1
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2022; 12:804813. [PMID: 35046923 PMCID: PMC8761948 DOI: 10.3389/fmicb.2021.804813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
3
|
Nony E, Moingeon P. Proteomics in support of immunotherapy: contribution to model-based precision medicine. Expert Rev Proteomics 2021; 19:33-42. [PMID: 34937491 DOI: 10.1080/14789450.2021.2020653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomics encompasses a wide and expanding range of methods to identify, characterize, and quantify thousands of proteins from a variety of biological samples, including blood samples, tumors, and tissues. Such methods are supportive of various forms of immunotherapy applied to chronic conditions such as allergies, autoimmune diseases, cancers, and infectious diseases. AREAS COVERED In support of immunotherapy, proteomics based on mass spectrometry has multiple specific applications related to (i) disease modeling and patient stratification, (ii) antigen/ autoantigen/neoantigen/ allergen identification, (iii) characterization of proteins and monoclonal antibodies used for immunotherapeutic or diagnostic purposes, (iv) identification of biomarkers and companion diagnostics and (v) monitoring by immunoproteomics of immune responses elicited in the course of the disease or following immunotherapy. EXPERT OPINION Proteomics contributes as an enabling technology to an evolution of immunotherapy toward a precision medicine approach aiming to better tailor treatments to patients' specificities in multiple disease areas. This trend is favored by a better understanding through multi-omics profiling of both the patient's characteristics, his/her immune status as well as of the features of the immunotherapeutic drug.
Collapse
Affiliation(s)
- Emmanuel Nony
- Protein Sciences Department, Institut de Recherches Servier, Croissy Sur Seine, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, Croissy Sur Seine, France
| |
Collapse
|
4
|
Zayed H. Vaccine Development Against COVID-19 Prior to Pandemic Outbreaks, Using in vitro Evolution and Reverse Genetics. Front Immunol 2020; 11:2051. [PMID: 32922408 PMCID: PMC7456802 DOI: 10.3389/fimmu.2020.02051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Wang J, Stenzel D, Liu A, Liu D, Brown D, Ambrogelly A. Quantification of a recombinant antigen in an immuno-stimulatory whole yeast cell-based therapeutic vaccine. Anal Biochem 2018; 545:65-71. [DOI: 10.1016/j.ab.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/25/2017] [Accepted: 01/11/2018] [Indexed: 12/30/2022]
|
6
|
Naghshbandi RZ, Haghighat S, Mahdavi M. Passive immunization against methicillin resistant Staphylococcus aureus recombinant PBP2a in sepsis model of mice: Comparable results with antibiotic therapy. Int Immunopharmacol 2018; 56:186-192. [DOI: 10.1016/j.intimp.2018.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
|
7
|
Fernandes FF, de Oliveira LL, Landgraf TN, Peron G, Costa MV, Coelho-Castelo AAM, Bonato VLD, Roque-Barreira MC, Panunto-Castelo A. Detrimental Effect of Fungal 60-kDa Heat Shock Protein on Experimental Paracoccidioides brasiliensis Infection. PLoS One 2016; 11:e0162486. [PMID: 27598463 PMCID: PMC5012565 DOI: 10.1371/journal.pone.0162486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/07/2016] [Indexed: 11/18/2022] Open
Abstract
The genus Paracoccidioides comprises species of dimorphic fungi that cause paracoccidioidomycosis (PCM), a systemic disease prevalent in Latin America. Here, we investigated whether administration of native 60-kDa heat shock protein of P. brasiliensis (nPbHsp60) or its recombinant counterpart (rPbHsp60) affected the course of experimental PCM. Mice were subcutaneously injected with nPbHsp60 or rPbHsp60 emulsified in complete’s Freund Adjuvant (CFA) at three weeks after intravenous injection of P. brasiliensis yeasts. Infected control mice were injected with CFA or isotonic saline solution alone. Thirty days after the nPbHsp60 or rPbHsp60 administration, mice showed remarkably increased fungal load, tissue inflammation, and granulomas in the lungs, liver, and spleen compared with control mice. Further, rPbHsp60 treatment (i) decreased the known protective effect of CFA against PCM and (ii) increased the concentrations of IL-17, TNF-α, IL-12, IFN-γ, IL-4, IL-10, and TGF-β in the lungs. Together, our results indicated that PbHsp60 induced a harmful immune response, exacerbated inflammation, and promoted fungal dissemination. Therefore, we propose that PbHsp60 contributes to the fungal pathogenesis.
