1
|
Karki SJ. Better beans: designer TALE-mediated discovery of common bacterial blight resistance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:202-204. [PMID: 39786160 PMCID: PMC11714743 DOI: 10.1093/jxb/erae497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
This article comments on:
Gaudin C, Preveaux A, Aubineau N, Le Goff D, Jacques M-A, Chen NWG. 2025. A dTALE approach demonstrates that induction of common bean OVATE Family Protein 7 promotes resistance to common bacterial blight. Journal of Experimental Botany 76, 607–620. https://doi.org/10.1093/jxb/erae433
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Boyer C, Lefeuvre P, Zombre C, Rieux A, Wonni I, Gagnevin L, Pruvost O. New, Complete Circularized Genomes of Xanthomonas citri pv. mangiferaeindicae Produced from Short- and Long-Read Co-Assembly Shed Light on Strains that Emerged a Decade Ago on Mango and Cashew in Burkina Faso. PHYTOPATHOLOGY 2025; 115:14-19. [PMID: 39387826 DOI: 10.1094/phyto-08-24-0267-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We report high-quality genomes of three strains of Xanthomonas citri pv. mangiferaeindicae, the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems and effectors involved in the virulence of xanthomonads with (i) a type I secretion system of the hlyDB group; (ii) xps and xcs type II secretion systems; (iii) a type III secretion system with several type III effectors, including transcription activator-like effectors; (iv) several type IV secretion systems associated with plasmid or integrative conjugative elements mobility; (v) three type V secretion system subclasses (Va, Vb, and Vc); and (vi) a single i3* type VI secretion system. The two strains isolated in Burkina Faso from mango (Mangifera indica) and cashew (Anacardium occidentale) differed by only 14 single-nucleotide polymorphisms and shared identical secretion systems and type III effector repertoires. Several transcription activator-like effectors were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew (i.e., two distinct host genera of a same plant family). These new genomic resources will contribute to better understanding the biology and evolution of this agriculturally major crop pathogen.
Collapse
Affiliation(s)
- Claudine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | | | - Cyrille Zombre
- INERA, Station de Farako-Bâ, 01 BP 910 Bobo-Dioulasso 01, Burkina Faso
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - Issa Wonni
- INERA, Station de Farako-Bâ, 01 BP 910 Bobo-Dioulasso 01, Burkina Faso
| | - Lionel Gagnevin
- CIRAD, UMR PHIM, F-34032 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | |
Collapse
|
3
|
Liang W, Zhou Y, Xu Z, Li Y, Chen X, Yu C, Hou F, Dai B, Zhong L, Bi JA, Xie L, Yan C, Chen J, Yang Y. Identification and Genome Sequencing of Novel Virulent Strains of Xanthomonas oryzae pv. oryzae Causing Rice Bacterial Blight in Zhejiang, China. Pathogens 2024; 13:1083. [PMID: 39770343 PMCID: PMC11728688 DOI: 10.3390/pathogens13121083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, Xoo strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research. Three isolated pathogenic bacteria of ZXooS (from Shaoxing), ZXooQ (from Quzhou), and ZXooT (from Taizhou) were all identified as novel Xoo strains. These novel strains demonstrate greater virulence compared to Zhe173, the previous epidemic Xoo strain from Zhejiang Province. Subsequent genomic sequencing and analysis revealed that there existed significant differences in the genome sequence, especially in effector genes corresponding to some known rice resistance (R) genes between the novel strains and Zhe173. The sequence alignment of avirulent genes (effector genes) indicated that nucleic and amino acid sequences of AvrXa5, AvrXa7, AvrXa10, and AvrXa23 in the novel strains varied prominently from those in Zhe173. Interestingly, it seemed that only the genome of ZXooQ might contain the AvrXa3 gene. In addition, the phylogenetic analysis of 61 Xoo strains revealed that the novel strains were situated in a distinct evolutionary clade separate from Zhe173. These results here suggest that the emergence of novel Xoo strains may lead to resistance loss of some R genes used in commercial rice varieties, potentially serving as one of the factors leading to RBB resurgence in Zhejiang Province, China.
Collapse
Affiliation(s)
- Weifang Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650000, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Fan Hou
- Wuwangnong Seed Shareholding Co., Ltd., Hangzhou 310000, China;
| | - Binfeng Dai
- Taizhou Agroecological Protection and Quality Safety Center, Taizhou 318000, China; (B.D.); (L.Z.)
| | - Liequan Zhong
- Taizhou Agroecological Protection and Quality Safety Center, Taizhou 318000, China; (B.D.); (L.Z.)
| | - Ji-An Bi
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China; (J.-A.B.); (C.Y.)
| | - Liujie Xie
- Taizhou Academy of Agricultural Sciences, Taizhou 318000, China;
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China; (J.-A.B.); (C.Y.)
| | - Jianping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650000, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
| |
Collapse
|
4
|
Wang L, Wu D, Hong T, Ren Q, Wang S, Bao Y, Yao W, Zhang M, Hu Q. Fusarium sacchari Effector FsMEP1 Contributes to Virulence by Disturbing Localization of Thiamine Thiazole Synthase ScTHI2 from Sugarcane. Int J Mol Sci 2024; 25:12075. [PMID: 39596144 PMCID: PMC11593444 DOI: 10.3390/ijms252212075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium sacchari is a significant pathogenic fungus that causes sugarcane Pokkah Boeng. Proteins secreted by pathogenic fungi can be delivered into hosts to suppress plant immunity and establish infection. However, there is still much to be discovered regarding F. sacchari's secreted effectors in overcoming plant immunity. In this paper, we characterize a novel effector called FsMEP1, which is essential for the virulence of F. sacchari. FsMEP1 contains a conserved zinc-binding motif sequence, HEXXH, and is highly expressed during host infection. Using the Agrobacterium tumefaciens-mediated transient expression system, it was confirmed that FsMEP1 could suppress Bcl-2-associated X protein (BAX)-triggered cell death, callose deposition, and ROS explosion in Nicotiana benthamiana. Furthermore, the deletion of FsMEP1 demonstrated its requirement for contributing to the pathogenicity of F. sacchari in sugarcane. Further analysis revealed that FsMEP1 could interact with the sugarcane thiamine thiazole synthase ScTHI2 and disrupt its normal localization, thereby inhibiting the synthesis of thiamine and the defense responses mediated by ScTHI2. Based on these findings, we propose that ScTHI2 represents a potential molecular target for improving sugarcane resistance to Pokkah Boeng disease.
Collapse
Affiliation(s)
- Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Deng Wu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Tianshu Hong
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qianqian Ren
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Shichao Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Yixue Bao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Wei Yao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qin Hu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Lee YH, Kim YH, Hong JK. Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria. THE PLANT PATHOLOGY JOURNAL 2024; 40:358-376. [PMID: 39117335 PMCID: PMC11309840 DOI: 10.5423/ppj.oa.03.2024.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.
Collapse
Affiliation(s)
- Young Hee Lee
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Korea
| | - Yun-Hee Kim
- Laboratory of Plant Molecular Physiology, Department of Biology Education, Gyeongsang National University, Jinju 52828, Korea
| | - Jeum Kyu Hong
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Korea
| |
Collapse
|
6
|
Boyer C, Lefeuvre P, Richard D, Lobin KK, Pruvost O. Complete Genome Sequence of a Copper-Resistant Xanthomonas campestris pv . campestris Strain Isolated from Broccoli in Mauritius Suggests Adaptive Gene Gain Through Horizontal Gene Transfer. PHYTOPATHOLOGY 2024; 114:328-333. [PMID: 37584505 DOI: 10.1094/phyto-05-23-0177-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Bacterial adaptation is facilitated by the presence of mobile genetic elements and horizontal gene transfer of genes, such as those coding for virulence factors or resistance to antimicrobial compounds. A hybrid assembly of Nanopore MinIon long-read and Illumina short-read data was produced from a copper-resistant Xanthomonas campestris pv. campestris strain isolated from symptomatic broccoli leaves in Mauritius. We obtained a 5.2-Mb high-quality chromosome and no plasmid. We found four genomic islands, three of which were characterized as integrative conjugative elements or integrative mobilizable elements. These genomic islands carried type III effectors and the copper resistance copLABMGF system involved in pathogenicity and environmental adaptation, respectively.
