hospital mortality rate was 63/180 (35%). Invasive mechanical ventilation (IMV) was indicated in 91/180 patients (50.4%). The overall survival (OS) rate in patients on IMV was 49.5% (45/91), with a median survival of 65 days. The OS rate in patients not on IMV was 80.9% (72/89), with a median survival of 106 days (HR 2.094; 95% CI 1.174-3.737; p = 0.012). From multivariate analysis, we conclude that ventilator-associated pneumonia is the most related factor to OS.
Collapse
Affiliation(s)
- Luz Abarca-Coloma
- Critical Care Unit Hospital Teodoro Maldonado Carbo, Catholic University Santiago of Guayaquil, Guayaquil 090203, Ecuador
| | - Miguel Puga-Tejada
- Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil 090505, Ecuador
| | - Tamara Nuñez-Quezada
- Department of Medical Microbiology Hospital Teodoro Maldonado Carbo, Catholic University Santiago of Guayaquil, Guayaquil 090203, Ecuador
| | - Otilia Gómez-Cruz
- Infection Prevention and Control Program, Hospital Teodoro Maldonado Carbo, Guayaquil 090203, Ecuador
| | - Carlos Mawyin-Muñoz
- Critical Care Unit Hospital Teodoro Maldonado Carbo, Catholic University Santiago of Guayaquil, Guayaquil 090203, Ecuador
| | - Shivan Barungi
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18010 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18010 Granada, Spain
| |
Collapse
|
6
|
Aboelenin AM, El-Mowafy M, Saleh NM, Shaaban MI, Barwa R. Ciprofloxacin- and levofloxacin-loaded nanoparticles efficiently suppressed fluoroquinolone resistance and biofilm formation in Acinetobacter baumannii. Sci Rep 2024; 14:3125. [PMID: 38326515 PMCID: PMC10850473 DOI: 10.1038/s41598-024-53441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.
Collapse
Affiliation(s)
- Alaa M Aboelenin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
7
|
Jomehzadeh N, Ahmadi K, Ataee N, Afzali M. Molecular detection of genes encoding resistance to tetracycline and quinolones among Shigella strains isolated from children with acute diarrhea in southwest Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:625-630. [PMID: 37941879 PMCID: PMC10628075 DOI: 10.18502/ijm.v15i5.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background and Objectives An increase in the antibiotic resistance of Shigella isolates has caused major global challenges in antimicrobial therapy. Knowledge of local antibiotic resistance trends is essential for selecting appropriate antibiotic treatment regimens. This study aimed to evaluate the frequency of efflux-mediated tetracycline resistance (tet) and plasmid-mediated quinolone resistance (qnr) genes among Shigella isolates. Materials and Methods This survey investigated 91 Shigella isolates, obtained from children with acute diarrhea. The isolates were identified using standard biochemical tests and confirmed by polymerase chain reaction (PCR) assay. Besides, the susceptibility of isolates to six selected antibiotics was assessed by the disk diffusion method. All tetracycline-resistant and nalidixic acid and ciprofloxacin resistant strains were screened for tet and qnr genes by a multiplex PCR assay. Results According to the results of antibiotic susceptibility tests, the highest level of antibiotic resistance was related to tetracycline (80.2%) and doxycycline (78.1%), respectively. All isolates were sensitive to tigecycline. The PCR results showed that 40.6%, 3.1%, 21.8%, 61.6% and 28.7% of the isolates carried qnrA, qnrB, qnrS, tetA, and tetB genes, respectively. None of the isolates contained tetC and tetD genes. Conclusion The current findings revealed that tetA and qnrA genes might play a key role in conferring tetracycline and quinolone resistance.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Khadijeh Ahmadi
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Ataee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Maryam Afzali
- Department of Microbiology, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Abbasi E, van Belkum A, Ghaznavi-Rad E. High frequency of carbapenemase in extensively drug-resistant Acinetobacter baumannii isolates in central Iran. World J Microbiol Biotechnol 2023; 39:321. [PMID: 37755552 DOI: 10.1007/s11274-023-03778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES We assessed the frequency of occurrence for infections caused by wild-type A. baumannii, multidrug-resistant (MDR) or XDR A. baumannii, and CRAB. We detected different antibiotic resistance genes in the genomes of infectious A. baumannii strains from central Iran. METHODS This study investigated 546 clinical patient samples for the presence of A. baumannii by using conventional culture methods and PCR. Antibiotic resistance profiles, and the phenotypic and genotypic characteristics of various antibiotic genes were analyzed. RESULTS Out of 546 samples, 87 (15.9%) A. baumannii isolates were obtained using culture and all culture positive samples were also positive by PCR. The most effective antibiotics were polymyxin B (n = 84 strains) (96.6% susceptibility), colistin (n = 81) (93.1%), and ampicillin/sulbactam (n = 18) (20.7%). All clinical A. baumannii isolates were ESBL-positive. The number of CRAB was 84 (96.5%). All CRAB isolates were both MDR and XDR. Of all CRAB isolates, 78 out of 84 (92.4%) produced metallo-β-lactamase (MBL) by phenotypic diagnosis. The most abundant genes were blaPER (32/87; 36.7%), blaTEM (29/87; 33.3%), blaVEB (26/87; 29.8%) for ESBL and Ambler class D β -lactamases included blaOXA-23 (69/84; 82.1%), blaOXA-24 (46/84; 54.7%), MBLs included blaVIM (51/84; 60.7%), and blaIMP (28/84; 33.3%) for carbapenemase. CONCLUSION High frequencies of XDR A. baumannii and CRAB (96.5%) were detected in central Iran. Quick and accurate diagnosis, appropriate isolation of patients colonized or infected by CRAB isolates, application of accurate and effective infection control policies and programs, and appropriate preventive measures are deemed helpful in preventing the further spread of these resistant and clinically highly relevant strains.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- , Khomein, Iran
| | | | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- , Arak, Iran.
| |
Collapse
|
9
|
Wang Y, Su J, Zhou Z, Yang J, Liu W, Zhang Y, Zhang P, Guo T, Li G. Baicalein Resensitizes Multidrug-Resistant Gram-Negative Pathogens to Doxycycline. Microbiol Spectr 2023; 11:e0470222. [PMID: 37070985 PMCID: PMC10269726 DOI: 10.1128/spectrum.04702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
As multidrug-resistant pathogens emerge and spread rapidly, novel antibiotics urgently need to be discovered. With a dwindling antibiotic pipeline, antibiotic adjuvants might be used to revitalize existing antibiotics. In recent decades, traditional Chinese medicine has occupied an essential position in adjuvants of antibiotics. This study found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens. Mechanism studies have shown that baicalein causes membrane disruption by attaching to phospholipids on the Gram-negative bacterial cytoplasmic membrane and lipopolysaccharides on the outer membrane. This process facilitates the entry of doxycycline into bacteria. Through collaborative strategies, baicalein can also increase the production of reactive oxygen species and inhibit the activities of multidrug efflux pumps and biofilm formation to potentiate antibiotic efficacy. Additionally, baicalein attenuates the lipopolysaccharide-induced inflammatory response in vitro. Finally, baicalein can significantly improve doxycycline efficacy in mouse lung infection models. The present study showed that baicalein might be considered a lead compound, and it should be further optimized and developed as an adjuvant that helps combat antibiotic resistance. IMPORTANCE Doxycycline is an important broad-spectrum tetracycline antibiotic used for treating multiple human infections, but its resistance rates are recently rising globally. Thus, new agents capable of boosting the effectiveness of doxycycline need to be discovered. In this study, it was found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens in vitro and in vivo. Due to its low cytotoxicity and resistance, the combination of baicalein and doxycycline provides a valuable clinical reference for selecting more effective therapeutic strategies for treating infections caused by multidrug-resistant Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Junfeng Su
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ziyan Zhou
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Jie Yang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenjuan Liu
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Yafen Zhang
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Pengyu Zhang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Tingting Guo
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guocai Li
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
10
|
Thakur L, Singh S, Singh R, Kumar A, Angrup A, Kumar N. The potential of 4D's approach in curbing antimicrobial resistance among bacterial pathogens. Expert Rev Anti Infect Ther 2022; 20:1401-1412. [PMID: 36098225 DOI: 10.1080/14787210.2022.2124968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Antibiotics are life-saving drugs but irrational/inappropriate use leads to the emergence of antibiotic-resistant bacterial superbugs, making their treatment extremely challenging. Increasing antimicrobial resistance (AMR) among bacterial pathogens is becoming a serious public health concern globally. If ignorance persists, there would not be any antibiotics available to treat even a common bacterial infection in future. AREA COVERED This article intends to collate and discuss the potential of 4D's (right Drug, Dose, Duration, and De-escalation of therapy) approach to tackle the emerging problem of AMR. For this, we searched PubMed, Google Scholar, Medline, and clinicaltrials.gov databases primarily using keywords 'optimal antibiotic therapy,' 'antimicrobial resistance,' 'higher versus lower dose antibiotic treatment,' 'shorter versus longer duration antibiotic treatment,' 'de-escalation study', and 'antimicrobial stewardship measures' and based on the findings, form and expressed our opinion. EXPERT OPINION More efforts are needed for developing diagnostics for rapid, accurate, point-of-care, and cost-effective pathogen identification and antimicrobial susceptibility testing (AST) to facilitate rational use of antibiotics. Current dosing and duration of therapies also need to be redefined to maximize their impact. Furthermore, de-escalation approaches should be developed and encouraged in the clinic. This altogether will minimize selection pressure on the pathogens and reduce emergence of AMR.
