1
|
Ju H, Liu L, Liu X, Wu Y, Li L, Gin KYH, Zhang G, Zhang J. A comprehensive study of the source, occurrence, and spatio-seasonal dynamics of 12 target antibiotics and their potential risks in a cold semi-arid catchment. WATER RESEARCH 2023; 229:119433. [PMID: 36493699 DOI: 10.1016/j.watres.2022.119433] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics are widely consumed and are ubiquitous in aquatic ecosystems, such as in agricultural and fishery lake catchments, for prophylactic treatment. However, there are very few comprehensive studies reporting all seasonal occurrences, spatiotemporal dynamics, and risk assessments of antibiotics in agricultural lake catchments, especially in cold regions during the winter season. This study measured seasonality in the concentrations of 12 antibiotics belonging to seven different classes in the surface waters (tributary rivers and lakes) of the Chagan lake catchment in northeast China. All antibiotics were detected in most of the water samples across most seasons, with concentrations varying for different compounds, locations, and seasons. These levels were discussed in terms of the main sources at different sampling sites, including agriculture, fish farming, municipal wastewater, and others. In general, the highest concentrations of most compounds were observed during the freeze-thaw periods. The number of antibiotic resistance genes (ARGs) correlated with compound lipophilicity and half-life. Based on the ecological risks of antibiotics and the relative abundance of ARGs, a hierarchical control priority list (HCPL) of antibiotics was determined, considering four levels (critical, high, medium, and low). To further strengthen the control and effectively manage antibiotics, we highly recommend the reduction and selective use of veterinary antibiotics in winter and spring during the freeze-thaw periods in the Chagan lake catchment.
Collapse
Affiliation(s)
- Hanyu Ju
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuemei Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Jingjie Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 2022; 243:123292. [DOI: 10.1016/j.talanta.2022.123292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
|
3
|
Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. Sci Rep 2022; 12:6062. [PMID: 35410349 PMCID: PMC9001716 DOI: 10.1038/s41598-022-09996-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
A global increase in the populations of drug resistant bacteria exerts negative effects on animal production and human health. Our study has been focused on the assessment of resistance determinants in relation to phenotypic resistance of the 74 commensal E. coli isolates present in different ecological environments. The samples were collected from poultry litter, feces, and neck skin. Among the microorganisms isolated from the poultry litter (group A), the highest resistance was noted against AMP and DOX (100%). In the E. coli extracts from the cloacal swabs (group B), the highest resistance was observed against AMP (100%) and CIP (92%). The meat samples (group C) were characterized by resistance to AMP (100%) and STX (94.7%). Genes encoding resistance to β-lactams (blaTEM, blaCTX-M), fluoroquinolones (qnrA, qnrB, qnrS), aminoglycosides (strA-strB, aphA1, aac(3)-II), sulfonamides (sul1, sul2, sul3), trimethoprim (dfr1, dfr5, dfr7/17) and tetracyclines (tetA, tetB) were detected in the studied bacterial isolates. The presence of class 1 and 2 integrons was confirmed in 75% of the MDR E. coli isolates (plasmid DNA), of which 60% contained class 1 integrons, 15% contained class 2 integrons, and 11.7% carried integrons of both classes. Thus, it may be concluded that integrons are the common mediators of antimicrobial resistance among commensal multidrug resistant Escherichia coli at important stages of poultry production.
Collapse
|
4
|
D’Accolti M, Soffritti I, Bini F, Mazziga E, Mazzacane S, Caselli E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10020225. [PMID: 35208679 PMCID: PMC8876034 DOI: 10.3390/microorganisms10020225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The high and sometimes inappropriate use of disinfectants and antibiotics has led to alarming levels of Antimicrobial Resistance (AMR) and to high water and hearth pollution, which today represent major threats for public health. Furthermore, the current SARS-CoV-2 pandemic has deeply influenced our sanitization habits, imposing the massive use of chemical disinfectants potentially exacerbating both concerns. Moreover, super-sanitation can profoundly influence the environmental microbiome, potentially resulting counterproductive when trying to stably eliminate pathogens. Instead, environmentally friendly procedures based on microbiome balance principles, similar to what applied to living organisms, may be more effective, and probiotic-based eco-friendly sanitation has been consistently reported to provide stable reduction of both pathogens and AMR in treated-environments, compared to chemical disinfectants. Here, we summarize the results of the studies performed in healthcare settings, suggesting that such an approach may be applied successfully also to non-healthcare environments, including the domestic ones, based on its effectiveness, safety, and negligible environmental impact.