Collapse
Affiliation(s)
- Claudine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | | | - Damien Richard
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | | | | |
Collapse
|
7
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Xie Q, Wei B, Zhan Z, He Q, Wu K, Chen Y, Liu S, He C, Niu X, Li C, Tang C, Tao J. Arabidopsis membrane protein AMAR1 interaction with type III effector XopAM triggers a hypersensitive response. PLANT PHYSIOLOGY 2023; 193:2768-2787. [PMID: 37648267 DOI: 10.1093/plphys/kiad478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The efficient infection of plants by the bacteria Xanthomonas campestris pv. campestris (Xcc) depends on its type III effectors (T3Es). Although the functions of AvrE family T3Es have been reported in some bacteria, the member XopAM in Xcc has not been studied. As XopAM has low sequence similarity to reported AvrE-T3Es and different reports have shown that these T3Es have different targets in hosts, we investigated the functions of XopAM in the Xcc-plant interaction. Deletion of xopAM from Xcc reduced its virulence in cruciferous crops but increased virulence in Arabidopsis (Arabidopsis thaliana) Col-0, indicating that XopAM may perform opposite functions depending on the host species. We further found that XopAM is a lipase that may target the cytomembrane and that this activity might be enhanced by its membrane-targeted protein XOPAM-ACTIVATED RESISTANCE 1 (AMAR1) in Arabidopsis Col-0. The binding of XopAM to AMAR1 induced an intense hypersensitive response that restricted Xcc proliferation. Our results showed that the roles of XopAM in Xcc infection are not the same as those of other AvrE-T3Es, indicating that the functions of this type of T3E have differentiated during long-term bacterium‒host interactions.
Collapse
Affiliation(s)
- Qingbiao Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Bingzheng Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhaohong Zhan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiguang He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Kejian Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiyao Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
| | - Chunxia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaorong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
9
|
Wang X, He SW, He Q, Ju ZC, Ma YN, Wang Z, Han JC, Zhang XX. Early inoculation of an endophyte alters the assembly of bacterial communities across rice plant growth stages. Microbiol Spectr 2023; 11:e0497822. [PMID: 37655928 PMCID: PMC10580921 DOI: 10.1128/spectrum.04978-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
The core endophytes of plants are regarded as promising resources in future agroecosystems. How they affect the assembly of rice-related bacterial communities after early inoculation remains unclear. Here, we examined bacterial communities across 148 samples, including bulk and rhizosphere soils, sterilized roots, stems, and seeds at the seedling, tillering, booting, and maturity stages. Tissue cultured rice seedlings were inoculated with Xathomonas sacchari JR3-14, a core endophytic bacterium of rice seeds, before transplanting. The results revealed that α-diversity indices were significantly enhanced in the root and stem endosphere at the seedling stage. β-diversity was altered at most plant developmental stages, except for the root and stem at the booting stage. Network complexity consequently increased in the root and stem across rice growth stages, other than the stem endosphere at the booting stage. Four abundant beneficial bacterial taxa, Bacillus, Azospira, Azospirillum, and Arthrobacter, were co-enriched during the early growth stage. Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model analysis revealed a higher relative contribution of drift and other eco-evolutionary processes mainly in root compartments across all growth stages, but the opposite pattern was observed in stem compartments. IMPORTANCE Endophytic bacteria are regarded as promising environmentally friendly resources to promote plant growth and plant health. Some of microbes from the seed are able to be carried over to next generation, and contribute to the plant's ability to adapt to new environments. However, the effects of early inoculation with core microbes on the assembly of the plant microbiome are still unclear. In our study, we demonstrate that early inoculation of the rice seed core endophytic bacterium Xanthomonas sacchari could alter community diversity, enhance complexity degree of network structure at most the growth stages, and enrich beneficial bacteria at the seedling stage of rice. We further analyzed the evolutionary processes caused by the early inoculation. Our results highlight the new possibilities for research and application of sustainable agriculture by considering the contribution of seed endophytes in crop production and breeding.
Collapse
Affiliation(s)
- Xing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Wen He
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhi-Cheng Ju
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yi-Nan Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhe Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia-Cheng Han
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Richter I, Wein P, Uzum Z, Stanley CE, Krabbe J, Molloy EM, Moebius N, Ferling I, Hillmann F, Hertweck C. Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae. Curr Biol 2023:S0960-9822(23)00623-1. [PMID: 37301202 DOI: 10.1016/j.cub.2023.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Claire E Stanley
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Evelyn M Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Iuliia Ferling
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
11
|
Hou Y, Liang Y, Yang C, Ji Z, Zeng Y, Li G, E Z. Complete Genomic Sequence of Xanthomonas oryzae pv. oryzae Strain, LA20, for Studying Resurgence of Rice Bacterial Blight in the Yangtze River Region, China. Int J Mol Sci 2023; 24:ijms24098132. [PMID: 37175839 PMCID: PMC10179132 DOI: 10.3390/ijms24098132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a causative agent of rice bacterial blight (BB). In 2020-2022, BB re-emerged, and there was a break out in the Yangtze River area, China. The pandemic Xoo strain, LA20, was isolated and identified from cultivar Quanyou1606 and demonstrated to be the Chinese R9 Xoo strain, which is able to override the widely adopted xa5-, Xa7- and xa13-mediated resistance in rice varieties in Yangtze River. Here, we report the complete genome of LA20 by PacBio and Illumina sequencing. The assembled genome consists of one circular chromosome of 4,960,087 bp, sharing 99.65% sequence identity with the traditional representative strain, YC11 (R5), in the Yangtze River. Comparative genome analysis of LA20 and YC11 revealed the obvious variability in Tal genes (the uppermost virulence determinants) in numbers and sequences. Particularly, six Tal genes were only found in LA20, but not in YC11, among which Tal1b (pthXo1)/Tal4 (pthXo6), along with the lost one, pthXo3 (avrXa7), might be the major factors for LA20 to overcome xa5-, Xa7- and xa13-mediated resistance, thus, leading to the resurgence of BB. This complete genome of the new pandemic Xoo strain will provide novel insights into pathogen evolution, the traits of pathogenicity on genomic level and the epidemic disease status in China.
Collapse
Affiliation(s)
- Yuxuan Hou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yan Liang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Changdeng Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhijuan Ji
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
12
|
Szabó Z, Balogh M, Domonkos Á, Csányi M, Kaló P, Kiss GB. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:64. [PMID: 36943531 PMCID: PMC10030403 DOI: 10.1007/s00122-023-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.
Collapse
Affiliation(s)
- Zoltán Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary.
| | - Márta Balogh
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Márta Csányi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - György B Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- AMBIS Biotechnology Research and Development Ltd., Budapest, Hungary
| |
Collapse
|
13
|
Ratu STN, Amelia L, Okazaki S. Type III effector provides a novel symbiotic pathway in legume-rhizobia symbiosis. Biosci Biotechnol Biochem 2022; 87:28-37. [PMID: 36367542 DOI: 10.1093/bbb/zbac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Rhizobia form nodules on the roots of legumes and fix atmospheric nitrogen into ammonia, thus supplying it to host legumes. In return, plants supply photosynthetic products to maintain rhizobial activities. In most cases, rhizobial Nod factors (NFs) and their leguminous receptors (NFRs) are essential for the establishment of symbiosis. However, recent studies have discovered a novel symbiotic pathway in which rhizobia utilize the type III effectors (T3Es) similar to the pathogenic bacteria to induce nodulation. The T3Es of rhizobia are thought to be evolved from the pathogen, but they have a unique structure distinct from the pathogen, suggesting that it might be customized for symbiotic purposes. This review will focus on the recent findings from the study of rhizobial T3Es, discussing their features on a symbiont and pathogen, and the future perspectives on the role of rhizobial T3Es in symbiosis control technology.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Lidia Amelia
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shin Okazaki
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
14
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
15
|
Li T, Li Y, Ma X, Dan X, Huang X, Li Q, Lei S, Zhang Z, Huang S, Jiang W, Yu Y, He YQ. Comparative Genomic Analysis of Two Xanthomonas oryzae pv. oryzae Strains Isolated From Low Land and High Mountain Paddies in Guangxi, China. Front Microbiol 2022; 13:867633. [PMID: 35572630 PMCID: PMC9096941 DOI: 10.3389/fmicb.2022.867633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Xanthomonas oryzae pv. textitoryzae (Xoo) is a causal agent of rice bacterial leaf blight (BLB), the major rice disease, which is seriously constraining rice production in Asia. The interaction between Xoo and rice is in a dynamic process, essentially the co-evolution. Tracking the occurrence of plant diseases and identifying the epidemic pathogens in time are critical to assessing the epidemic disease status and understanding the pathogen evolution. In 2020, the occurrences of rice BLB were spotted in many places of Guangxi, the major rice growing region in China. Two of the 2020-epidemic Xoo strains, namely, GXO20-01 and GXO20-06, were isolated from low land and high mountain paddies in Guangxi, respectively, and were demonstrated to be race R8 of Chinese Xoo strains, but with significantly different virulence on certain susceptible varieties of rice. The HiFi PacBio sequencing revealed that GXO20-01 and GXO20-06 share the highly syntenic genome structures and the major genome contents, but only differ in <10 genes, including one gene encoding for transcription activator-like effector (TALE). A phylogenomic analysis grouped GXO20-01 and GXO20-06 into the PX-A lineage, stood close to PXO563 and PXO71 strains, but stood away from the other Chinese Xoo strains; for example, the JL25 and YC11. A comparative genomic analysis revealed that the major pathogenicity/virulence genes are conserved in two, newly isolated Xoo strains and the other Xoo strains in PX-A lineage, including the majority genes for the TALomes. The genomic differences between the Xoo strains were pinpointed to a few tal genes, which were variable in both their numbers and sequences, even between GXO20-01 and GXO20-06, the two 2020-epidemic Xoo strains. The study further revealed the instability and variability of tal genes in Xoo and highlighted the utility of HiFi long-read sequencing in TALE analysis and pathogen tracking.
