1
|
Griñán-Ferré C, Bellver-Sanchis A, Guerrero A, Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol Res 2024; 205:107247. [PMID: 38834164 DOI: 10.1016/j.phrs.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Aftabi Y, Rafei S, Zarredar H, Amiri-Sadeghan A, Akbari-Shahpar M, Khoshkam Z, Seyedrezazadeh E, Khalili M, Mehrnejad F, Fereidouni S, Lawrence BP. Refinement of coding SNPs in the human aryl hydrocarbon receptor gene using ISNPranker: An integrative-SNP ranking web-tool. Comput Biol Chem 2020; 90:107416. [PMID: 33264727 DOI: 10.1016/j.compbiolchem.2020.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Different bioinformatic methods apply various approaches to predict how much the effect of a SNP could be deleterious and therefore their results may differ significantly. However, variation studies often need to consider an integrated prediction result to analyze the effect of SNPs. To address this problem, we used an algorithm to map ordinal predictions to a numeral space and averaging them, and based on it we developed the ISNPranker web-tool (http://isnpranker.semilab.ir/). It takes heterogonous outputs of different predictors and generates integrated numerical predictions and ranks SNPs based on them. Afterward, we used ISNPranker to identify the most deleterious coding SNPs (cSNPs) of the human aryl hydrocarbon receptor (AHR) gene. AHR is a ligand-activated transcription factor that governs many molecular and cellular mechanisms and cSNPs may affect its structure, interactions, and function. Forty validated cSNPs of AHR were initially analyzed using 16 publicly available SNP analyzers and the results were introduced to the ISNPranker and integrated predictions were obtained. The cSNPs were ranked in 34 levels of danger and rs200257782 in the ARNT dimerization domain (ADD121-289) of AHR was identified as the most deleterious cSNP. The rs148360742, which affect ADD40-79 and Hsp90 binding domain (HBD27-79) was in the second rank and the third and fourth ranks were occupied by ADD121-289-located variations rs571123681 and rs141667112 respectively. In conclusion, we introduced ISNPranker, which is a web-tool for integrative ranking of SNPs, and we showed that AHR structure and function may be highly sensitive to the cSNPs in the ARNT dimerization domain.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran.
| | - Saleh Rafei
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Mohsen Akbari-Shahpar
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Zahra Khoshkam
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran; Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Tehran, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714161, Tabriz, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sasan Fereidouni
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - B Paige Lawrence
- Departments of Environmental Medicine and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|