Collapse
Affiliation(s)
- Maria D’Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Francesca Bini
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
| | - Eleonora Mazziga
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
- Correspondence:
| |
Collapse
|
5
|
Xu S, Schwinghamer T, Sura S, Cessna AJ, Zvomuya F, Zaheer R, Larney FJ, McAllister TA. Degradation of antimicrobial resistance genes within stockpiled beef cattle feedlot manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1093-1106. [PMID: 34605371 DOI: 10.1080/10934529.2021.1965416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation of antimicrobial resistance genes (ARG) in manure from beef cattle administered (kg-1 feed) 44 mg of chlortetracycline (CTC), 44 mg of chlortetracycline plus sulfamethazine (CTCSMZ), 11 mg of tylosin (TYL), or no antimicrobials (Control) was examined. Manure was stockpiled and quantitative PCR (qPCR) was used to assess tetracycline [tet(C), (L), (M), (W)], erythromycin [erm(A), (B), (F), (X)], and sulfamethazine [sul(1), (2)] ARG and 16S rDNA. After 102 d, copies of all ARG decreased by 0.3 to 1.5 log10 copies (g dry matter)-1. Temperature in the interior of piles averaged ≥ 55 °C for 10 d, except for CTCSMZ, but did not reach 55 °C at pile exteriors. Compared to Control, CTCSMZ increased (P < 0.05) tet(C), tet(M), tet(W), sul(1), and sul(2) in stockpiled manure. Copies of 16S rDNA remained higher (P < 0.05) in CTCSMZ than Control for the first 26 d. Levels of most ARG did not differ between the interior and exterior of stockpiles. Our results suggest that stockpiled manure would still introduce ARG to land upon manure application, but at levels lower than if manure was applied fresh.
Collapse
Affiliation(s)
- Shanwei Xu
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - Tim Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Srinivas Sura
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Allan J Cessna
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Francis J Larney
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
6
|
Noyes NR, Slizovskiy IB, Singer RS. Beyond Antimicrobial Use: A Framework for Prioritizing Antimicrobial Resistance Interventions. Annu Rev Anim Biosci 2021; 9:313-332. [PMID: 33592160 DOI: 10.1146/annurev-animal-072020-080638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antimicrobial resistance (AMR) is a threat to animal and human health. Antimicrobial use has been identified as a major driver of AMR, and reductions in use are a focal point of interventions to reduce resistance. Accordingly, stakeholders in human health and livestock production have implemented antimicrobial stewardship programs aimed at reducing use. Thus far, these efforts have yielded variable impacts on AMR. Furthermore, scientific advances are prompting an expansion and more nuanced appreciation of the many nonantibiotic factors that drive AMR, as well as how these factors vary across systems, geographies, and contexts. Given these trends, we propose a framework to prioritize AMR interventions. We use this framework to evaluate the impact of interventions that focus on antimicrobial use. We conclude by suggesting that priorities be expanded to include greater consideration of host-microbial interactions that dictate AMR, as well as anthropogenic and environmental systems that promote dissemination of AMR.
Collapse
Affiliation(s)
- Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Ilya B Slizovskiy
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA;
| |
Collapse
|
7
|
Sun C, Wang Y, Ma S, Zhang S, Liu D, Wang Y, Wu C. Surveillance of antimicrobial resistance in Escherichia coli and enterococci from food products at retail in Beijing, China. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Harpaz D, Marks RS, Kushmaro A, Eltzov E. Environmental pollutants induce noninherited antibiotic resistance to polymyxin B in Escherichia coli. Future Microbiol 2020; 15:1631-1643. [PMID: 33251814 DOI: 10.2217/fmb-2020-0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The mechanisms behind antibiotic resistance by bacteria are important to create alternative molecules. Objective: This study focuses on the impact of environmental pollutants on bacterial resistance to antibiotics. Materials & methods: The effect of various environmental pollutants on noninherited bacterial resistance to antibiotics was examined. Results: The tolerance to the polymyxin-B antibiotic was shown to be conferred to Escherichia coli, by pretreatment with subinhibitory concentrations of environmental toxicants. The cell survival to a sublethal dosage of antibiotics was tested. Exposure to low concentrations of toxic compounds (500 ppb copper, 2% [v/v] ethanol or 0.5 μg/ml trimethoprim) stimulated the bacterial heat shock systems and led to increased tolerance to polymyxin B. Conclusion: Environmental pollutants induce a temporary bacterial noninheritable resistance to antibiotic.