Collapse
Affiliation(s)
- Tianjiao Li
- College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yiming Li
- College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Xiuguo Ma
- College of Agriculture, Guangxi University, Nanning, China
| | - Xue Dan
- College of Agriculture, Guangxi University, Nanning, China
| | - Xianjiao Huang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qinying Li
- Napo Agricultural and Rural Bureau, Napo County, Baise, China
| | - Shimin Lei
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhengchun Zhang
- New Rural Development Institute of Guangxi University, Nanning, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yanhua Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yong-Qiang He
- College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| |
Collapse
|
16
|
Wu T, Zhang H, Yuan B, Liu H, Kong L, Chu Z, Ding X. Tal2b targets and activates the expression of OsF3H 03g to hijack OsUGT74H4 and synergistically interfere with rice immunity. THE NEW PHYTOLOGIST 2022; 233:1864-1880. [PMID: 34812496 DOI: 10.1111/nph.17877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator-like (TAL) effectors are major virulence factors secreted by the type III secretion systems of Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo), causing bacterial leaf streak and bacterial blight, respectively, in rice. However, the knowledge of Xoc TAL effector function in promoting bacterial virulence remains limited. Here, we isolated the highly virulent Xoc strain HGA4 from the outbreak region of Huanggang (Hubei, China), which contains four TAL effectors not found in the Chinese model strain RS105. Among these, Tal2b was selected for introduction into RS105, which resulted in a longer lesion length than that in the control. Tal2b directly binds to the promoter region of the gene and activates the expression of OsF3H03g , which encodes 2-oxoglutarate-dependent dioxygenase in rice. OsF3H03g negatively regulates salicylic acid (SA)-related defense by directly reducing SA, and it plays a positive role in susceptibility to both Xoc and Xoo in rice. OsF3H03g interacts with a uridine diphosphate-glycosyltransferase protein (OsUGT74H4), which positively regulates bacterial leaf streak susceptibility and may inactivate SA via glycosylation modification.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan University, Wuhan, Hubei, 430070, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
17
|
Te Molder D, Poncheewin W, Schaap PJ, Koehorst JJ. Machine learning approaches to predict the Plant-associated phenotype of Xanthomonas strains. BMC Genomics 2021; 22:848. [PMID: 34814827 PMCID: PMC8612006 DOI: 10.1186/s12864-021-08093-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Xanthomonas has long been considered to consist predominantly of plant pathogens, but over the last decade there has been an increasing number of reports on non-pathogenic and endophytic members. As Xanthomonas species are prevalent pathogens on a wide variety of important crops around the world, there is a need to distinguish between these plant-associated phenotypes. To date a large number of Xanthomonas genomes have been sequenced, which enables the application of machine learning (ML) approaches on the genome content to predict this phenotype. Until now such approaches to the pathogenomics of Xanthomonas strains have been hampered by the fragmentation of information regarding pathogenicity of individual strains over many studies. Unification of this information into a single resource was therefore considered to be an essential step. RESULTS Mining of 39 papers considering both plant-associated phenotypes, allowed for a phenotypic classification of 578 Xanthomonas strains. For 65 plant-pathogenic and 53 non-pathogenic strains the corresponding genomes were available and de novo annotated for the presence of Pfam protein domains used as features to train and compare three ML classification algorithms; CART, Lasso and Random Forest. CONCLUSION The literature resource in combination with recursive feature extraction used in the ML classification algorithms provided further insights into the virulence enabling factors, but also highlighted domains linked to traits not present in pathogenic strains.
Collapse
Affiliation(s)
- Dennie Te Molder
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Wasin Poncheewin
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- UNLOCK, Wageningen University, Wageningen, the Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands.
- UNLOCK, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
18
|
Kashtwari M, Mansoor S, Wani AA, Najar MA, Deshmukh RK, Baloch FS, Abidi I, Zargar SM. Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects. Mol Biol Rep 2021; 49:5729-5749. [PMID: 34427889 DOI: 10.1007/s11033-021-06650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022]
Abstract
In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.
Collapse
Affiliation(s)
- Mahpara Kashtwari
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Mansoor
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, FBSc, Jammu, Jammu and Kashmir, 180009, India
| | - Aijaz A Wani
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mushtaq Ahmad Najar
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rupesh K Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140308, India
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ishfaq Abidi
- Directorate of Research, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
19
|
Vieira PS, Bonfim IM, Araujo EA, Melo RR, Lima AR, Fessel MR, Paixão DAA, Persinoti GF, Rocco SA, Lima TB, Pirolla RAS, Morais MAB, Correa JBL, Zanphorlin LM, Diogo JA, Lima EA, Grandis A, Buckeridge MS, Gozzo FC, Benedetti CE, Polikarpov I, Giuseppe PO, Murakami MT. Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun 2021; 12:4049. [PMID: 34193873 PMCID: PMC8245568 DOI: 10.1038/s41467-021-24277-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.
Collapse
Affiliation(s)
- Plinio S. Vieira
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Isabela M. Bonfim
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Araujo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.452567.70000 0004 0445 0877Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Ricardo R. Melo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Augusto R. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Melissa R. Fessel
- grid.418514.d0000 0001 1702 8585Butantan Institute, Butantan Foundation, São Paulo, São Paulo Brazil
| | - Douglas A. A. Paixão
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Gabriela F. Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Silvana A. Rocco
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Tatiani B. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Renan A. S. Pirolla
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mariana A. B. Morais
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jessica B. L. Correa
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Leticia M. Zanphorlin
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jose A. Diogo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Adriana Grandis
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marcos S. Buckeridge
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Gozzo
- grid.411087.b0000 0001 0723 2494Institute of Chemistry, University of Campinas, Campinas, São Paulo Brazil
| | - Celso E. Benedetti
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Igor Polikarpov
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo Brazil
| | - Priscila O. Giuseppe
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mario T. Murakami
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| |
Collapse
|
20
|
Effectors of Puccinia striiformis f. sp. tritici Suppressing the Pathogenic-Associated Molecular Pattern-Triggered Immune Response Were Screened by Transient Expression of Wheat Protoplasts. Int J Mol Sci 2021; 22:ijms22094985. [PMID: 34067160 PMCID: PMC8125866 DOI: 10.3390/ijms22094985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is an important pathogen of wheat (Triticum aestivum L.) stripe rust, and the effector protein secreted by haustoria is a very important component involved in the pathogenic process. Although the candidate effector proteins secreted by Pst haustoria have been predicted to be abundant, few have been functionally validated. Our study confirmed that chitin and flg22 could be used as elicitors of the pathogenic-associated molecular pattern-triggered immune (PTI) reaction in wheat leaves and that TaPr-1-14 could be used as a marker gene to detect the PTI reaction. In addition, the experimental results were consistent in wheat protoplasts. A rapid and efficient method for screening and identifying the effector proteins of Pst was established by using the wheat protoplast transient expression system. Thirty-nine Pst haustorial effector genes were successfully cloned and screened for expression in the protoplast. We identified three haustorial effector proteins, PSEC2, PSEC17, and PSEC45, that may inhibit the response of wheat to PTI. These proteins are localized in the somatic cytoplasm and nucleus of wheat protoplasts and are highly expressed during the infection and parasitism of wheat.
Collapse
|
21
|
Ni Z, Cao Y, Jin X, Fu Z, Li J, Mo X, He Y, Tang J, Huang S. Engineering Resistance to Bacterial Blight and Bacterial Leaf Streak in Rice. RICE (NEW YORK, N.Y.) 2021; 14:38. [PMID: 33891171 PMCID: PMC8065085 DOI: 10.1186/s12284-021-00482-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Xanthomonas oryzae (Xo) is one of the important pathogenic bacterial groups affecting rice production. Its pathovars Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight and bacterial leaf streak in rice, respectively. Xo infects host plants by relying mainly on its transcription activator-like effectors (TALEs) that bind to host DNA targets, named effector binding elements (EBEs), and induce the expression of downstream major susceptibility genes. Blocking TALE binding to EBE could increase rice resistance to the corresponding Xo. FINDINGS We used CRISPR/Cas9 to edit the EBEs of three major susceptibility genes (OsSWEET11, OsSWEET14 and OsSULTR3;6) in the rice varieties Guihong 1 and Zhonghua 11. Both varieties have a natural one-base mutation in the EBE of another major susceptibility gene (OsSWEET13) which is not induced by the corresponding TALE. Two rice lines GT0105 (from Guihong 1) and ZT0918 (from Zhonghua 11) with target mutations and transgene-free were obtained and showed significantly enhanced resistance to the tested strains of Xoo and Xoc. Furthermore, under simulated field conditions, the morphology and other agronomic traits of GT0105 and ZT0918 were basically the same as those of the wild types. CONCLUSIONS In this study, we first reported that the engineering rice lines obtained by editing the promoters of susceptibility genes are resistant to Xoo and Xoc, and their original agronomic traits are not affected.