Collapse
Affiliation(s)
- Lovnish Thakur
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, Delhi, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, Delhi, India
| | - Rita Singh
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India.,Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India
| | - Archana Angrup
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Ncr Biotech Science Cluster, Faridabad, India
| |
Collapse
|
11
|
Suvaithenamudhan S, Ananth S, Mariappan V, Dhayabaran VV, Parthasarathy S, Ganesh PS, Shankar EM. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules 2022; 27:molecules27165188. [PMID: 36014428 PMCID: PMC9414700 DOI: 10.3390/molecules27165188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the major representative aetiologies of recalcitrant nosocomial infections. Genotypic and phenotypic alterations in A. baumannii have resulted in a significant surge in multidrug resistance (MDR). Of all the factors responsible for the development of antimicrobial resistance (AMR), efflux protein pumps play a paramount role. In pursuit of a safe alternative for the prevention and control of A. baumannii infections, bioactive compounds from the aerial parts of the medicinal plant Artemisia pallens were studied. GC-MS analysis of the ethanol extract of A. pallens detected five major compounds: lilac alcohol A, spathulenol, lilac alcohol C, n-hexadecanoic acid, and vulgarin. In silico examinations were performed using the Schrödinger suite. Homology modelling was performed to predict the structure of the efflux protein of A. baumannii-LAC-4 strain (MDR Ab-EP). The identified bioactive compounds were analysed for their binding efficiency with MDR Ab-EP. High binding efficiency was observed with vulgarin with a glide score of −4.775 kcal/mol and stereoisomers of lilac alcohol A (−3.706 kcal/mol) and lilac alcohol C (−3.706 kcal/mol). Our molecular dynamic simulation studies unveiled the stability of the ligand–efflux protein complex. Vulgarin and lilac alcohol A possessed strong and stable binding efficiency with MDR Ab-EP. Furthermore, validation of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the ligands strongly suggested that these compounds could serve as a lead molecule in the development of an alternate drug from A. pallens.
Collapse
Affiliation(s)
- Suvaiyarasan Suvaithenamudhan
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Sivapunniyam Ananth
- Sivan Bioscience Research and Training Laboratory, Kumbakonam 612 401, Tamil Nadu, India
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Victor Violet Dhayabaran
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli 620 017, Tamil Nadu, India
| | - Subbiah Parthasarathy
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| |
Collapse
|
12
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
13
|
Mazloomirad F, Hasanzadeh S, Sharifi A, Nikbakht G, Roustaei N, Khoramrooz SS. Identification and detection of pathogenic bacteria from patients with hospital-acquired pneumonia in southwestern Iran; evaluation of biofilm production and molecular typing of bacterial isolates. BMC Pulm Med 2021; 21:408. [PMID: 34886838 PMCID: PMC8662843 DOI: 10.1186/s12890-021-01773-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022] Open
Abstract
Background Hospital-acquired pneumonia (HAP) is the second most common nosocomial infection in intensive care units (ICUs). The present study aims to determine the prevalence of pathogenic bacteria, their biofilm formation, and molecular typing from patients with HAP in southwestern Iran. Methods Fifty-eight patients with HAP participated in this cross-sectional study. Sputum and endotracheal aspirate were collected from each patient for isolation and detection of bacteria. Biofilm formation was evaluated using Congo red agar or Microtiter plate assay. The antimicrobial susceptibility patterns of the isolates were investigated. The multiplex polymerase chain reaction (M-PCR) technique was used to determine the Staphylococcal Cassette Chromosome mec (SCCmec) types of methicillin-resistant Staphylococcus aureus (MRSA) strains. All S. aureus isolates were typed using the agr typing method. A repetitive element sequence-based PCR (rep-PCR) typing method was used for typing of Gram-negative bacteria. Data were analyzed using the Statistical Package for the Social Sciences (SPSS) software version 15 and the chi-square test. Results Bacteria