Collapse
Affiliation(s)
- Fabrício Freitas Fernandes
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Taise Natali Landgraf
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Marcelo Vieira Costa
- Department of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arlete A. M. Coelho-Castelo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vânia L. D. Bonato
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria-Cristina Roque-Barreira
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ademilson Panunto-Castelo
- Department of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
8
|
Alemayehu D, Utt E, Knirsch C. Vaccines: A review of immune-based interventions to prevent and treat disease. J Clin Pharmacol 2015; 55 Suppl 3:S93-102. [PMID: 25707968 DOI: 10.1002/jcph.397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/05/2014] [Indexed: 01/01/2023]
Abstract
The enormous gains made in public health during the 20th century, through the prevention and treatment of infectious disease, have contributed to dramatic improvements in the quality and length of the human lifespan. Continued advances in medicine are dependent on addressing several challenges including the increase in existing and new resistance to antibiotics, the decrease in productivity of the research and development (R&D) ecosystem, uncertain regulatory pathways, and an economic environment that rewards innovation for developing therapeutics that involve long cycle times from idea to a product. In this article, we consider important issues pertaining to the development of vaccines with particular emphasis on preclinical requirements, optimal dose selection, design, execution, and reporting of clinical trials for regulatory submission, planning and implementation of post-approval life-cycle programs, and emerging themes in therapeutic vaccines.
Collapse
|
9
|
Boubaker G, Hemphill A, Huber CO, Spiliotis M, Babba H, Gottstein B. Prevention and Immunotherapy of Secondary Murine Alveolar Echinococcosis Employing Recombinant EmP29 Antigen. PLoS Negl Trop Dis 2015; 9:e0003795. [PMID: 26053794 PMCID: PMC4460070 DOI: 10.1371/journal.pntd.0003795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin–treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin–treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE. Current medical management of AE that relies on surgery and continuous benzimidazole administration is of limited effectiveness. Therefore, alternative preventive and therapeutic tools need to be explored. Here, we demonstrate that vaccination with recombinant antigen EmP29 (rEmP29), prior or after secondary infection of BALB/c mice, resulted in a significant reduction of the median parasite weight when compared to different control groups. We then characterized the transcription level of splenic IL-4 and IFN-γ cytokines as hallmarks for AE-anti-protective humoral immune reaction (Th2) and for AE-effective (restrictive) cellular response (Th1), respectively. Results revealed that vaccinated mice in pre- or post-infection situation exhibited the lowest IL-4/IFN-γ mRNA ratios. In addition, those groups showed also significantly low levels of IL-10-encoding mRNA coding (immunosuppressive cytokine), as well as IL-2. These findings suggest that reduction of parasite load in rEmP29-vaccinated mice (in pre- or post-infection status) might be triggered by a decline of the immunosuppressive environment and a change of the host immune reaction towards a Th1-re-oriented cell-mediated immune defense. A similar non-specific effect appears also to be yielded by the immunostimulating adjuvants. This study provides the first insight into the potential benefits of antigen-specific immunotherapy as new treatment option of AE.
Collapse
Affiliation(s)
- Ghalia Boubaker
- Institute of Parasitology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Faculty of Pharmacy, Department of Clinical Biology B, Laboratory of Medical and Molecular Parasitology–Mycology (LR12ES08), University of Monastir, Monastir, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | - Markus Spiliotis
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Hamouda Babba
- Faculty of Pharmacy, Department of Clinical Biology B, Laboratory of Medical and Molecular Parasitology–Mycology (LR12ES08), University of Monastir, Monastir, Tunisia
| | - Bruno Gottstein
- Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Yeboah KG, Akande J, Addo RT, Siwale RC, Aninkorah-Yeboah K, Siddig A. In vitroandex vivocharacterization of lectin-labeledMycobacterium tuberculosisantigen-containing microspheres for enhanced oral delivery. J Drug Target 2013; 22:34-47. [DOI: 10.3109/1061186x.2013.833206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Hong B, Lee SH, Song XT, Jones L, Machida K, Huang XF, Chen SY. A super TLR agonist to improve efficacy of dendritic cell vaccine in induction of anti-HCV immunity. PLoS One 2012; 7:e48614. [PMID: 23144910 PMCID: PMC3492467 DOI: 10.1371/journal.pone.0048614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/27/2012] [Indexed: 02/02/2023] Open
Abstract
Persistent infections caused by pathogens such as hepatitis C virus are major human diseases with limited or suboptimal prophylactic and therapeutic options. Given the critical role of dendritic cell (DC) in inducing immune responses, DC vaccination is an attractive means to prevent and control the occurrence and persistence of the infections. However, DCs are built-in with inherent negative regulation mechanisms which attenuate their immune stimulatory activity and lead to their ineffectiveness in clinical application. In this study, we developed a super DC stimulant that consists of a modified, secretory Toll-like Receptor (TLR)-5 ligand and an inhibitor of the negative regulator, suppressor of cytokine sinaling-1 (SOCS1). We found that expressing the super stimulant in DCs is drastically more potent and persistent than using the commonly used DC stimuli to enhance the level and duration of inflammatory cytokine production by both murine and human DCs. Moreover, the DCs expressing the super stimulant are more potent to provoke both cellular and humoral immune responses against hepatitis C virus (HCV) antigen in vivo. Thus, the strategy capable of triggering and sustaining proinflammatory status of DCs may be used to boost efficiency of DC vaccine in preventing and combating the persistent infection of HCV or other chronic viruses.