Collapse
Affiliation(s)
- Zhe Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Yongqiang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
- Present address: College of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Xia Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Zhuomin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Jianyuan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Xiuyu Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
- College of Agriculture, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Jiliang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi China
| |
Collapse
|
22
|
Li T, Mann R, Sawbridge T, Kaur J, Auer D, Spangenberg G. Novel Xanthomonas Species From the Perennial Ryegrass Seed Microbiome - Assessing the Bioprotection Activity of Non-pathogenic Relatives of Pathogens. Front Microbiol 2020; 11:1991. [PMID: 32983016 PMCID: PMC7479056 DOI: 10.3389/fmicb.2020.01991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
The productivity of the Australian dairy industry is underpinned by pasture grasses, and importantly perennial ryegrass. The performance of these pasture grasses is supported by the fungal endophyte Epichloë spp. that has bioprotection activities, however, the broader microbiome is not well characterized. In this study, we characterized a novel bioprotectant Xanthomonas species isolated from perennial ryegrass (Lolium perenne L. cv. Alto). In vitro and in planta bioassays against key fungal pathogens of grasses (Sclerotium rolfsii, Drechslera brizae and Microdochium nivale) indicated strong bioprotection activities. A complete circular chromosome of ∼5.2 Mb was generated for three strains of the novel Xanthomonas sp. Based on the 16S ribosomal RNA gene, the strains were closely related to the plant pathogen Xanthomonas translucens, however, comparative genomics of 22 closely related xanthomonad strains indicated that these strains were a novel species. The comparative genomics analysis also identified two unique gene clusters associated with the production of bioprotectant secondary metabolites including one associated with a novel nonribosomal peptide synthetase and another with a siderophore. The analysis also identified genes associated with an endophytic lifestyle (e.g., Type VI secretion system), while no genes associated with pathogenicity were identified (e.g., Type III secretion system and effectors). Overall, these results indicate that these strains represent a novel, bioactive, non-pathogenic species of the genus Xanthomonas. Strain GW was the designated type strain of this novel Xanthomonas sp.
Collapse
Affiliation(s)
- Tongda Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Ross Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia
| | - Timothy Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia
| | - Desmond Auer
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,DairyBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
23
|
Pena MM, Teper D, Ferreira H, Wang N, Sato KU, Ferro MIT, Ferro JA. mCherry fusions enable the subcellular localization of periplasmic and cytoplasmic proteins in Xanthomonas sp. PLoS One 2020; 15:e0236185. [PMID: 32730344 PMCID: PMC7392301 DOI: 10.1371/journal.pone.0236185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fluorescent markers are a powerful tool and have been widely applied in biology for different purposes. The genome sequence of Xanthomonas citri subsp. citri (X. citri) revealed that approximately 30% of the genes encoded hypothetical proteins, some of which could play an important role in the success of plant-pathogen interaction and disease triggering. Therefore, revealing their functions is an important strategy to understand the bacterium pathways and mechanisms involved in plant-host interaction. The elucidation of protein function is not a trivial task, but the identification of the subcellular localization of a protein is key to understanding its function. We have constructed an integrative vector, pMAJIIc, under the control of the arabinose promoter, which allows the inducible expression of red fluorescent protein (mCherry) fusions in X. citri, suitable for subcellular localization of target proteins. Fluorescence microscopy was used to track the localization of VrpA protein, which was visualized surrounding the bacterial outer membrane, and the GyrB protein, which showed a diffused cytoplasmic localization, sometimes with dots accumulated near the cellular poles. The integration of the vector into the amy locus of X. citri did not affect bacterial virulence. The vector could be stably maintained in X. citri, and the disruption of the α-amylase gene provided an ease screening method for the selection of the transformant colonies. The results demonstrate that the mCherry-containing vector here described is a powerful tool for bacterial protein localization in cytoplasmic and periplasmic environments.
Collapse
Affiliation(s)
- Michelle Mendonça Pena
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Doron Teper
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Kenny Umino Sato
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Jesus Aparecido Ferro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- * E-mail:
| |
Collapse
|
24
|
Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 2020; 18:415-427. [PMID: 32346148 DOI: 10.1038/s41579-020-0361-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Xanthomonas spp. encompass a wide range of plant pathogens that use numerous virulence factors for pathogenicity and fitness in plant hosts. In this Review, we examine recent insights into host-pathogen co-evolution, diversity in Xanthomonas populations and host specificity of Xanthomonas spp. that have substantially improved our fundamental understanding of pathogen biology. We emphasize the virulence factors in xanthomonads, such as type III secreted effectors including transcription activator-like effectors, type II secretion systems, diversity resulting in host specificity, evolution of emerging strains, activation of susceptibility genes and strategies of host evasion. We summarize the genomic diversity in several Xanthomonas spp. and implications for disease outbreaks, management strategies and breeding for disease resistance.
Collapse
Affiliation(s)
- Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Neha Potnis
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric A Newberry
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | | | - Frank F White
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Thomas NC, Hendrich CG, Gill US, Allen C, Hutton SF, Schultink A. The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:463. [PMID: 32391034 PMCID: PMC7192161 DOI: 10.3389/fpls.2020.00463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/30/2020] [Indexed: 05/22/2023]
Abstract
Xanthomonas species, Pseudomonas syringae and Ralstonia species are bacterial plant pathogens that cause significant yield loss in many crop species. Generating disease-resistant crop varieties can provide a more sustainable solution to control yield loss compared to chemical methods. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence/absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant Nicotiana benthamiana and mediates perception of the effector proteins XopQ and HopQ1 from Xanthomonas and P. syringae respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of Xanthomonas and P. syringae. A homolog of XopQ/HopQ1, named RipB, is present in most Ralstonia strains. We found that Roq1 confers immunity to Xanthomonas, P. syringae, and Ralstonia when expressed in tomato. Strong resistance to Xanthomonas perforans was observed in three seasons of field trials with both natural and artificial inoculation. The Roq1 gene can therefore be used to provide safe, economical, and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.
Collapse
Affiliation(s)
- Nicholas C. Thomas
- Fortiphyte Inc., Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Upinder S. Gill
- IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Samuel F. Hutton
- IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Alex Schultink
- Fortiphyte Inc., Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
26
|
Khojasteh M, Shah SMA, Haq F, Xu X, Taghavi SM, Osdaghi E, Chen G. Transcription Activator-Like Effectors Diversity in Iranian Strains of Xanthomonas translucens. PHYTOPATHOLOGY 2020; 110:758-767. [PMID: 31868568 DOI: 10.1094/phyto-11-19-0428-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial leaf streak caused by different pathovars of Xanthomonas translucens is the most important seedborne bacterial disease of small grain cereals. However, variations in the virulence-associated genomic areas of the pathogen remain uninvestigated. In this study, the diversity of transcription activator-like effectors (TALE) was investigated using the Southern blotting of BamHI-digested genomic DNAs in the Iranian strains of X. translucens. All 65 X. translucens strains were assigned into 13 genotypes, where 57 X. translucens pv. undulosa strains were placed in genotypes 1 to 8, and seven X. translucens pv. translucens strains were placed in genotypes 9 to 12. Interestingly, we did not find any TALE genes in the strain XtKm7 (genotype 13), which showed to be pathogenic only on barley. Virulence and aggressiveness of these strains in greenhouse conditions were in agreement with the TALE-based clustering of the strains in the pathovar level, though variations were observed in the aggressiveness of X. translucens pv. undulosa strains. In general, strains containing higher numbers of putative TALE genes were more virulent on wheat and barley than strains containing fewer. This is the first TALE-based genetic diversity analysis on X. translucens strains and provides novel insights into the virulence repertories and genomic characteristics of the pathogen. Further investigations using TALE mutagenesis and complementation analysis are warranted to precisely elucidate the role of each detected X. translucens TALE in bacterial virulence and aggressiveness either on wheat or barley.
