1
|
Xu J, Cotruvo JA. Iron-responsive riboswitches. Curr Opin Chem Biol 2022; 68:102135. [PMID: 35427920 PMCID: PMC9133107 DOI: 10.1016/j.cbpa.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
All cells must manage deficiency, sufficiency, and excess of essential metal ions. Although iron has been one of most important metals in biology for billions of years, the mechanisms by which bacteria cope with high intracellular iron concentrations are only recently coming into focus. Recent work has suggested that an RNA riboswitch (czcD or "NiCo"), originally thought to respond specifically to CoII and NiII excess, is more likely a selective regulator of FeII levels in important human gut bacteria and pathogens. We discuss the challenges and controversies encountered in the characterization of iron-responsive riboswitches, and we suggest a physiological role in responding to iron overload, perhaps during anaerobiosis. Finally, we place these riboswitches in the context of the better understood mechanisms of protein-based metal ion regulation, proposing that riboswitch-mediated mechanisms may be particularly important in regulating transport of the weakest-binding biological divalent metal ions, MgII, MnII, and FeII.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cotruvo
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Hong KQ, Zhang J, Jin B, Chen T, Wang ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microb Cell Fact 2022; 21:56. [PMID: 35392910 PMCID: PMC8991567 DOI: 10.1186/s12934-022-01779-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli. Results The results showed that a synthetic glycine-OFF riboswitch (glyOFF6) and an increased-detection-range synthetic glycine-ON riboswitch (glyON14) were successfully screened from a library based on the Bacillus subtilis glycine riboswitch using fluorescence-activated cell sorting (FACS) and tetA-based dual genetic selection. The two synthetic glycine riboswitches were successfully used in tunable regulation of lactate synthesis, dynamic regulation of serine synthesis and directed evolution of alanine-glyoxylate aminotransferase in Escherichia coli, respectively. Mutants AGXT22 and AGXT26 of alanine-glyoxylate aminotransferase with an increase of 58% and 73% enzyme activity were obtained by using a high-throughput screening platform based on the synthetic glycine-OFF riboswitch, and successfully used to increase the 5-aminolevulinic acid yield of engineered Escherichia coli. Conclusions A synthetic glycine-OFF riboswitch and an increased-detection-range synthetic glycine-ON riboswitch were successfully designed and screened. The developed riboswitches showed broad application in tunable regulation, dynamic regulation and directed evolution of enzyme in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01779-4.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhi-Wen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China. .,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Sherlock ME, Breaker RR. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA (NEW YORK, N.Y.) 2020; 26:675-693. [PMID: 32165489 PMCID: PMC7266159 DOI: 10.1261/rna.074997.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Li X, Liang QX, Lin JR, Peng J, Yang JH, Yi C, Yu Y, Zhang QC, Zhou KR. Epitranscriptomic technologies and analyses. SCIENCE CHINA-LIFE SCIENCES 2020; 63:501-515. [DOI: 10.1007/s11427-019-1658-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/12/2020] [Indexed: 01/28/2023]
|
5
|
Liu X, Ma S. Recent Development of Glucosamine‐6‐phosphate Derivatives as Potential Antibacterial Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201904075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xingbang Liu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical SciencesShandong University 44 West Culture Road Jinan 250012 P.R. China
| | - Shutao Ma
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical SciencesShandong University 44 West Culture Road Jinan 250012 P.R. China
| |
Collapse
|
6
|
Wicks SL, Hargrove AE. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods 2019; 167:3-14. [PMID: 31051253 DOI: 10.1016/j.ymeth.2019.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/15/2023] Open
Abstract
Fluorescent indicator displacement (FID) assays are an advantageous approach to convert receptors into optical sensors that can detect binding of various ligands. In particular, the identification of ligands that bind to RNA receptors has become of increasing interest as the roles of RNA in cellular processes and disease pathogenesis continue to be discovered. Small molecules have been validated as tools to elucidate unknown RNA functions, underscoring the critical need to rapidly identify and quantitatively characterize RNA:small molecule interactions for the development of chemical probes. The successful application of FID assays to evaluate interactions between diverse RNA receptors and small molecules has been facilitated by the characterization of distinct fluorescent indicators that reversibly bind RNA and modulate the fluorescence signal. The utility of RNA-based FID assays to both academia and industry has been demonstrated through numerous uses in high-throughput screening efforts, structure-activity relationship studies, and in vitro target engagement studies. Furthermore, the development, optimization, and validation of a variety of RNA-based FID assays has led to general guidelines that can be utilized for facile implementation of the method with new or underexplored RNA receptors. Altogether, the use of RNA-based FID assays as a general analysis tool has provided valuable insights into small molecule affinity and selectivity, furthering the fundamental understanding of RNA:small molecule recognition. In this review, we will summarize efforts to employ FID assays using RNA receptors and describe the significant contributions of the method towards the development of chemical probes to reveal unknown RNA functions.
Collapse
Affiliation(s)
- Sarah L Wicks
- Duke University, Department of Chemistry, Durham, NC 27705, United States
| | - Amanda E Hargrove
- Duke University, Department of Chemistry, Durham, NC 27705, United States.
| |
Collapse
|
7
|
Abstract
Innovation follows discovery. If the 20th century was a golden age of discovery in the biomolecular biosciences, the current century may be remembered by the explosion of beneficial devices and therapies conceived by the bioengineers of the era. Much as the development of solid-state electronic components made possible the information revolution, the rational combining of millions of basic molecular control modules will enable the development of highly sophisticated biomachines that will make today's smartphones appear rudimentary. The molecular toolbox is already well-stocked, particularly in our ability to manipulate DNA, control transcription, generate functionally novel hybrid proteins, and expand the genetic code to include unnatural amino acids. This review focuses on how RNA-based regulatory modules that direct alternative readings of the genetic code can be employed as basic circuit components to expand our ability to control gene expression.