Collapse
Affiliation(s)
- Bangxing Hong
- Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Sung-Hyung Lee
- Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsey Jones
- Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Keigo Machida
- Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Xue F. Huang
- Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SYC); (XFH)
| | - Si-Yi Chen
- Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SYC); (XFH)
| |
Collapse
|
12
|
Fundamentals of Vaccine Delivery in Infectious Diseases. FUNDAMENTALS AND APPLICATIONS OF CONTROLLED RELEASE DRUG DELIVERY 2012. [PMCID: PMC7119968 DOI: 10.1007/978-1-4614-0881-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Infectious diseases continue to be the major causes of illness, disability, and death. Moreover, in recent years, new infectious agents and diseases are being identified, and some diseases that were previously considered under control have reemerged. Furthermore, antimicrobial resistance has grown rapidly in a variety of hospital as well as community acquired infections. Thus, humanity still faces big challenges in the prevention and control of infectious diseases. Vaccination, generally considered to be the most effective method of preventing infectious diseases, works by presenting a foreign antigen to the immune system to evoke an immune response. The administered antigen can either be a live, but weakened, form of a pathogen (bacteria or virus), a killed or inactivated form of the pathogen, or a purified material such as a protein. However, no vaccine is completely safe; therefore, vaccine safety research and monitoring are necessary to minimize vaccine related harms. From the formulation point of view, the goal continues to be to improve the quality and global availability of vaccine delivery systems. This chapter provides an introduction to vaccine formulation, describes the delivery routes that are utilized, and discusses the factors that affect the safety and stability of a vaccine formulation.
Collapse
|
13
|
Chen JH, Yu YS, Liu HH, Chen XH, Xi M, Zang GQ, Tang ZH. Ubiquitin conjugation of hepatitis B virus core antigen DNA vaccine leads to enhanced cell-mediated immune response in BALB/c mice. HEPATITIS MONTHLY 2011. [PMID: 22140385 DOI: 10.5812/kowsar.1735143x.1372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nearly 350 million persons worldwide are chronically infected with hepatitis B virus (HBV). Ubiquitin (Ub) is a highly conserved small regulatory protein, ubiquitous in eukaryotes, that usually serves as a signal for the target protein that is recognised and degraded in proteasomes . The Ub-mediated processing of antigens is rapid and efficient and stimulates cell-mediated immune responses. Accordingly, Ub-mediated processing of antigens has been widely used in chronic-infection and cancer studies to improve immune response. OBJECTIVES Many clinical trials have shown that DNA vaccine potency needs to be greatly enhanced. Here, we report a new strategy for designing an HBV DNA vaccine using the ubiquitin (Ub) sequence. The aim of this study was to investigate a novel DNA vaccination, based on the expression of HBV core antigen (HBcAg), fused to Ub to enhance DNA vaccine potency. MATERIALS AND METHODS Mouse ubiquitin fused to the HBcAg gene and cloned into the eukaryotic vector pcDNA3.1 (-). BALB/c mice were immunized with recombinant pUb-HBcAg or pHBcAg DNA vaccine. Lymphocyte proliferation assay, intracellular IFN-γ assay, CTL cytotoxicity assay, and antibody assay were performed to analyze the cellular and humoral immune responses to our DNA constructs. RESULTS HBcAg was expressed effectively in the COS-7 cells that were transiently transfected with pUb-HBcAg. Strong anti-HBc IgG responses were elicited in mice that were immunized with pUb-HBcAg. The endpoint titers of anti-HBc peaked at 1:656100 on the 42nd day after the third immunization. pUb-HBcAg stimulated greater lymphocyte proliferation and induced higher levels of IL-2 and IFN-γ and a greater percentage of HBcAg-specific CD8+ T cells in mice than pHBcAg. In the CTL assay, the specific lysis rate reached 56.5% at an effector:target ratio of 50:1 in mice that were immunized with pUb-HBcAg. CONCLUSIONS pUb-HBcAg elicits specific anti-HBc responses and induces HBc-specific CTL responses in immunized BALB/c mice. Our results imply that Ub can be used as a molecular adjuvant that enhances the potency of DNA vaccines.