Collapse
Affiliation(s)
- Moein Khojasteh
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Syed Mashab Ali Shah
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fazal Haq
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiameng Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Kim JG, Mudgett MB. Tomato bHLH132 Transcription Factor Controls Growth and Defense and Is Activated by Xanthomonas euvesicatoria Effector XopD During Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1614-1622. [PMID: 31322482 DOI: 10.1094/mpmi-05-19-0122-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effector-dependent manipulation of host transcription is a key virulence mechanism used by Xanthomonas species causing bacterial spot disease in tomato and pepper. Transcription activator-like (TAL) effectors employ novel DNA-binding domains to directly activate host transcription, whereas the non-TAL effector XopD uses a small ubiquitin-like modifier (SUMO) protease activity to represses host transcription. The targets of TAL and non-TAL effectors provide insight to the genes governing susceptibility and resistance during Xanthomonas infection. In this study, we investigated the extent to which the X. euvesicatoria non-TAL effector strain Xe85-10 activates tomato transcription to gain new insight to the transcriptional circuits and virulence mechanisms associated with Xanthomonas euvesicatoria pathogenesis. Using transcriptional profiling, we identified a putative basic helix-loop-helix (bHLH) transcription factor, bHLH132, as a pathogen-responsive gene that is moderately induced by microbe-associated molecular patterns and defense hormones and is highly induced by XopD during X. euvesicatoria infection. We also found that activation of bHLH132 transcription requires the XopD SUMO protease activity. Silencing bHLH132 mRNA expression results in stunted tomato plants with enhanced susceptibility to X. euvesicatoria infection. Our work suggests that bHLH132 is required for normal vegetative growth and development as well as resistance to X. euvesicatoria. It also suggests new transcription-based models describing XopD virulence and recognition in tomato.
Collapse
Affiliation(s)
- Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
28
|
Deb S, Gupta MK, Patel HK, Sonti RV. Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein. MOLECULAR PLANT PATHOLOGY 2019; 20:976-989. [PMID: 31094082 PMCID: PMC6856769 DOI: 10.1111/mpp.12807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many bacterial phytopathogens employ effectors secreted through the type-III secretion system to suppress plant innate immune responses. The Xanthomonas type-III secreted non-TAL effector protein Xanthomonas outer protein Q (XopQ) exhibits homology to nucleoside hydrolases. Previous work indicated that mutations which affect the biochemical activity of XopQ fail to affect its ability to suppress rice innate immune responses, suggesting that the effector might be acting through some other pathway or mechanism. In this study, we show that XopQ interacts in yeast and in planta with two rice 14-3-3 proteins, Gf14f and Gf14g. A serine to alanine mutation (S65A) of a 14-3-3 interaction motif in XopQ abolishes the ability of XopQ to interact with the two 14-3-3 proteins and to suppress innate immunity. Surprisingly, the S65A mutant gains the ability to interact with a third 14-3-3 protein that is a negative regulator of innate immunity. The XopQS65A mutant is an inducer of rice immune responses and this property is dominant over the wild-type function of XopQ. Taken together, these results suggest that XopQ targets the rice 14-3-3 mediated immune response pathway and that its differential phosphorylation might enable interaction with alternative 14-3-3 proteins.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
| | - Mahesh K. Gupta
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
- Present address:
Metahelix Life Sciences Ltd.Bangalore560099India
| | - Hitendra K. Patel
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
| | - Ramesh V. Sonti
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
- National Institute of Plant Genome ResearchNew Delhi110067India
| |
Collapse
|
29
|
Zheng X, Li X, Wang B, Cheng D, Li Y, Li W, Huang M, Tan X, Zhao G, Song B, Macho AP, Chen H, Xie C. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. MOLECULAR PLANT PATHOLOGY 2019; 20:547-561. [PMID: 30499228 PMCID: PMC6637881 DOI: 10.1111/mpp.12774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Both Solanum tuberosum and Ralstonia solanacearum phylotype IIB originated in South America and share a long-term co-evolutionary history. However, our knowledge of potato bacterial wilt pathogenesis is scarce as a result of the technical difficulties of potato plant manipulation. Thus, we established a multiple screening system (virulence screen of effector mutants in potato, growth inhibition of yeast and transient expression in Nicotiana benthamiana) of core type III effectors (T3Es) of a major potato pathovar of phylotype IIB, to provide more research perspectives and biological tools. Using this system, we identified four effectors contributing to virulence during potato infection, with two exhibiting multiple phenotypes in two other systems, including RipAB. Further study showed that RipAB is an unknown protein with a nuclear localization signal (NLS). Furthermore, we generated a ripAB complementation strain and transgenic ripAB-expressing potato plants, and subsequent virulence assays confirmed that R. solanacearum requires RipAB for full virulence. Compared with wild-type potato, transcriptomic analysis of transgenic ripAB-expressing potato plants showed a significant down-regulation of Ca2+ signalling-related genes in the enriched Plant-Pathogen Interaction (PPI) gene ontology (GO) term. We further verified that, during infection, RipAB is required for the down-regulation of four Ca2+ sensors, Stcml5, Stcml23, Stcml-cast and Stcdpk2, and a Ca2+ transporter, Stcngc1. Further evidence showed that the immune-associated reactive oxygen species (ROS) burst is attenuated in ripAB transgenic potato plants. In conclusion, a systematic screen of conserved R. solanacearum effectors revealed an important role for RipAB, which interferes with Ca2+ -dependent gene expression to promote disease development in potato.
Collapse
Affiliation(s)
- Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojing Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Dong Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yanping Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Wenhao Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Mengshu Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaodan Tan
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Guozhen Zhao
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai201602China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
30
|
O'Brien SJ, Ekman MB, Manek S, Galandiuk S. CRISPR-mediated gene editing for the surgeon scientist. Surgery 2019; 166:129-137. [PMID: 30922545 DOI: 10.1016/j.surg.2019.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Tremendous advances have occurred in gene editing during the past 20 years with the development of a number of systems. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system represents an exciting area of research. This review examines both the relevant studies pertaining to the history, current status, and modifications of this system, in comparison with other gene-editing systems and future applications, and limitations of the CRISPR-Cas9 gene-editing system, with a focus on applications of relevance to the surgeon scientist. The CRISPR-Cas9 system was described initially in 2012 for gene editing in bacteria and then in human cells, and since then, a number of modifications have improved the efficiency and specificity of gene editing. Clinical studies have been limited because further research is required to verify its safety in patients. Some clinical trials in oncology have opened, and early studies have shown that gene editing may have a particular role in the field of organ transplantation and in the care of trauma patients. Gene editing is likely to play an important role in future research in many aspects of the surgery arena.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Matthew B Ekman
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Stephen Manek
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
31
|
Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P, Potnis N, Kolaczkowski B, Vallad GE, Goss EM, Jones JB. Multiple Recombination Events Drive the Current Genetic Structure of Xanthomonas perforans in Florida. Front Microbiol 2019; 10:448. [PMID: 30930868 PMCID: PMC6425879 DOI: 10.3389/fmicb.2019.00448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Prior to the identification of Xanthomonas perforans associated with bacterial spot of tomato in 1991, X. euvesicatoria was the only known species in Florida. Currently, X. perforans is the Xanthomonas sp. associated with tomato in Florida. Changes in pathogenic race and sequence alleles over time signify shifts in the dominant X. perforans genotype in Florida. We previously reported recombination of X. perforans strains with closely related Xanthomonas species as a potential driving factor for X. perforans evolution. However, the extent of recombination across the X. perforans genomes was unknown. We used a core genome multilocus sequence analysis approach to identify conserved genes and evaluated recombination-associated evolution of these genes in X. perforans. A total of 1,356 genes were determined to be "core" genes conserved among the 58 X. perforans genomes used in the study. Our approach identified three genetic groups of X. perforans in Florida based on the principal component analysis (PCA) using core genes. Nucleotide variation in 241 genes defined these groups, that are referred as Phylogenetic-group Defining (PgD) genes. Furthermore, alleles of many of these PgD genes showed 100% sequence identity with X. euvesicatoria, suggesting that variation likely has been introduced by recombination at multiple locations throughout the bacterial chromosome. Site-specific recombinase genes along with plasmid mobilization and phage associated genes were observed at different frequencies in the three phylogenetic groups and were associated with clusters of recombinant genes. Our analysis of core genes revealed the extent, source, and mechanisms of recombination events that shaped the current population and genomic structure of X. perforans in Florida.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | | | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | | | - Peter Abrahamian
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Bryan Kolaczkowski
- Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Gary E. Vallad
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Pandey SS, Patnana PK, Padhi Y, Chatterjee S. Low-iron conditions induces the hypersensitive reaction and pathogenicity hrp genes expression in Xanthomonas and is involved in modulation of hypersensitive response and virulence. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:522-531. [PMID: 29687657 DOI: 10.1111/1758-2229.12650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Expression of hrp (hypersensitive reaction and pathogenicity) genes inside the host is crucial for virulence of phytopathogenic bacteria. The hrp genes encode components of type3 secretion system (T3SS), HR elicitors and several regulators, which are involved in the co-ordinated expression of hrp genes in the host environment and in hrp inducing chemically defined medium. However, little is known about specific host or environmental factors which may play a role in the induction of hrp gene expression. In this study, we show that iron-limiting condition elicits induced expression of hrp genes, including type3 secretion system (T3SS) and effectors (T3E). Expression analysis using qRT-PCR and promoter probe strains suggest significant induction in the expression of Hrp and T3S-associated genes of Xanthomonas campestris pv. campestris (Xcc) under low-iron condition, and is suppressed by exogenous supplementation of iron. Furthermore, we show that with exogenous iron supplementation, wild type Xcc exhibited reduced disease symptoms in host-plant, and exhibited significant reduction in HR and callose deposition in the non-host plants. Xanthomonas oryzae and oryzicola pathovars also exhibited the iron affect, albeit to a lesser extend compared with the Xcc. Overall, our results suggest that low-iron condition inside the host may play a crucial role in pathogenicity.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
- Graduate Studies, Manipal University, Manipal, India
| | | | - Yasobanta Padhi
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
- Graduate Studies, Manipal University, Manipal, India
| | - Subhadeep Chatterjee
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| |
Collapse
|
33
|
Targeted Genome Engineering in Xenopus Using the Transcription Activator-Like Effector Nuclease (TALEN) Technology. Methods Mol Biol 2018; 1865:55-65. [PMID: 30151758 DOI: 10.1007/978-1-4939-8784-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Targeted genome engineering technologies are revolutionizing the field of functional genomics and have been extensively used in a variety of model organisms, including X. tropicalis and X. laevis. The original methods based on Zn-finger proteins coupled to endonuclease domains were initially replaced by the more efficient and straightforward transcription activator-like effector nucleases (TALENs), adapted from plant pathogenic Xanthomonas species. Although functional genomics are more recently dominated by the even faster and more convenient CRISPR/Cas9 technology, the use of TALENs may still be preferred in a number of cases. We have successfully implemented this technology in Xenopus and in this chapter we describe our working protocol for targeted genome editing in X. tropicalis using TALENs.