Collapse
Affiliation(s)
- Dorin Harpaz
- Institute of Biochemistry, Food science & Nutrition, Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.,Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Robert S Marks
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,The Ilse Katz Center for Meso & Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ariel Kushmaro
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,The Ilse Katz Center for Meso & Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
9
|
Schmidt JW, Vikram A, Arthur TM, Belk KE, Morley PS, Weinroth MD, Wheeler TL. Antimicrobial Resistance at Two U.S. Cull Cow Processing Establishments. J Food Prot 2020; 83:2216-2228. [PMID: 32730612 DOI: 10.4315/jfp-20-201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Culled beef cows (cows that have reached the end of their productive life span in cow-calf operations) and culled dairy cows represent approximately 18% of the cattle harvested in the United States annually, but data on antimicrobial resistance (AMR) in these cull cattle are extremely limited. To address this data gap, colon contents were obtained from 180 culled conventional beef cows, 179 culled conventional dairy cows, and 176 culled organic dairy cows (produced without using antimicrobials). Sponge samples were also collected from 181 conventional beef, 173 conventional dairy, and 180 organic dairy cow carcasses. These samples were obtained on 6 days (3 days each at two beef harvest and processing establishments). At one establishment, 30 samples of beef manufacturing trimmings from conventional cows and 30 trim samples from organic dairy cows were acquired. All 1,129 samples were cultured for Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella, and 3GCrSalmonella. Metagenomic DNA was isolated from 535 colon content samples, and quantitative PCR assays were performed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For colon contents, only TETrE. coli (P < 0.01), 3GCrE. coli (P < 0.01), and erm(B) (P = 0.03) levels were higher in conventional than in organic cows. Sampling day also significantly affected (P < 0.01) these levels. Production system did not affect the levels of any measured AMR on carcasses or trim. The human health impact of the few significant AMR differences could not be determined due to the lack of standards for normal, background, safe, or basal values. Study results provide key heretofore unavailable data that may inform quantitative microbial risk assessments to address these gaps. HIGHLIGHTS
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,ORCID: https://orcid.org/0000-0003-0494-2436 [J.W.S.]
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-5064-8356 [A.V.]
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-9035-0474 [T.M.A.]
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,ORCID: https://orcid.org/0000-0002-7171-8824 [K.E.B.]
| | - Paul S Morley
- Veterinary Education, Research, and Outreach (VERO) Program, Texas A&M University and West Texas A&M University, Canyon, Texas 79016, USA (ORCID: https://orcid.org/0000-0001-8138-2714 [P.S.M.])
| | - Margaret D Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0001-8351-395X [M.D.W.]
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0002-6571-9097 [T.L.W.]
| |
Collapse
|
10
|
Polianciuc SI, Gurzău AE, Kiss B, Ştefan MG, Loghin F. Antibiotics in the environment: causes and consequences. Med Pharm Rep 2020; 93:231-240. [PMID: 32832887 PMCID: PMC7418837 DOI: 10.15386/mpr-1742] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotics represent one of the main discoveries of the last century that changed the treatment of a large array of infections in a significant way. However, increased consumption has led to an exposure of bacterial communities and ecosystems to a large amount of antibiotic residues. This paper aims to provide a brief overview of the primary drivers associated with antibiotic occurrence in the environment. Furthermore, we attempted to summarize the behavior of antibiotic residues in the environment and the necessity of their detection and quantification. Also, we provide updated scientific and regulatory facts about environmental antibiotic discharge and environmental and human antibiotics risk assessment. We propose that environmental antibiotic contamination should be diminished beginning from regulating the causes of occurrence in the environment (such as antibiotic consumption) and ending with regulating antibiotic discharge and risk assessment. Some important intermediate steps are represented by the detection and quantification of the antibiotics and the characterization of their behavior in the environment, which could come to support future regulatory decisions.