Collapse
Affiliation(s)
- Jonathan D Dinman
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
8
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
9
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
10
|
Abstract
This paper reports on the various nuances of the origins of life on Earth and highlights the latest findings in that arena as reported at the Network of Researchers on Horizontal Gene Transfer and the Last Universal Common Ancestor (NoR HGT and LUCA) which was held from the 3–4th November 2016 at the Open University, UK. Although the answers to the question of the origin of life on Earth will not be fathomable anytime soon, a wide variety of subject matter was able to be covered, ranging from examining what constitutes a LUCA, looking at viral connections and “from RNA to DNA”, i.e., could DNA have been formed simultaneously with RNA, rather than RNA first and then describing the emergence of DNA from RNA. Also discussed are proteins and the origins of genomes as well as various ideas that purport to explain the origin of life here on Earth and potentially further afield elsewhere on other planets.
Collapse
Affiliation(s)
- Sohan Jheeta
- Network of Researchers on Horizontal Gene Transfer and the Last Universal Common Ancestor (NoR HGT & LUCA), Leeds LS7 3RB, UK.
| |
Collapse
|
11
|
The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 2017; 36:20-29. [PMID: 28171809 DOI: 10.1016/j.mib.2017.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
The second messenger nucleotide cyclic dimeric guanosine monophosphate (c-di-GMP) governs many cellular processes in the facultative human pathogen Vibrio cholerae. This organism copes with changing environmental conditions in aquatic environments and during transitions to and from human hosts. Modulation of c-di-GMP allows V. cholerae to shift between motile and sessile stages of life, thus allowing adaptation to stressors and environmental conditions during its transmission cycle. The V. cholerae genome encodes a large set of proteins predicted to degrade and produce c-di-GMP. A subset of these enzymes has been demonstrated to control cellular processes - particularly motility, biofilm formation, and virulence - through transcriptional, post-transcriptional, and translational mechanisms. Recent studies have identified and characterized enzymes that modulate or sense c-di-GMP levels and have led towards mechanistic understanding of c-di-GMP regulatory circuits in V. cholerae.
Collapse
|
12
|
Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol 2016; 133:29-42. [PMID: 28012959 DOI: 10.1016/j.bcp.2016.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.
Collapse
Affiliation(s)
- Savannah Colameco
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Marie A Elliot
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
13
|
Slinger BL, Meyer MM. RNA regulators responding to ribosomal protein S15 are frequent in sequence space. Nucleic Acids Res 2016; 44:9331-9341. [PMID: 27580716 PMCID: PMC5100602 DOI: 10.1093/nar/gkw754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
There are several natural examples of distinct RNA structures that interact with the same ligand to regulate the expression of homologous genes in different organisms. One essential question regarding this phenomenon is whether such RNA regulators are the result of convergent or divergent evolution. Are the RNAs derived from some common ancestor and diverged to the point where we cannot identify the similarity, or have multiple solutions to the same biological problem arisen independently? A key variable in assessing these alternatives is how frequently such regulators arise within sequence space. Ribosomal protein S15 is autogenously regulated via an RNA regulator in many bacterial species; four apparently distinct regulators have been functionally validated in different bacterial phyla. Here, we explore how frequently such regulators arise within a partially randomized sequence population. We find many RNAs that interact specifically with ribosomal protein S15 from Geobacillus kaustophilus with biologically relevant dissociation constants. Furthermore, of the six sequences we characterize, four show regulatory activity in an Escherichia coli reporter assay. Subsequent footprinting and mutagenesis analysis indicates that protein binding proximal to regulatory features such as the Shine–Dalgarno sequence is sufficient to enable regulation, suggesting that regulation in response to S15 is relatively easily acquired.
Collapse
Affiliation(s)
- Betty L Slinger
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Michelle M Meyer
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
14
|
Meyer MM. The role of mRNA structure in bacterial translational regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27301829 DOI: 10.1002/wrna.1370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023]
Abstract
The characteristics of bacterial messenger RNAs (mRNAs) that influence translation efficiency provide many convenient handles for regulation of gene expression, especially when coupled with the processes of transcription termination and mRNA degradation. An mRNA's structure, especially near the site of initiation, has profound consequences for how readily it is translated. This property allows bacterial gene expression to be altered by changes to mRNA structure induced by temperature, or interactions with a wide variety of cellular components including small molecules, other RNAs (such as sRNAs and tRNAs), and RNA-binding proteins. This review discusses the links between mRNA structure and translation efficiency, and how mRNA structure is manipulated by conditions and signals within the cell to regulate gene expression. The range of RNA regulators discussed follows a continuum from very complex tertiary structures such as riboswitch aptamers and ribosomal protein-binding sites to thermosensors and mRNA:sRNA interactions that involve only base-pairing interactions. Furthermore, the high degrees of diversity observed for both mRNA structures and the mechanisms by which inhibition of translation occur have significant consequences for understanding the evolution of bacterial translational regulation. WIREs RNA 2017, 8:e1370. doi: 10.1002/wrna.1370 For further resources related to this article, please visit the WIREs website.