Collapse
|
34
|
Lee HY, Lee SE, Woo J, Choi D, Park E. Split Green Fluorescent Protein System to Visualize Effectors Delivered from Bacteria During Infection. J Vis Exp 2018. [PMID: 29889187 DOI: 10.3791/57719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bacteria, one of the most important causative agents of various plant diseases, secrete a set of effector proteins into the host plant cell to subvert the plant immune system. During infection cytoplasmic effectors are delivered to the host cytosol via a type III secretion system (T3SS). After delivery into the plant cell, the effector(s) targets the specific compartment(s) to modulate host cell processes for survival and replication of the pathogen. Although there has been some research on the subcellular localization of effector proteins in the host cells to understand their function in pathogenicity by using fluorescent proteins, investigation of the dynamics of effectors directly injected from bacteria has been challenging due to the incompatibility between the T3SS and fluorescent proteins. Here, we describe our recent method of an optimized split superfolder green fluorescent protein system (sfGFPOPT) to visualize the localization of effectors delivered via the bacterial T3SS in the host cell. The sfGFP11 (11th β-strand of sfGFP)-tagged effector secreted through the T3SS can be assembled with a specific organelle targeted sfGFP1-10OPT (1-10th β-strand of sfGFP) leading to fluorescence emission at the site. This protocol provides a procedure to visualize the reconstituted sfGFP fluorescence signal with an effector protein from Pseudomonas syringae in a particular organelle in the Arabidopsis and Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University
| | - Jongchan Woo
- Department of Bioindustry and Bioresource Engineering, Sejong University
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University;
| | - Eunsook Park
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University;
| |
Collapse
|
35
|
Takashina T, Koyama T, Nohara S, Hasegawa M, Ishiguro A, Iijima K, Lu J, Shimura M, Okamura T, Sakuma T, Yamamoto T, Ishizaka Y. Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering. Biomaterials 2018; 173:11-21. [PMID: 29734017 DOI: 10.1016/j.biomaterials.2018.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 02/08/2023]
Abstract
Cellular reprogramming is a promising technology in regenerative medicine, but most studies have been performed by using expression vectors. For future clinical applications, it is necessary to establish a system in which cell engineering can be manipulated without any risk of damaging the genome. Here, we identified a cell-penetrating peptide composed of 10 amino acids (RIFIHFRIGC) with nuclear trafficking activity and found that it was significantly more potent than a Tat-derived peptide or polyarginine peptide (R11). We named the peptide "nuclear trafficking peptide" (NTP) and applied it to a protein-based artificial transcription factor (NTP-ATF), which was composed of a transcription activator-like effector and transcription domain (VP64). An NTP-ATF designed to the proximal promoter region of the microRNA-302/367 cluster efficiently induced endogenous RNA expression at an extremely low concentration (0.25 nM), and repetitive treatment of mouse embryonic fibroblasts with NTP-ATF generated induced pluripotent stem-like cells, which gave chimeric mice. Together with the observation that recombinant NTP-ATF protein did not induce any apparent cytotoxicity, we propose that NTP-ATF is a promising system for cellular reprogramming applicable to regenerative medicine.
Collapse
Affiliation(s)
- Tomoki Takashina
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takayoshi Koyama
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Satoshi Nohara
- Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi, 452-0067, Japan
| | - Masakatsu Hasegawa
- Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi, 452-0067, Japan
| | - Akira Ishiguro
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kenta Iijima
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Jun Lu
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Mari Shimura
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Section of Animal Models, Department of Infectious Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan.
| |
Collapse
|
36
|
Nissan G, Gershovits M, Morozov M, Chalupowicz L, Sessa G, Manulis‐Sasson S, Barash I, Pupko T. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach. MOLECULAR PLANT PATHOLOGY 2018; 19:381-392. [PMID: 28019708 PMCID: PMC6638007 DOI: 10.1111/mpp.12528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 05/03/2023]
Abstract
Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development.
Collapse
Affiliation(s)
- Gal Nissan
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Michael Gershovits
- Department of Cell Research and Immunology, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Michael Morozov
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Laura Chalupowicz
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Shulamit Manulis‐Sasson
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterRishonLeZion7528809Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv69978Israel
| |
Collapse
|
37
|
Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 2018; 9:5. [PMID: 29423214 PMCID: PMC5787920 DOI: 10.1186/s40104-017-0228-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
Pigs are an important resource in agriculture and serve as a model for human diseases. Due to their physiological and anatomical similarities with humans, pigs can recapitulate symptoms of human diseases, making them a useful model in biomedicine. However, in the past pig models have not been widely used partially because of the difficulty in genetic modification. The lack of true embryonic stem cells in pigs forced researchers to utilize genetic modification in somatic cells and somatic cell nuclear transfer (SCNT) to generate genetically engineered (GE) pigs carrying site-specific modifications. Although possible, this approach is extremely inefficient and GE pigs born through this method often presented developmental defects associated with the cloning process. Advancement in the gene-editing systems such as Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and the Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system have dramatically increased the efficiency of producing GE pigs. These gene-editing systems, specifically engineered endonucleases, are based on inducing double-stranded breaks (DSBs) at a specific location, and then site-specific modifications can be introduced through one of the two DNA repair pathways: non-homologous end joining (NHEJ) or homology direct repair (HDR). Random insertions or deletions (indels) can be introduced through NHEJ and specific nucleotide sequences can be introduced through HDR, if donor DNA is provided. Use of these engineered endonucleases provides a higher success in genetic modifications, multiallelic modification of the genome, and an opportunity to introduce site-specific modifications during embryogenesis, thus bypassing the need of SCNT in GE pig production. This review will provide a historical prospective of GE pig production and examples of how the gene-editing system, led by engineered endonucleases, have improved GE pig production. We will also present some of our current progress related to the optimal use of CRISPR/Cas9 system during embryogenesis.
Collapse
|
38
|
Kunkel BN, Harper CP. The roles of auxin during interactions between bacterial plant pathogens and their hosts. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:245-254. [PMID: 29272462 DOI: 10.1093/jxb/erx447] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogens have evolved several strategies to manipulate the biology of their hosts to facilitate colonization, growth to high levels in plant tissue, and production of disease. One of the less well known of these strategies is the synthesis of plant hormones and hormone analogs, and there is growing evidence that modulation of host hormone signaling is important during pathogenesis. Several plant pathogens produce the auxin indole-3-acetic acid (IAA) and/or virulence factors that modulate host auxin signaling. Auxin is well known for being involved in many aspects of plant growth and development, but recent findings have revealed that elevated IAA levels or enhanced auxin signaling can also promote disease development in some plant-pathogen interactions. In addition to stimulating plant cell growth during infection by gall-forming bacteria, auxin and auxin signaling can antagonize plant defense responses. Auxin can also act as a microbial signaling molecule to impact the biology of some pathogens directly. In this review, we summarize recent progress towards elucidating the roles that auxin production, modification of host auxin signaling, and direct effects of auxin on pathogens play during pathogenesis, with emphasis on the impacts of auxin on interactions with bacterial pathogens.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
39
|
Abstract
Targeted mutagenesis of genes-of-interest is a powerful method of addressing the functions of genes. Genome editing techniques, such as transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have enabled this approach in various organisms because of their ease of use. In the ascidian, Ciona intestinalis, recent studies show that TALEN-based knockout can be applied to establishing both mutant lines and tissue-specific knockout for addressing gene functions. Here, we introduce recent updates to the TALEN toolkit that facilitate detailed functional analysis of genes in ascidians.