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Department of Infectious Diseases, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Yeboah KG, D'souza MJ. Evaluation of albumin microspheres as oral delivery system for Mycobacterium tuberculosis vaccines. J Microencapsul 2009; 26:166-79. [PMID: 18608796 DOI: 10.1080/02652040802211717] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mucosal immunization has been suggested to be the best option for preventing Mycobacterium tuberculosis infection. The purpose of this study was to develop albumin microspheres containing Mycobacterium tuberculosis antigens and to determine if oral administration of the microspheres can induce antigen-specific mucosal and systemic immune responses. Albumin microspheres containing Mycobacterium tuberculosis dead cells and cell lysate were prepared. The physico-chemical characteristics of the formulations were determined and the microspheres were administered to animal models to evaluate the induction of immune responses to the antigens. The results showed that the particle sizes, zeta potential and dissolution pattern of the microspheres were ideal for oral delivery of vaccines. In vivo studies showed high production of antigen-specific antibody production in serum, nasal, salivary and faecal samples. From the results of the study, it can be concluded that oral administration of Mycobacterium tuberculosis microspheres was successful in inducing antigen-specific systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Kwame G Yeboah
- College of Pharmacy, Harding University, Searcy, Arkansas, USA
| | | |
Collapse
|
15
|
Yan J, Liu X, Wang Y, Jiang X, Liu H, Wang M, Zhu X, Wu M, Tien P. Enhancing the potency of HBV DNA vaccines using fusion genes of HBV-specific antigens and the N-terminal fragment of gp96. J Gene Med 2007; 9:107-21. [PMID: 17256801 DOI: 10.1002/jgm.998] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Many clinical trials show that DNA vaccine potency needs to be greatly enhanced. We have reported that the N-terminal fragment of glycoprotein 96 (gp96) is able to produce an adjuvant effect for production of cytotoxic T-lymphocytes (CTLs) with hepatitis B virus (HBV)-specific peptides. Here, we report a new strategy for HBV DNA vaccine design using a partial gp96 sequence. MATERIALS AND METHODS We linked the N-terminal 1-355aa (N355) of gp96 to HBV genes encoding for structural proteins, the major S and middle S2S envelope proteins and the truncated core HBcAg (1-149aa). ELISPOT, tetramer staining and intracellular IFN-gamma assay were performed to analyze the induced cellular immune responses of our DNA constructs in BALB/c mice and HLA-A2 transgenic mice. The relative humoral immune responses were analyzed in different IgG isotypes. RESULTS The fusion genes induced 2- to 6-fold higher HBV-specific CD8(+) T cells as compared to the antigens alone. There was an approximate 10-fold decrease in the humoral immune responses with fusion genes based on HBV envelope proteins. Interestingly, the decreased humoral immune responses were not observed when antigens and plasmid encoding N355 were co-delivered. However, an approximate 20-fold higher antibody level was induced when linking N355 to a truncated HBcAg. Immunization by intramuscular injection resulted in predominantly IgG2a antibodies, which indicated that these vaccines preferentially prime Th1 responses. CONCLUSIONS We constructed highly immunogenic fusions by linking the N-terminal fragment of gp96 to HBV antigens. Our results imply that the N-terminal fragment of gp96 may be used as a molecular adjuvant to enhance the potency of DNA vaccines.