Collapse
|
15
|
Jahn N, Brantl S. Heat-shock-induced refolding entails rapid degradation of bsrG toxin mRNA by RNases Y and J1. Microbiology (Reading) 2016; 162:590-599. [DOI: 10.1099/mic.0.000247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Natalie Jahn
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, 07743 Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
16
|
Slinger BL, Newman H, Lee Y, Pei S, Meyer MM. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures. PLoS Genet 2015; 11:e1005720. [PMID: 26675164 PMCID: PMC4684408 DOI: 10.1371/journal.pgen.1005720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition.
Collapse
Affiliation(s)
- Betty L. Slinger
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Hunter Newman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Younghan Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Shermin Pei
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michelle M. Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|
18
|
Kim J, Jeong S, Kertsburg A, Soukup GA, Lee SW. Conditional and target-specific transgene induction through RNA replacement using an allosteric trans-splicing ribozyme. ACS Chem Biol 2014; 9:2491-5. [PMID: 25265474 DOI: 10.1021/cb500567v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene therapeutic approaches are needed that can simultaneously induce the well-controlled expression of therapeutic genes and suppress the expression of disease-causing genes for maximization of their efficacy. To address this challenge, we designed an allosteric ribozyme that comprises a Tetrahymena group I-based trans-splicing ribozyme as an active domain for RNA replacement, a small molecule-specific RNA aptamer as a sensor domain, and a communication module as an active transfer domain. The effectiveness of this approach was assessed by constructing various ribozymes in combination with a theophylline-binding aptamer to identify an allosteric ribozyme, which is controlled by theophylline both in vitro and in cells. Moreover, we constructed adenoviral vectors encoding the ribozymes and validated allosteric regulation of trans-gene expression via theophylline-dependent RNA replacement in target RNA-expressing cells. Results demonstrate that an allosteric trans-splicing ribozyme is an applicable RNA-based framework for engineering external ligand-controlled gene expression regulatory systems that exhibit adjustable regulation, design modularity, and target specificity.
Collapse
Affiliation(s)
- Juhyun Kim
- Department
of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin, Republic of Korea
| | - Seonyeong Jeong
- Department
of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin, Republic of Korea
| | - Alexis Kertsburg
- Department
of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Garrett A. Soukup
- Department
of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Seong-Wook Lee
- Department
of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
19
|
Slinger BL, Deiorio-Haggar K, Anthony JS, Gilligan MM, Meyer MM. Discovery and validation of novel and distinct RNA regulators for ribosomal protein S15 in diverse bacterial phyla. BMC Genomics 2014; 15:657. [PMID: 25104606 PMCID: PMC4137082 DOI: 10.1186/1471-2164-15-657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
Background Autogenous cis-regulators of ribosomal protein synthesis play a critical role in maintaining the stoichiometry of ribosome components. Structured portions within an mRNA transcript typically interact with specific ribosomal proteins to prevent expression of the entire operon, thus balancing levels of ribosomal proteins across transcriptional units. Three distinct RNA structures from different bacterial phyla have demonstrated interactions with S15 to regulate gene expression; however, these RNAs are distributed across a small fraction of bacterial diversity. Results We used comparative genomics in combination with analysis of existing transcriptomic data to identify three novel putative RNA structures associated with the S15 coding region in microbial genomes. These structures are completely distinct from those previously published and encompass potential regulatory regions including ribosome-binding sites. To validate the biological relevance of our findings, we demonstrate that an example of the Alphaproteobacterial RNA from Rhizobium radiobacter specifically interacts with S15 in vitro, and allows in vivo regulation of gene expression in an E. coli reporter system. In addition, structural probing and nuclease protection assays confirm the predicted secondary structure and indicate nucleotides required for protein interaction. Conclusions This work illustrates the importance of integrating comparative genomic and transcriptomic approaches during de novo ncRNA identification and reveals a diversity of distinct natural RNA regulators that support analogous biological functions. Furthermore, this work indicates that many additional uncharacterized RNA regulators likely exist within bacterial genomes and that the plasticity of RNA structure allows unique, and likely independently derived, solutions to the same biological problem. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-657) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Michelle M Meyer
- Biology Department, Boston College, Chestnut Hill, MA 02135, USA.
| |
Collapse
|
20
|
Shin JH, Wakeman CA, Goodson JR, Rodionov DA, Freedman BG, Senger RS, Winkler WC. Transport of magnesium by a bacterial Nramp-related gene. PLoS Genet 2014; 10:e1004429. [PMID: 24968120 PMCID: PMC4072509 DOI: 10.1371/journal.pgen.1004429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/24/2014] [Indexed: 12/29/2022] Open
Abstract
Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. Magnesium ions are essential for life, and, correspondingly, all organisms must encode for proteins to transport them. Three classes of bacterial proteins (CorA, MgtE and MgtA/B) have previously been identified for transport of the ion. This current study introduces a new route of magnesium import, which, moreover, is unexpectedly provided by proteins distantly related to Natural resistance-associated macrophage proteins (Nramp). Nramp metal transporters are widespread in the three domains of life; however, most are assumed to function as transporters of transition metals such as manganese or iron. None of the previously characterized Nramps have been shown to transport magnesium. In this study, we demonstrate that certain bacterial proteins, distantly related to Nramp homologues, exhibit transport of magnesium. We also find that these new magnesium transporters are genetically controlled by a magnesium-sensing regulatory element. Importantly, we find numerous additional examples of similar genes sharing this regulatory arrangement, suggesting that these genes may be a frequent occurrence in bacteria, and may represent a class of magnesium transporters. Therefore, our aggregate data discover a new and perhaps broadly important path of magnesium import in bacteria.