Collapse
|
40
|
Waryah CB, Moses C, Arooj M, Blancafort P. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods Mol Biol 2018. [PMID: 29524128 DOI: 10.1007/978-1-4939-7774-1_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
| | - Colette Moses
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mahira Arooj
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
41
|
Liang X, Yu X, Pan X, Wu J, Duan Y, Wang J, Zhou M. A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. MOLECULAR PLANT PATHOLOGY 2018; 19:116-128. [PMID: 27756112 PMCID: PMC6638098 DOI: 10.1111/mpp.12503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 05/08/2023]
Abstract
Thiazole, isothiazole, thiadiazole and their derivatives are widely thought to induce host defences against plant pathogens. In this article, we report that bismerthiazol, a thiadiazole molecule, reduces disease by inhibiting the histidine utilization (Hut) pathway and quorum sensing (QS). Bismerthiazol provides excellent control of bacterial rice leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo), but does not greatly inhibit Xoo growth in vitro. According to RNA-sequencing analysis, the transcription of the Hut pathway genes of Xoo ZJ173 was inhibited after 4.5 and 9.0 h of bismerthiazol treatment. Functional studies of hutG and hutU indicated that the Hut pathway had little effect on the growth and bismerthiazol sensitivity of Xoo in vitro, but significantly reduced the aggregation of Xoo cells. Deletion mutants of hutG or hutU were more motile, produced less biofilm and were less virulent than the wild-type, indicating that the Hut pathway is involved in QS and contributes to virulence. The overexpression of the hutG-U operons in ZJ173 reduced Xoo control by bismerthiazol. Bismerthiazol did not inhibit the transcription of Hut pathway genes, QS or virulence of the bismerthiazol-resistant strain 2-1-1. The results indicate that bismerthiazol reduces Xoo virulence by inhibiting the Hut pathway and QS.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiaoyue Yu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| |
Collapse
|
42
|
Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nat Commun 2017; 8:901. [PMID: 29026078 PMCID: PMC5638953 DOI: 10.1038/s41467-017-00860-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022] Open
Abstract
DNA recognition by transcription activator-like effector (TALE) proteins is mediated by tandem repeats that specify nucleotides through repeat-variable diresidues. These repeat-variable diresidues form direct and sequence-specific contacts to DNA bases; hence, TALE-DNA interaction is sensitive to DNA chemical modifications. Here we conduct a thorough investigation, covering all theoretical repeat-variable diresidue combinations, for their recognition capabilities for 5-methylcytosine and 5-hydroxymethylcytosine, two important epigenetic markers in higher eukaryotes. We identify both specific and degenerate repeat-variable diresidues for 5-methylcytosine and 5-hydroxymethylcytosine. Utilizing these novel repeat-variable diresidues, we achieve methylation-dependent gene activation and genome editing in vivo; we also report base-resolution detection of 5hmC in an in vitro assay. Our work deciphers repeat-variable diresidues for 5-methylcytosine and 5-hydroxymethylcytosine, and provides tools for TALE-dependent epigenome recognition.Transcription activator-like effector proteins recognise specific DNA sequences via tandem repeats. Here the authors demonstrate TALEs can recognise the methylated bases 5mC and 5hmC, enabling them to detect epigenetic modifications.
Collapse
|
43
|
Shantharaj D, Römer P, Figueiredo JFL, Minsavage GV, Krönauer C, Stall RE, Moore GA, Fisher LC, Hu Y, Horvath DM, Lahaye T, Jones JB. An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus. MOLECULAR PLANT PATHOLOGY 2017; 18:976-989. [PMID: 27362693 PMCID: PMC6638256 DOI: 10.1111/mpp.12454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/13/2016] [Accepted: 06/27/2016] [Indexed: 05/19/2023]
Abstract
Xanthomonas citri ssp. citri (X. citri), causal agent of citrus canker, uses transcription activator-like effectors (TALEs) as major pathogenicity factors. TALEs, which are delivered into plant cells through the type III secretion system (T3SS), interact with effector binding elements (EBEs) in host genomes to activate the expression of downstream susceptibility genes to promote disease. Predictably, TALEs bind EBEs in host promoters via known combinations of TALE amino acids to DNA bases, known as the TALE code. We introduced 14 EBEs, matching distinct X. citri TALEs, into the promoter of the pepper Bs3 gene (ProBs31EBE ), and fused this engineered promoter with multiple EBEs (ProBs314EBE ) to either the β-glucuronidase (GUS) reporter gene or the coding sequence (cds) of the pepper gene, Bs3. TALE-induced expression of the Bs3 cds in citrus leaves resulted in no visible hypersensitive response (HR). Therefore, we utilized a different approach in which ProBs31EBE and ProBs314EBE were fused to the Xanthomonas gene, avrGf1, which encodes a bacterial effector that elicits an HR in grapefruit and sweet orange. We demonstrated, in transient assays, that activation of ProBs314EBE by X. citri TALEs is T3SS dependent, and that the expression of AvrGf1 triggers HR and correlates with reduced bacterial growth. We further demonstrated that all tested virulent X. citri strains from diverse geographical locations activate ProBs314EBE . TALEs are essential for the virulence of X. citri strains and, because the engineered promoter traps are activated by multiple TALEs, this concept has the potential to confer broad-spectrum, durable resistance to citrus canker in stably transformed plants.
Collapse
Affiliation(s)
- Deepak Shantharaj
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFL 32611USA
| | - Patrick Römer
- Genetics, Department of Biology, Ludwig‐Maximilians‐University MunichMartinsriedD‐82152Germany
- Present address:
Nomad Bioscience GmbH, Biozentrum Halle Weinbergweg 22 D‐06120 Halle (Saale)
| | | | | | - Christina Krönauer
- Zentrum für Molekularbiologie der Pflanzen (ZMBP)Eberhard‐Karls‐Universität TübingenAuf der Morgenstelle 32TübingenD‐72076Germany
| | - Robert E. Stall
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFL 32611USA
| | - Gloria A. Moore
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFL 32611USA
| | - Latanya C. Fisher
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFL 32611USA
| | - Yang Hu
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFL 32611USA
| | - Diana M. Horvath
- 2Blades Foundation, Suite 19011630 Chicago AvenueEvanstonIL60201USA
| | - Thomas Lahaye
- Genetics, Department of Biology, Ludwig‐Maximilians‐University MunichMartinsriedD‐82152Germany
- Zentrum für Molekularbiologie der Pflanzen (ZMBP)Eberhard‐Karls‐Universität TübingenAuf der Morgenstelle 32TübingenD‐72076Germany
| | - Jeffrey B. Jones
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFL 32611USA
| |
Collapse
|
44
|
Pesce C, Jacobs JM, Berthelot E, Perret M, Vancheva T, Bragard C, Koebnik R. Comparative Genomics Identifies a Novel Conserved Protein, HpaT, in Proteobacterial Type III Secretion Systems that Do Not Possess the Putative Translocon Protein HrpF. Front Microbiol 2017; 8:1177. [PMID: 28694803 PMCID: PMC5483457 DOI: 10.3389/fmicb.2017.01177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023] Open
Abstract
Xanthomonas translucens is the causal agent of bacterial leaf streak, the most common bacterial disease of wheat and barley. To cause disease, most xanthomonads depend on a highly conserved type III secretion system, which translocates type III effectors into host plant cells. Mutagenesis of the conserved type III secretion gene hrcT confirmed that the X. translucens type III secretion system is required to cause disease on the host plant barley and to trigger a non-host hypersensitive response (HR) in pepper leaves. Type III effectors are delivered to the host cell by a surface appendage, the Hrp pilus, and a translocon protein complex that inserts into the plant cell plasma membrane. Homologs of the Xanthomonas HrpF protein, including PopF from Ralstonia solanacearum and NolX from rhizobia, are thought to act as a translocon protein. Comparative genomics revealed that X. translucens strains harbor a noncanonical hrp gene cluster, which rather shares features with type III secretion systems from Ralstonia solanacearum, Paraburkholderia andropogonis, Collimonas fungivorans, and Uliginosibacterium gangwonense than other Xanthomonas spp. Surprisingly, none of these bacteria, except R. solanacearum, encode a homolog of the HrpF translocon. Here, we aimed at identifying a candidate translocon from X. translucens. Notably, genomes from strains that lacked hrpF/popF/nolX instead encode another gene, called hpaT, adjacent to and co-regulated with the type III secretion system gene cluster. An insertional mutant in the X. translucens hpaT gene, which is the first gene of a two-gene operon, hpaT-hpaH, was non-pathogenic on barley and did not cause the HR or programmed cell death in non-host pepper similar to the hrcT mutant. The hpaT mutant phenotypes were partially complemented by either hpaT or the downstream gene, hpaH, which has been described as a facilitator of translocation in Xanthomonas oryzae. Interestingly, the hpaT mutant was also complemented by the hrpF gene from Xanthomonas euvesicatoria. These findings reveal that both HpaT and HpaH contribute to the injection of type III effectors into plant cells.