Collapse
Affiliation(s)
- Svetlana Iuliana Polianciuc
- Toxicology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | | | - Bela Kiss
- Toxicology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Maria Georgia Ştefan
- Toxicology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Ricke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult Sci 2020; 99:670-677. [PMID: 32029153 PMCID: PMC7587714 DOI: 10.1016/j.psj.2019.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Feed additives that can modulate the poultry gastrointestinal tract and provide benefit to bird performance and health have recently received more interest for commercial applications. Such feed supplements offer an economic advantage because they may directly benefit poultry producers by either decreasing mortality rates of farm animals, increasing bird growth rates, or improve feed efficieny. They can also limit foodborne pathogen establishment in bird flocks by modifying the gastrointestinal microbial population. Prebiotics are known as non-digestible carbohydrates that selectively stimulate the growth of beneficial bacteria, thus improving the overall health of the host. Once prebiotics are introduced to the host, 2 major modes of action can potentially occur. Initially, the corresponding prebiotic reaches the intestine of the chicken without being digested in the upper part of the gastrointestinal tract but are selectively utilized by certain bacteria considered beneficial to the host. Secondly, other gut activities occur due to the presence of the prebiotic, including generation of short-chain fatty acids and lactic acid as microbial fermentation products, a decreased rate of pathogen colonization, and potential bird health benefits. In the current review, the effect of prebiotics on the gastrointestinal tract microbiome will be discussed as well as future directions for further research.
Collapse
Affiliation(s)
- Steven C Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701.
| | - Sang In Lee
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701
| | - Sun Ae Kim
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Si Hong Park
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Zhaohao Shi
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| |
Collapse
|
12
|
Rovira P, McAllister T, Lakin SM, Cook SR, Doster E, Noyes NR, Weinroth MD, Yang X, Parker JK, Boucher C, Booker CW, Woerner DR, Belk KE, Morley PS. Characterization of the Microbial Resistome in Conventional and "Raised Without Antibiotics" Beef and Dairy Production Systems. Front Microbiol 2019; 10:1980. [PMID: 31555225 PMCID: PMC6736999 DOI: 10.3389/fmicb.2019.01980] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
Metagenomic investigations have the potential to provide unprecedented insights into microbial ecologies, such as those relating to antimicrobial resistance (AMR). We characterized the microbial resistome in livestock operations raising cattle conventionally (CONV) or without antibiotic exposures (RWA) using shotgun metagenomics. Samples of feces, wastewater from catchment basins, and soil where wastewater was applied were collected from CONV and RWA feedlot and dairy farms. After DNA extraction and sequencing, shotgun metagenomic reads were aligned to reference databases for identification of bacteria (Kraken) and antibiotic resistance genes (ARGs) accessions (MEGARes). Differences in microbial resistomes were found across farms with different production practices (CONV vs. RWA), types of cattle (beef vs. dairy), and types of sample (feces vs. wastewater vs. soil). Feces had the greatest number of ARGs per sample (mean = 118 and 79 in CONV and RWA, respectively), with tetracycline efflux pumps, macrolide phosphotransferases, and aminoglycoside nucleotidyltransferases mechanisms of resistance more abundant in CONV than in RWA feces. Tetracycline and macrolide–lincosamide–streptogramin classes of resistance were more abundant in feedlot cattle than in dairy cow feces, whereas the β-lactam class was more abundant in dairy cow feces. Lack of congruence between ARGs and microbial communities (procrustes analysis) suggested that other factors (e.g., location of farms, cattle source, management practices, diet, horizontal ARGs transfer, and co-selection of resistance), in addition to antimicrobial use, could have impacted resistome profiles. For that reason, we could not establish a cause–effect relationship between antimicrobial use and AMR, although ARGs in feces and effluents were associated with drug classes used to treat animals according to farms’ records (tetracyclines and macrolides in feedlots, β-lactams in dairies), whereas ARGs in soil were dominated by multidrug resistance. Characterization of the “resistance potential” of animal-derived and environmental samples is the first step toward incorporating metagenomic approaches into AMR surveillance in agricultural systems. Further research is needed to assess the public-health risk associated with different microbial resistomes.