Collapse
Affiliation(s)
- Jung-Ho Shin
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Catherine A. Wakeman
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Dallas, Texas, United States of America
| | - Jonathan R. Goodson
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Dmitry A. Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Benjamin G. Freedman
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Ryan S. Senger
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Wade C. Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Implications of streamlining theory for microbial ecology. ISME JOURNAL 2014; 8:1553-65. [PMID: 24739623 DOI: 10.1038/ismej.2014.60] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022]
Abstract
Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.
Collapse
|
22
|
Sun EI, Rodionov DA. Computational analysis of riboswitch-based regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:900-907. [PMID: 24583554 DOI: 10.1016/j.bbagrm.2014.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 11/17/2022]
Abstract
Advances in computational analysis of riboswitches in the last decade have contributed greatly to our understanding of riboswitch regulatory roles and mechanisms. Riboswitches were originally discovered as part of the sequence analysis of the 5'-untranslated region of mRNAs in the hope of finding novel gene regulatory sites, and the existence of structural RNAs appeared to be a spurious phenomenon. As more riboswitches were discovered, they illustrated the diversity and adaptability of these RNA regulatory sequences. The fact that a chemically monotonous molecule like RNA can discern a wide range of substrates and exert a variety of regulatory mechanisms was subsequently demonstrated in diverse genomes and has hastened the development of sophisticated algorithms for their analysis and prediction. In this review, we focus on some of the computational tools for riboswitch detection and secondary structure prediction. The study of this simple yet efficient form of gene regulation promises to provide a more complete picture of a world that RNA once dominated and allows rational design of artificial riboswitches. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Eric I Sun
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia.
| |
Collapse
|
23
|
Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 2014; 98:3413-24. [DOI: 10.1007/s00253-014-5569-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/17/2022]
|
24
|
Fowler CC, Li Y. Construction and application of riboswitch-based sensors that detect metabolites within bacterial cells. Methods Mol Biol 2014; 1103:177-97. [PMID: 24318895 DOI: 10.1007/978-1-62703-730-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A riboswitch is an RNA element that detects the level of a specific metabolite within the cell and regulates the expression of co-transcribed genes. By fusing a riboswitch to a reporter protein in a carefully designed and tested construct, this ability can be exploited to create an intracellular sensor that detects the level of a particular small molecule within live bacterial cells. There is a great deal of flexibility in the design of such a sensor and factors such as the molecule to be detected and the downstream experiments in which the sensor will be applied should guide the specific blueprint of the final construct. The completed sensor plasmid needs to be rigorously tested with appropriate controls to ensure that its dynamic range, signal strength, sensitivity and specificity are suitable for its intended applications. In this chapter, methods for the design, assessment and use of riboswitch sensors are provided along with those for one example application for which riboswitch sensors are ideally suited.
Collapse
Affiliation(s)
- Casey C Fowler
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
25
|
The importance of regulatory RNAs in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2014; 21:616-26. [DOI: 10.1016/j.meegid.2013.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
|
26
|
Lünse CE, Schüller A, Mayer G. The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol 2013; 304:79-92. [PMID: 24140145 DOI: 10.1016/j.ijmm.2013.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Riboswitches represent promising novel RNA structures for developing compounds that artificially regulate gene expression and, thus, bacterial growth. The past years have seen increasing efforts to identify metabolite-analogues which act on riboswitches and which reveal antibacterial activity. Here, we summarize the current inventory of riboswitch-targeting compounds, their characteristics and antibacterial potential.
Collapse
Affiliation(s)
- Christina E Lünse
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Anna Schüller
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
27
|
Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013; 3:a010298. [PMID: 24003243 DOI: 10.1101/cshperspect.a010298] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate after host infection. Regulatory RNAs are now recognized as important components of these networks, and their study may not only identify new approaches to combat infectious diseases but also reveal new general control mechanisms involved in bacterial gene expression. In this review, we illustrate the diversity of regulatory RNAs in bacterial pathogens, their mechanism of action, and how they can be integrated into the regulatory circuits that govern virulence-factor production.