Collapse
Affiliation(s)
- Céline Pesce
- UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France
- Applied Microbiology Phytopathology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Jonathan M. Jacobs
- UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France
- Applied Microbiology Phytopathology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Edwige Berthelot
- UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France
| | - Marion Perret
- UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France
| | - Taca Vancheva
- UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France
- Applied Microbiology Phytopathology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Claude Bragard
- Applied Microbiology Phytopathology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Ralf Koebnik
- UMR 186 IRD-Cirad-Université Montpellier IPMEMontpellier, France
| |
Collapse
|
45
|
Paulus JK, Kourelis J, van der Hoorn RAL. Bodyguards: Pathogen-Derived Decoys That Protect Virulence Factors. TRENDS IN PLANT SCIENCE 2017; 22:355-357. [PMID: 28359678 DOI: 10.1016/j.tplants.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Recent studies on plant-pathogen interactions have exposed a new strategy used by plant pathogens: decoy effectors that protect virulence factors. Examples of these "bodyguards" include the recently discovered PsXLP1 from Phytophthora sojae and truncated TALEs from Xanthomonas oryzae. These examples suggest important roles for seemingly non-functional effector proteins in distracting the host.
Collapse
Affiliation(s)
- Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK.
| |
Collapse
|
46
|
Janik K, Schlink K. Unravelling the Function of a Bacterial Effector from a Non-cultivable Plant Pathogen Using a Yeast Two-hybrid Screen. J Vis Exp 2017. [PMID: 28190069 PMCID: PMC5352286 DOI: 10.3791/55150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Unravelling the molecular mechanisms of disease manifestations is important to understand pathologies and symptom development in plant science. Bacteria have evolved different strategies to manipulate their host metabolism for their own benefit. This bacterial manipulation is often coupled with severe symptom development or the death of the affected plants. Determining the specific bacterial molecules responsible for the host manipulation has become an important field in microbiological research. After the identification of these bacterial molecules, called "effectors," it is important to elucidate their function. A straightforward approach to determine the function of an effector is to identify its proteinaceous binding partner in its natural host via a yeast two-hybrid (Y2H) screen. Normally the host harbors numerous potential binding partners that cannot be predicted sufficiently by any in silico algorithm. It is thus the best choice to perform a screen with the hypothetical effector against a whole library of expressed host proteins. It is especially challenging if the causative agent is uncultivable like phytoplasma. This protocol provides step-by-step instructions for DNA purification from a phytoplasma-infected woody host plant, the amplification of the potential effector, and the subsequent identification of the plant's molecular interaction partner with a Y2H screen. Even though Y2H screens are commonly used, there is a trend to outsource this technique to biotech companies that offer the Y2H service at a cost. This protocol provides instructions on how to perform a Y2H in any decently equipped molecular biology laboratory using standard lab techniques.
Collapse
Affiliation(s)
- Katrin Janik
- Department of Molecular Biology - Functional Genomics, Laimburg Research Centre;
| | - Katja Schlink
- Department of Molecular Biology - Functional Genomics, Laimburg Research Centre
| |
Collapse
|
47
|
Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents. PLoS One 2017; 12:e0169931. [PMID: 28095454 PMCID: PMC5241150 DOI: 10.1371/journal.pone.0169931] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Collapse
Affiliation(s)
- Michail Zaboikin
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Tatiana Zaboikina
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Carl Freter
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
48
|
Midha S, Bansal K, Kumar S, Girija AM, Mishra D, Brahma K, Laha GS, Sundaram RM, Sonti RV, Patil PB. Population genomic insights into variation and evolution of Xanthomonas oryzae pv. oryzae. Sci Rep 2017; 7:40694. [PMID: 28084432 PMCID: PMC5233998 DOI: 10.1038/srep40694] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae ( Xoo) is a serious pathogen of rice causing bacterial leaf blight disease. Resistant varieties and breeding programs are being hampered by the emergence of highly virulent strains. Herein we report population based whole genome sequencing and analysis of 100 Xoo strains from India. Phylogenomic analysis revealed the clustering of Xoo strains from India along with other Asian strains, distinct from African and US Xo strains. The Indian Xoo population consists of a major clonal lineage and four minor but highly diverse lineages. Interestingly, the variant alleles, gene clusters and highly pathogenic strains are primarily restricted to minor lineages L-II to L-V and in particularly to lineage L-III. We could also find the association of an expanded CRISPR cassette and a highly variant LPS gene cluster with the dominant lineage. Molecular dating revealed that the major lineage, L-I is youngest and of recent origin compared to remaining minor lineages that seems to have originated much earlier in the past. Further, we were also able to identify core effector genes that may be helpful in efforts towards building durable resistance against this pathogen.
Collapse
Affiliation(s)
- Samriti Midha
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Kanika Bansal
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sanjeet Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | | | - Deo Mishra
- Bayer BioScience Pvt. Ltd., Hyderabad, 500081, India
| | - Kranthi Brahma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Gouri Sankar Laha
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | | | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Prabhu B. Patil
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
49
|
Hersemann L, Wibberg D, Blom J, Goesmann A, Widmer F, Vorhölter FJ, Kölliker R. Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC Genomics 2017; 18:35. [PMID: 28056815 PMCID: PMC5217246 DOI: 10.1186/s12864-016-3422-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/14/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Xanthomonas translucens pathovars differ in their individual host ranges among Poaceae. As the causal agent of bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.), X. translucens pv. graminis (Xtg) is one of the most important bacterial pathogens in temperate grassland regions. The genomes of six Xtg strains from Switzerland, Norway, and New Zealand were sequenced in order to gain insight into conserved genomic traits from organisms covering a wide geographical range. Subsequent comparative analysis with previously published genome data of seven non-graminis X. translucens strains including the pathovars arrhenatheri, poae, phlei, cerealis, undulosa, and translucens was conducted to identify candidate genes linked to the host adaptation of Xtg to Italian ryegrass. RESULTS Phylogenetic analysis revealed a tight clustering of Xtg strains, which were found to share a large core genome. Conserved genomic traits included a non-canonical type III secretion system (T3SS) and a type IV pilus (T4P), which both revealed distinct primary structures of the pilins when compared to the non-graminis X. translucens strains. Xtg-specific traits that had no homologues in the other X. translucens strains were further found to comprise several hypothetical proteins, a TonB-dependent receptor, transporters, and effector proteins as well as toxin-antitoxin systems and DNA methyltransferases. While a nearly complete flagellar gene cluster was identified in one of the sequenced Xtg strains, phenotypic analysis pointed to swimming-deficiency as a common trait of the pathovar graminis. CONCLUSION Our study suggests that host adaptation of X. translucens pv. graminis may be conferred by a combination of pathovar-specific effector proteins, regulatory mechanisms, and adapted nutrient acquisition. Sequence deviations of pathogen-associated molecular patterns (PAMPs), as observed for the pilins of the T4P and T3SS, are moreover likely to impede perception by the plant defense machinery and thus facilitate successful host colonization of Italian ryegrass.
Collapse
Affiliation(s)
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Franco Widmer
- Molecular Ecology, Agroscope, 8046, Zurich, Switzerland
| | - Frank-Jörg Vorhölter
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
- MVZ Dr. Eberhard & Partner Dortmund, 44137, Dortmund, Germany
| | | |
Collapse
|
50
|
Choi S, Jayaraman J, Segonzac C, Park HJ, Park H, Han SW, Sohn KH. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2017; 8:2157. [PMID: 29326748 PMCID: PMC5742410 DOI: 10.3389/fpls.2017.02157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 05/15/2023]
Abstract
Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta.
Collapse
Affiliation(s)
- Sera Choi
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jay Jayaraman
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Cécile Segonzac
- Plant Science Department, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Hanbi Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Kee Hoon Sohn
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- *Correspondence: Kee Hoon Sohn,
| |
Collapse
|