Collapse
Affiliation(s)
- Pablo Rovira
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Steven M Lakin
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Enrique Doster
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Noelle R Noyes
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Maggie D Weinroth
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Xiang Yang
- Department of Animal Sciences, University of California, Davis, Davis, CA, United States
| | - Jennifer K Parker
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd., Okotoks, AB, Canada
| | - Dale R Woerner
- Department of Animal and Food Sciences, College of Agricultural Sciences & Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Keith E Belk
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Paul S Morley
- VERO - Veterinary Education, Research, and Outreach Program, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| |
Collapse
|
13
|
Lhermie G, Verteramo Chiu L, Kaniyamattam K, Tauer LW, Scott HM, Gröhn YT. Antimicrobial Policies in United States Beef Production: Choosing the Right Instruments to Reduce Antimicrobial Use and Resistance Under Structural and Market Constraints. Front Vet Sci 2019; 6:245. [PMID: 31380404 PMCID: PMC6658893 DOI: 10.3389/fvets.2019.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial use (AMU) in animal agriculture contributes to the selection of resistant bacteria, potentially constituting a public health threat. To address antimicrobial resistance, public policies set by governments, as well as intra-sectoral approaches, can be implemented. In this paper, we explore how common policy instruments such as regulations, economic incentives, and voluntary agreements could help reduce AMU in beef production. We first describe the structure of the beef supply chain which directly influences the choice of policy instruments. We describe how externalities and imperfect information affect this system. We then discuss how five policy instruments would each perform to achieve a reduction in AMU. Bovine respiratory disease complex (BRD) represents the major driver of AMU in beef production; consequently, reducing its incidence would decrease significantly the amounts of antimicrobials administered. We consider control options for BRD at different stages of the beef supply chain.
Collapse
Affiliation(s)
- Guillaume Lhermie
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Leslie Verteramo Chiu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Karun Kaniyamattam
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Loren William Tauer
- Dyson School of Applied Economics and Management, Cornell SC Johnson College of Business, Cornell University, Ithaca, NY, United States
| | - Harvey Morgan Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Yrjö Tapio Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Parente CET, Azeredo A, Vollú RE, Zonta E, Azevedo-Silva CE, Brito EMS, Seldin L, Torres JPM, Meire RO, Malm O. Fluoroquinolones in agricultural soils: Multi-temporal variation and risks in Rio de Janeiro upland region. CHEMOSPHERE 2019; 219:409-417. [PMID: 30551107 DOI: 10.1016/j.chemosphere.2018.11.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Our main goal was to investigate the potential accumulation of fluoroquinolones (FQs) in agricultural soils over extended periods of land use, predicting leaching and estimating risk quotients for soil microorganisms. Short to long-term of poultry litter fertilization (<1-30 years) were evaluated for enrofloxacin (ENR) and ciprofloxacin (CIP) input, in addition to the emergence of plasmid-mediated quinolone resistance (PMQR) genes. High FQs concentration (range 0.56-100 mg kg-1) were measured in poultry litter samples. In soils, FQs occurrence and risks have changed over the years. An accumulation trend was observed between short and medium-term fertilized soils (ST and MT soils), reaching a range of 330-6138 μg kg-1 ENR and 170-960 μg kg-1 CIP in MT soil, followed by decreased concentrations in long-term fertilized soils (LT soils). The environmental risk assessment showed a high ENR risk quotient (RQ ≥ 1) in ST and MT soils ranging (7-226) and high CIP risk (9-53) in LT soils. The detection of qnrS genes in the area with the lowest FQs concentration emphasizes the importance of a broader approach to environmental assessment, in which not only target compounds are considered. FQs soil-water migration model pointed out a high leaching risk in ST soil. To reduce risks, management measures to decrease antibiotic environmental load should be taken before poultry litter application. In addition, the high weathering of tropical soils contributing to possible fate of antibiotics to water resources through drainage basins should be considered.