Collapse
Affiliation(s)
- Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, F-67084 Strasbourg, France
| | | | | | | |
Collapse
|
28
|
Huang W, Kim J, Jha S, Aboul-ela F. The impact of a ligand binding on strand migration in the SAM-I riboswitch. PLoS Comput Biol 2013; 9:e1003069. [PMID: 23704854 PMCID: PMC3656099 DOI: 10.1371/journal.pcbi.1003069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/09/2013] [Indexed: 11/29/2022] Open
Abstract
Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joohyun Kim
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Shantenu Jha
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Fareed Aboul-ela
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
29
|
Dambach M, Irnov I, Winkler WC. Association of RNAs with Bacillus subtilis Hfq. PLoS One 2013; 8:e55156. [PMID: 23457461 PMCID: PMC3574147 DOI: 10.1371/journal.pone.0055156] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
The prevalence and characteristics of small regulatory RNAs (sRNAs) have not been well characterized for Bacillus subtilis, an important model system for Gram-positive bacteria. However, B. subtilis was recently found to synthesize many candidate sRNAs during stationary phase. In the current study, we performed deep sequencing on Hfq-associated RNAs and found that a small subset of sRNAs associates with Hfq, an enigmatic RNA-binding protein that stabilizes sRNAs in Gram-negatives, but whose role is largely unknown in Gram-positive bacteria. We also found that Hfq associated with antisense RNAs, antitoxin transcripts, and many mRNA leaders. Several new candidate sRNAs and mRNA leader regions were also discovered by this analysis. Additionally, mRNA fragments overlapping with start or stop codons associated with Hfq, while, in contrast, relatively few full-length mRNAs were recovered. Deletion of hfq reduced the intracellular abundance of several representative sRNAs, suggesting that B. subtilis Hfq-sRNA interactions may be functionally significant in vivo. In general, we anticipate this catalog of Hfq-associated RNAs to serve as a resource in the functional characterization of Hfq in B. subtilis.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Host Factor 1 Protein/analysis
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Open Reading Frames
- RNA, Antisense/analysis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Michael Dambach
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Irnov Irnov
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wade C. Winkler
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
30
|
Li S, Breaker RR. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res 2013; 41:3022-31. [PMID: 23376932 PMCID: PMC3597705 DOI: 10.1093/nar/gkt057] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5′ splice site, which greatly increases use of this 5′ splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.
Collapse
Affiliation(s)
- Sanshu Li
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
31
|
Furukawa K, Gu H, Sudarsan N, Hayakawa Y, Hyodo M, Breaker RR. Identification of ligand analogues that control c-di-GMP riboswitches. ACS Chem Biol 2012; 7:1436-43. [PMID: 22646696 PMCID: PMC4140405 DOI: 10.1021/cb300138n] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Riboswitches for the bacterial second messenger c-di-GMP control the expression of genes involved in numerous cellular processes such as virulence, competence, biofilm formation, and flagella synthesis. Therefore, the two known c-di-GMP riboswitch classes represent promising targets for developing novel modulators of bacterial physiology. Here, we examine the binding characteristics of circular and linear c-di-GMP analogues for representatives of both class I and II c-di-GMP riboswitches derived from the pathogenic bacterium Vibrio choleae (class I) and Clostridium difficile (class II). Some compounds exhibit values for apparent dissociation constant (K(D)) below 1 μM and associate with riboswitch RNAs during transcription with a speed that is sufficient to influence riboswitch function. These findings are consistent with the published structural models for these riboswitches and suggest that large modifications at various positions on the ligand can be made to create novel compounds that target c-di-GMP riboswitches. Moreover, we demonstrate the potential of an engineered allosteric ribozyme for the rapid screening of chemical libraries for compounds that bind c-di-GMP riboswitches.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Hongzhou Gu
- Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Narasimhan Sudarsan
- Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa, Toyota 470-0392, Japan
| | - Mamoru Hyodo
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060–0812, Japan
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
32
|
Romilly C, Caldelari I, Parmentier D, Lioliou E, Romby P, Fechter P. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus. RNA Biol 2012; 9:402-13. [PMID: 22546940 DOI: 10.4161/rna.20103] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus is one of the major human pathogens, which causes numerous community-associated and hospital-acquired infections. The regulation of the expression of numerous virulence factors is coordinated by complex interplays between two component systems, transcriptional regulatory proteins, and regulatory RNAs. Recent studies have identified numerous novel RNAs comprising cis-acting regulatory RNAs, antisense RNAs, small non coding RNAs and small mRNAs encoding peptides. We present here several examples of RNAs regulating S. aureus pathogenicity and describe various aspects of antisense regulation.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
33
|
Michelotti N, Johnson-Buck A, Manzo AJ, Walter NG. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:139-52. [PMID: 22131292 PMCID: PMC3360889 DOI: 10.1002/wnan.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA 'staples'. This revolutionary approach has led to the creation of a multitude of two-dimensional and three-dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy.
Collapse
|
34
|
Eschbach SH, St-Pierre P, Penedo JC, Lafontaine DA. Folding of the SAM-I riboswitch: a tale with a twist. RNA Biol 2012; 9:535-41. [PMID: 22336759 DOI: 10.4161/rna.19648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Riboswitches are ligand-dependent RNA genetic regulators that control gene expression by altering their structures. The elucidation of riboswitch conformational changes before and after ligand recognition is crucial to understand how riboswitches can achieve high ligand binding affinity and discrimination against cellular analogs. The detailed characterization of riboswitch folding pathways suggest that they may use their intrinsic conformational dynamics to sample a large array of structures, some of which being nearly identical to ligand-bound molecules. Some of these structural conformers can be "captured" upon ligand binding, which is crucial for the outcome of gene regulation. Recent studies about the SAM-I riboswitch have revealed unexpected and previously unknown RNA folding mechanisms. For instance, the observed helical twist of the P1 stem upon ligand binding to the SAM-I aptamer adds a new element in the repertoire of RNA strategies for recognition of small metabolites. From an RNA folding perspective, these findings also strongly indicate that the SAM-I riboswitch could achieve ligand recognition by using an optimized combination of conformational capture and induced-fit approaches, a feature that may be shared by other RNA regulatory sequences.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
35
|
Quarta G, Sin K, Schlick T. Dynamic energy landscapes of riboswitches help interpret conformational rearrangements and function. PLoS Comput Biol 2012; 8:e1002368. [PMID: 22359488 PMCID: PMC3280964 DOI: 10.1371/journal.pcbi.1002368] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022] Open
Abstract
Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design. Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way that sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we mimic transcription by computing energy landscapes which describe accessible secondary structures for a range of sequence lengths. Consistent with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: Low-barrier landscape with an ensemble of conformations in equilibrium before encountering a substrate; barrier-free landscape with a dominant “downhill” pathway to the minimum free energy structure; and barrier-dominated landscape with two isolated conformational states with different functions. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved between riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design.