Collapse
Affiliation(s)
- Jiabin Yan
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ganusov VV, Antia R. IMPERFECT VACCINES AND THE EVOLUTION OF PATHOGENS CAUSING ACUTE INFECTIONS IN VERTEBRATES. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01174.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Ganusov VV, Antia R. IMPERFECT VACCINES AND THE EVOLUTION OF PATHOGENS CAUSING ACUTE INFECTIONS IN VERTEBRATES. Evolution 2006. [DOI: 10.1554/05-504.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Abstract
Most therapeutic vaccines are usually divided into two groups according to their mode of action on immunity, based on the induction of either a Immoral response (antibodies) or a cellular response, mostly cytotoxic T lymphocytes (CTLs). The latter ones are in fact the most promising candidates for the treatment of cancer and chronic viral infections. However, we must admit that the design of such vaccines is far from being simple as the biology of the chronic infectious diseases involves complex issues such as viral latency, the existence of reservoirs or immune escape mechanisms. Furthermore, the concept of therapeutic vaccination implies that the host immune system is still competent for eliciting an immune response after vaccination, but patients suffering from chronic infectious diseases usually exhibit impaired immune defenses. To overcome this challenge, the actual tendency is to combine chemotherapy and therapeutic vaccination, playing around with schedules of vaccine administration and standard chemotherapy. To illustrate the different steps in the design and testing of a therapeutic vaccine, the human immunodeficiency virus (HIV-1) for which the efficacy of therapeutic vaccines is currently being evaluated, could serve as a model. Specific points like the rationale of using HIV-1 regulatory genes instead of structural genes, the possibility of using multiple injections of vaccine candidates or the importance of pre-existing immunity will be emphasized, together with the risks of inducing the emergence of new HIV-1 variants upon vaccine treatment of chronically infected HIV-1 patients. The current expertise in the field of therapeutic vaccines in chronically infected HIV-1 patients could be of interest for the design of a therapeutic vaccine for HBV infection.
Collapse
Affiliation(s)
- B Verrier
- ERE 2736 CNRS bioMérieux, IFR 128, Lyon, France.
| |
Collapse
|
19
|
Buseyne F, Catteau A, Scott-Algara D, Corre B, Porrot F, Rouzioux C, Blanche S, Rivière Y. A vaccinia-based elispot assay for detection of CD8+ T cells from HIV-1 infected children. J Immunol Methods 2005; 298:105-18. [PMID: 15847801 DOI: 10.1016/j.jim.2005.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/16/2004] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
HIV-specific CD8+ T lymphocytes participate in the control of viral replication in infected patients. These responses are of low intensity in young infants and are decreased by antiretroviral therapy. In the present study, we report on a recombinant Vaccinia virus (rVV)-based Elispot assay for the detection of HIV-specific CD8+ T cells immediately after isolation of peripheral blood mononuclear cells (PBMC). The rVV-based assay was highly sensitive; 48 out of 50 children had a positive response against the rVV encoding HIV Env-Gag-Pol antigen. Interferon-gamma was produced by CD8+ T cells, and CD14+/15+ cells were the main cell subset presenting antigens expressed by rVV. We observed that the cell input per well had a critical influence on the sensitivity of the assay. Results from the ex vivo Elispot assay correlated poorly with those of the 51Cr release assay performed after expansion of PBMC in vitro; thus, both assays gave information on different subsets and/or functions of the HIV-specific T cell response.
Collapse
Affiliation(s)
- Florence Buseyne
- Unité Postulante d'Immunopathologie Virale, URA CNRS 1930, Institut Pasteur, Bat. Lwoff, 28 rue du Dr Roux, 75015 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This paper seeks to critically review a traditional objection to preventive medicine (which I call here the 'prevention problem'). The prevention problem is a concern about the supposedly inequitable distribution of benefits and risks of harm resulting from preventive medicine's focus on population-based interventions. This objection is potentially applicable to preventive vaccination programmes and could be used to argue that such programmes are unethical. I explore the structure of the prevention problem by focusing upon two different types of vaccination (therapeutic vaccination and preventive vaccination). I argue that the 'prevention problem' cannot be fairly applied to the case of preventive vaccination because such programmes do not just focus upon benefits at the level of populations (as is claimed by the prevention problem). Most such preventive vaccination programmes explicitly seek to create and maintain herd protection. I argue that herd protection is an important public good which is a benefit shared by all individuals in the relevant population. This fact can then be used to block the 'prevention problem' argument in relation to preventive vaccination programmes. I conclude by suggesting that whilst the future development and use of therapeutic vaccines does raise some interesting ethical issues, any ethical objections to prophylactic vaccination on the basis of the 'prevention problem' will not be overcome through the substitution of therapeutic vaccines for preventive vaccines; indeed, the 'prevention problem' fails on its own terms in relation to preventive vaccination programmes.
Collapse
Affiliation(s)
- Angus Dawson
- Centre for Professional Ethics, Keele Hall, Keele University, Staffs ST5 5BG, UK.
| |
Collapse
|