were isolated in 52 (89.7%) of patients. Acinetobacter baumannii (A. baumannii) was the most prevalent organism (37%), followed by S. aureus, Pseudomonas aeruginosa (P. aeruginosa), and Escherichia coli (E. coli). Using the PCR method, 56 bacteria were detected. A. baumannii was the most prevalent (35.7%) organism. A. baumannii and P. aeruginosa were biofilm-producing. All Gram-negative isolates were colistin-sensitive, and most of the A. baumannii isolates were multidrug-resistant (MDR). MRSA was identified in 12 (80%) S. aureus isolates, and 91.6% of MRSA were SCCmec type III. The agr type III was the most predominant. The rep-PCR analysis showed seven different patterns in 20 A. baumannii, six patterns in 13 P. aeruginosa, and four patterns in 6 E. coli. Conclusion A. baumannii was more prevalent than S. aureus in ventilator-associated pneumonia (VAP), while S. aureus is a major pathogen in non-ventilator hospital-acquired pneumonia (NV-HAP), possibly due to the tendency of the former to aquatic environments. Based on the rep-PCR typing method, it was concluded that bacteria were transmitted from patients or healthcare workers among different wards. Colistin can be used as a treatment in Gram-negative MDR isolates.
Collapse
Affiliation(s)
- Farzad Mazloomirad
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Hasanzadeh
- Department of Internal Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gordafarin Nikbakht
- Department of Infectious Diseases, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Narges Roustaei
- Department of Epidemiology and Biostatistics, School of Health and Nutrition Sciences, Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran. .,Department of Microbiology, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
14
|
Khosravi AD, Montazeri EA, Maki SR. Antibacterial effects of Octenicept, and benzalkonium chloride on Acinetobacter baumannii strains isolated from clinical samples and determination of genetic diversity of isolates by RAPD-PCR method. Mol Biol Rep 2021; 48:7423-7431. [PMID: 34635960 DOI: 10.1007/s11033-021-06758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is among the important causes of nosocomial infections. Due to the emergence of antibiotic resistance, many problems have been raised in the successful treatment of patients infected by this bacterium with the subsequent mortality. Therefore, the present study was performed to evaluate the antibacterial effect of Octenicept (OCT), and Benzalkonium chloride (BZK) against A. baumannii strains isolated from clinical samples, and to determine the genetic diversity of strains by RAPD-PCR method. METHODS A total of 119 A. baumannii isolates were collected and confirmed by conventional culture and biochemical tests and PCR assay. Susceptibility of the isolates to antibiotics was evaluated by standard antibiotic susceptibility testing (AST). For antiseptics OCT and BZK, Minimum inhibitory concentration (MIC) was assessed by broth microdilution method. The prevalence of qacE and qacΔE1 genes related to antiseptics was estimated by PCR assay. Finally, genetic diversity of strains was determined by using RAPD-PCR. RESULTS All 119 suspected isolates were confirmed as A. baumannii using conventional microbiologic tests and PCR assay. The isolates were mostly originated from blood samples. In AST, the lowest resistance was seen for ciprofloxacin and gentamicin. For antiseptics, the MIC values were reported as 15.26 μg/ml for OCT and 640 μg/ml for BZK. The antiseptic genes of qacE and qacΔE1 were found to be present in 56 (47.05%) and 59 (49.57%) of isolates respectively. RAPD typing revealed great diversity among A. baumannii isolates, with 37 clusters in isolates from ICU, of which 32 clusters were single and 5 were multiple. CONCLUSIONS Considering the increase of resistance to antiseptics, it is of importance to monitor the susceptibility of A. baumannii to antiseptics and to promote antiseptic stewardship in hospitals. Furthermore, in this study great diversity was observed among A. baumannii isolates, which is important in understanding the molecular epidemiology of the outbreaks caused by this organism in the hospitals.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Iranian Study Group on Microbial Drug Resistance, Tehran, Iran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyedeh Roya Maki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|