Collapse
Affiliation(s)
- Giulio Quarta
- Department of Chemistry, New York University, New York, New York, United States of America
- Howard Hughes Medical Institute - Medical Research Fellows Program, Chevy Chase, Maryland, United States of America
| | - Ken Sin
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Among the nine classes of ribozymes that have been experimentally validated to date is the metabolite-responsive self-cleaving ribozyme called glmS. This RNA is almost exclusively located in the 5'-untranslated region of bacterial mRNAs that code for the production of GlmS proteins, which catalyze the synthesis of the aminosugar glucosamine-6-phosphate (GlcN6P). Each glmS ribozyme forms a conserved catalytic core that selectively binds GlcN6P and uses this metabolite as a cofactor to promote ribozyme self-cleavage. Metabolite-induced self-cleavage results in down-regulation of glmS gene expression, and thus the ribozyme functions as a key riboswitch component to permit feedback regulation of GlcN6P levels. Representatives of glmS ribozymes also serve as excellent experimental models to elucidate how RNAs fold to recognize small molecule ligands and promote chemical transformations.
Collapse
Affiliation(s)
- Phillip J McCown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
37
|
Smith KD, Lipchock SV, Strobel SA. Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer. Biochemistry 2011; 51:425-32. [PMID: 22148472 DOI: 10.1021/bi2016662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP regulates lifestyle transitions in many bacteria, such as the change from a free motile state to a biofilm-forming community. Riboswitches that bind this second messenger are important downstream targets in this bacterial signaling pathway. The breakdown of c-di-GMP in the cell is accomplished enzymatically and results in the linear dinucleotide pGpG. The c-di-GMP-binding riboswitches must be able to discriminate between their cognate cyclic ligand and linear dinucleotides in order to be selective biological switches. It has been reported that the c-di-GMP-I riboswitch binds c-di-GMP 5 orders of magnitude better than the linear pGpG, but the cause of this large energetic difference in binding is unknown. Here we report binding data and crystal structures of several linear c-di-GMP analogues in complex with the c-di-GMP-I riboswitch. These data reveal the parameters for phosphate recognition and the structural basis of linear dinucleotide binding to the riboswitch. Additionally, the pH dependence of binding shows that exclusion of pGpG is not due to the additional negative charge on the ligand. These data reveal principles that, along with published work, will contribute to the design of c-di-GMP analogues with properties desirable for use as chemical tools and potential therapeutics.
Collapse
Affiliation(s)
- Kathryn D Smith
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8321, United States
| | | | | |
Collapse
|
38
|
Prospects for riboswitch discovery and analysis. Mol Cell 2011; 43:867-79. [PMID: 21925376 DOI: 10.1016/j.molcel.2011.08.024] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 11/23/2022]
Abstract
An expanding number of metabolite-binding riboswitch classes are being discovered in the noncoding portions of bacterial genomes. Findings over the last decade indicate that bacteria commonly use these RNA genetic elements as regulators of metabolic pathways and as mediators of changes in cell physiology. Some riboswitches are surprisingly complex, and they rival protein factors in their structural and functional sophistication. Each new riboswitch discovery expands our knowledge of the biochemical capabilities of RNA, and some give rise to new questions that require additional study to be addressed. Some of the greatest prospects for riboswitch research and some of the more interesting mysteries are discussed in this review.
Collapse
|
39
|
Ho JY, Lin TL, Li CY, Lee A, Cheng AN, Chen MC, Wu SH, Wang JT, Li TL, Tsai MD. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044. PLoS One 2011; 6:e21664. [PMID: 21765903 PMCID: PMC3134468 DOI: 10.1371/journal.pone.0021664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/05/2011] [Indexed: 11/24/2022] Open
Abstract
The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide) locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA) K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively), which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.
Collapse
Affiliation(s)
- Jin-Yuan Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Yen Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Arwen Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Ning Cheng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Chuan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| |
Collapse
|
40
|
Abstract
The c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] riboswitch is a macromolecular target in the c-di-GMP second messenger signalling pathway. It regulates many genes related to c-di-GMP metabolism as well as genes involved in bacterial motility, virulence and biofilm formation. The riboswitch makes asymmetric contacts to the bases and phosphate backbone of this symmetric dinucleotide. The phylogenetics suggested and mutagenesis has confirmed that this is a flexible motif where variants can make alternative interactions with each of the guanine bases of c-di-GMP. A mutant riboswitch has been designed that can bind a related molecule, c-di-AMP, confirming the most important contacts made to the ligand. The binding kinetics reveal that this is a kinetically controlled riboswitch and mutations to the riboswitch lead to increases in the off-rate. This riboswitch is therefore flexible in sequence as well as kinetic properties.
Collapse
|
41
|
Heppell B, Blouin S, Dussault AM, Mulhbacher J, Ennifar E, Penedo JC, Lafontaine DA. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Nat Chem Biol 2011; 7:384-92. [PMID: 21532599 DOI: 10.1038/nchembio.563] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 02/17/2011] [Indexed: 01/05/2023]
Abstract
S-adenosylmethionine (SAM) riboswitches are widespread in bacteria, and up to five different SAM riboswitch families have been reported, highlighting the relevance of SAM regulation. On the basis of crystallographic and biochemical data, it has been postulated, but never demonstrated, that ligand recognition by SAM riboswitches involves key conformational changes in the RNA architecture. We show here that the aptamer follows a two-step hierarchical folding selectively induced by metal ions and ligand binding, each of them leading to the formation of one of the two helical stacks observed in the crystal structure. Moreover, we find that the anti-antiterminator P1 stem is rotated along its helical axis upon ligand binding, a mechanistic feature that could be common to other riboswitches. We also show that the nonconserved P4 helical domain is used as an auxiliary element to enhance the ligand-binding affinity. This work provides the first comprehensive characterization, to our knowledge, of a ligand-controlled riboswitch folding pathway.
Collapse
Affiliation(s)
- Benoit Heppell
- Groupe ARN/RNA Group, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol 2011; 18:359-63. [PMID: 21317896 PMCID: PMC3075592 DOI: 10.1038/nsmb.1989] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/25/2010] [Indexed: 12/20/2022]
Abstract
The glmS riboswitch belongs to the family of regulatory RNAs that provide feedback regulation of metabolic genes. It is also a ribozyme that self-cleaves upon binding glucosamine-6-phosphate, the product of the enzyme encoded by glmS. The ligand concentration dependence of intracellular self-cleavage kinetics was measured for the first time in a yeast model system and unexpectedly revealed that this riboswitch is subject to inhibition as well as activation by hexose metabolites. Reporter gene experiments in Bacillus subtilis confirmed that this riboswitch integrates positive and negative chemical signals in its natural biological context. Contrary to the conventional view that a riboswitch responds to just a single cognate metabolite, our new model proposes that a single riboswitch integrates information from an array of chemical signals to modulate gene expression based on the overall metabolic state of the cell.
Collapse
Affiliation(s)
- Peter Y. Watson
- Department of Chemical Physiology, Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Martha J. Fedor
- Department of Chemical Physiology, Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
43
|
Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. J Mol Biol 2011; 407:556-70. [PMID: 21315082 DOI: 10.1016/j.jmb.2011.01.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022]
Abstract
The M-box riboswitch couples intracellular magnesium levels to expression of bacterial metal transport genes. Structural analyses on other riboswitch RNA classes, which typically respond to a small organic metabolite, have revealed that ligand recognition occurs through a combination of base-stacking, electrostatic, and hydrogen-bonding interactions. In contrast, the M-box RNA triggers a change in gene expression upon association with an undefined population of metals, rather than responding to only a single ligand. Prior biophysical experimentation suggested that divalent ions associate with the M-box RNA to promote a compacted tertiary conformation, resulting in sequestration of a short sequence tract otherwise required for downstream gene expression. Electrostatic shielding from loosely associated metals is undoubtedly an important influence during this metal-mediated compaction pathway. However, it is also likely that a subset of divalent ions specifically occupies cation binding sites and promotes proper positioning of functional groups for tertiary structure stabilization. To better elucidate the role of these metal binding sites, we resolved a manganese-chelated M-box RNA complex to 1.86 Å by X-ray crystallography. These data support the presence of at least eight well-ordered cation binding pockets, including several sites that had been predicted by biochemical studies but were not observed in prior structural analysis. Overall, these data support the presence of three metal-binding cores within the M-box RNA that facilitate a network of long-range interactions within the metal-bound, compacted conformation.
Collapse
|
44
|
Lemay JF, Desnoyers G, Blouin S, Heppell B, Bastet L, St-Pierre P, Massé E, Lafontaine DA. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet 2011; 7:e1001278. [PMID: 21283784 PMCID: PMC3024265 DOI: 10.1371/journal.pgen.1001278] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/14/2010] [Indexed: 01/08/2023] Open
Abstract
Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic). While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms. Bacterial genetic regulation is mostly performed at the levels of transcription and translation. Recently discovered riboswitches are RNA molecules located in untranslated regions of messenger RNAs that modulate the expression of genes involved in the transport and metabolism of small metabolites. Several riboswitches have recently been shown to employ various regulation mechanisms, but no general rules have yet been deduced from these studies. Here, we have analyzed two adenine-sensing riboswitches of Bacillus subtilis and Vibrio vulnificus that differ by the level at which they control gene expression, which is transcription and translation, respectively. We find that, beyond the obvious difference in transcriptional and translational modulation, riboswitch regulation mechanisms of both adenine riboswitches are fundamentally different. For instance, while the adenine riboswitch from B. subtilis performs co-transcriptional binding for gene regulation, the riboswitch from V. vulnificus relies on reversible ligand binding to achieve gene regulation during mRNA translation. In agreement with co-transcriptional binding of the B. subtilis riboswitch, we find that transcriptional pausing is crucial for gene regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.
Collapse
Affiliation(s)
- Jean-François Lemay
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Desnoyers
- Groupe ARN/RNA Group, Département de Biochimie, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Blouin
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Heppell
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurène Bastet
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick St-Pierre
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Groupe ARN/RNA Group, Département de Biochimie, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail: (EM); (DL)
| | - Daniel A. Lafontaine
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail: (EM); (DL)
| |
Collapse
|
45
|
Kloiber K, Spitzer R, Tollinger M, Konrat R, Kreutz C. Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C-methyl label. Nucleic Acids Res 2011; 39:4340-51. [PMID: 21252295 PMCID: PMC3105391 DOI: 10.1093/nar/gkq1361] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via 13C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2′-13C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using 13C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20 nt bistable RNA were characterized at temperatures between 298 and 310 K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32 nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316 K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by 13C relaxation dispersion NMR spectroscopy.
Collapse
Affiliation(s)
- Karin Kloiber
- Institute of Organic Chemistry, Leopold Franzens University, Innrain 52a, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
46
|
Abstract
The continued expansion of microbial sequence data has allowed for the detection of an increasing number of conserved RNA motifs by using comparative sequence analysis. Recently, we reported the discovery of two structured non-coding RNA motifs, called glnA and Downstream-peptide, that have similarity in sequence and secondary structure. In this report, we describe data demonstrating that representatives of both RNA motifs selectively bind the amino acid L-glutamine. These glutamine aptamers are found exclusively in cyanobacteria and marine metagenomic sequences, wherein several glnA RNA representatives reside upstream of genes involved in nitrogen metabolism. These motifs have genomic distributions that are consistent with a gene regulation function, suggesting they are components of glutamine-responsive riboswitches. Thus, our findings implicate glutamine as a regulator of cyanobacterial nitrogen metabolism pathways. Furthermore, our findings expand the collection of natural aptamer classes that bind amino acids to include glycine, lysine and glutamine.
Collapse
Affiliation(s)
- Tyler D Ames
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
47
|
Abstract
Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metal-loregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Howard Hughes Medical Institute and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
48
|
Meyer MM, Hammond MC, Salinas Y, Roth A, Sudarsan N, Breaker RR. Challenges of ligand identification for riboswitch candidates. RNA Biol 2011; 8:5-10. [PMID: 21317561 DOI: 10.4161/rna.8.1.13865] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expanding DNA sequence databases and improving methods for comparative analysis are being exploited to identify numerous noncoding RNA elements including riboswitches. Ligands for many riboswitch classes usually can be inferred based on the genomic contexts of representative RNAs, and complex formation or genetic regulation subsequently demonstrated experimentally. However, there are several candidate riboswitches for which ligands have not been identified. In this report, we discuss three of the most compelling riboswitch candidates: the ykkC/ykkD, yybP/ykoY and pfl RNAs. Each of these RNAs is numerous, phylogenetically widespread, and carries features that are hallmarks of metabolite-binding riboswitches, such as a well-conserved aptamer-like structure and apparent interactions with gene regulation elements such as ribosome binding sites or intrinsic transcription termination stems. These RNAs likely represent only a small sampling of the challenging motifs that researchers will encounter as new noncoding RNAs are identified.
Collapse
Affiliation(s)
- Michelle M Meyer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
49
|
Leroy Q, Lebrigand K, Armougom F, Barbry P, Thiéry R, Raoult D. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria. PLoS One 2010; 5:e15321. [PMID: 21203564 PMCID: PMC3006202 DOI: 10.1371/journal.pone.0015321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022] Open
Abstract
Coxiella burnetii, the causative agent of the zoonotic disease Q
fever, is mainly transmitted to humans through an aerosol route. A spore-like
form allows C. burnetii to resist different environmental
conditions. Because of this, analysis of the survival strategies used by this
bacterium to adapt to new environmental conditions is critical for our
understanding of C. burnetii pathogenicity. Here, we report the
early transcriptional response of C. burnetii under temperature
stresses. Our data show that C. burnetii exhibited minor
changes in gene regulation under short exposure to heat or cold shock. While
small differences were observed, C. burnetii seemed to respond
similarly to cold and heat shock. The expression profiles obtained using
microarrays produced in-house were confirmed by quantitative RT-PCR. Under
temperature stresses, 190 genes were differentially expressed in at least one
condition, with a fold change of up to 4. Globally, the differentially expressed
genes in C. burnetii were associated with bacterial division,
(p)ppGpp synthesis, wall and membrane biogenesis and, especially,
lipopolysaccharide and peptidoglycan synthesis. These findings could be
associated with growth arrest and witnessed transformation of the bacteria to a
spore-like form. Unexpectedly, clusters of neighboring genes were differentially
expressed. These clusters do not belong to operons or genetic networks; they
have no evident associated functions and are not under the control of the same
promoters. We also found undescribed but comparable clusters of regulation in
previously reported transcriptomic analyses of intracellular bacteria, including
Rickettsia sp. and Listeria monocytogenes.
The transcriptomic patterns of C. burnetii observed under
temperature stresses permits the recognition of unpredicted clusters of
regulation for which the trigger mechanism remains unidentified but which may be
the result of a new mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Quentin Leroy
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Fabrice Armougom
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Richard Thiéry
- Unité de Pathologie des Ruminants, Agence Française de
Sécurité Sanitaire des Aliments (AFSSA) Sophia Antipolis,
France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
- * E-mail:
| |
Collapse
|
50
|
Uzan M, Miller ES. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol J 2010; 7:360. [PMID: 21129205 PMCID: PMC3014915 DOI: 10.1186/1743-422x-7-360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/03/2010] [Indexed: 01/02/2023] Open
Abstract
Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.
Collapse
Affiliation(s)
- Marc Uzan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | |
Collapse
|