Collapse
Affiliation(s)
- Cláudio E T Parente
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil.
| | - Antonio Azeredo
- Laboratório de Toxicologia, Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo, s/n, Rio de Janeiro, 21941-598, Brazil
| | - Renata E Vollú
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco I, Sala 60, Rio de Janeiro, 21941-902, Brazil
| | - Everaldo Zonta
- Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7. Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Claudio E Azevedo-Silva
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Elcia M S Brito
- Ingenieria Ambiental, Div. Inginierías, Campus Guanajuato, Universidad de Guanajuato, Av. Juárez, 77; Zona Centro. Guanajuato, Gto, México, 36000, USA
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco I, Sala 60, Rio de Janeiro, 21941-902, Brazil
| | - João Paulo M Torres
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Rodrigo O Meire
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Olaf Malm
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
15
|
Du X, Bayliss SC, Feil EJ, Liu Y, Wang C, Zhang G, Zhou D, Wei D, Tang N, Leclercq SO, Feng J. Real time monitoring of Aeromonas salmonicida evolution in response to successive antibiotic therapies in a commercial fish farm. Environ Microbiol 2019; 21:1113-1123. [PMID: 30637959 DOI: 10.1111/1462-2920.14531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Our ability to predict evolutionary trajectories of pathogens in response to antibiotic pressure is one of the promising leverage to fight against the present antibiotic resistance worldwide crisis. Yet, few studies tackled this question in situ at the outbreak level, due to the difficulty to link a given pathogenic clone evolution with its precise antibiotic exposure over time. In this study, we monitored the real-time evolution of an Aeromonas salmonicida clone in response to successive antibiotic and vaccine therapies in a commercial fish farm. The clone was responsible for a four-year outbreak of furunculosis within a Recirculating Aquaculture System Salmo salar farm in China, and we reconstructed the precise tempo of mobile genetic elements (MGEs) acquisition events during this period. The resistance profile provided by the acquired MGEs closely mirrored the antibiotics used to treat the outbreak, and we evidenced that two subclonal groups developed similar resistances although unrelated MGE acquisitions. Finally, we also demonstrated the efficiency of vaccination in outbreak management and its positive effect on antibiotic resistance prevalence. Our study provides unprecedented knowledge critical to understand evolutionary trajectories of resistant pathogens outside the laboratory.
Collapse
Affiliation(s)
- Xiaochen Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ying Liu
- Dalian Ocean University, Dalian, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Na Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sébastien O Leclercq
- ISP, Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR, 1282, Nouzilly, France
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
He H, Sun DW, Pu H, Chen L, Lin L. Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments. Crit Rev Food Sci Nutr 2019; 59:770-793. [PMID: 30614242 DOI: 10.1080/10408398.2018.1528436] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Milk is a complete nutrient source for humans. The quality and safety of milk are critical for both producers and consumers, thereby the dairy industry requires rapid and nondestructive methods to ensure milk quality and safety. However, conventional methods are time-consuming and laborious, and require complicated preparation procedures. Therefore, the exploration of new milk analytical methods is essential. This current review introduces the principles of Raman spectroscopy and presents recent advances since 2012 of Raman spectroscopic techniques mainly involving surface-enhanced Raman spectroscopy (SERS), fourier-transform (FT) Raman spectroscopy, near-infrared (NIR) Raman spectroscopy, and micro-Raman spectroscopy for milk analysis including milk compositions, microorganisms and antibiotic residues in milk, as well as milk adulterants. Additionally, some challenges and future outlooks are proposed. The current review shows that Raman spectroscopic techniques have the promising potential for providing rapid and nondestructive detection of milk parameters. However, the application of Raman spectroscopy on milk analysis is not common yet since some limitations of Raman spectroscopy need to be overcome before making it a routine tool for the dairy industry.
Collapse
Affiliation(s)
- Huirong He
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Centre , Guangzhou 510006 , China
| | - Da-Wen Sun
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Centre , Guangzhou 510006 , China.,d Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin, National University of Ireland , Dublin 4 , Ireland
| | - Hongbin Pu
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Centre , Guangzhou 510006 , China
| | - Lijun Chen
- e Beijing Sanyuan Foods Co., Ltd , Beijing , China
| | - Li Lin
- e Beijing Sanyuan Foods Co., Ltd , Beijing , China
| |
Collapse
|
17
|
Lhermie G, Tauer LW, Gröhn YT. An assessment of the economic costs to the U.S. dairy market of antimicrobial use restrictions. Prev Vet Med 2018; 160:63-67. [DOI: 10.1016/j.prevetmed.2018.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/25/2022]
|
18
|
Xiong W, Sun Y, Zeng Z. Antimicrobial use and antimicrobial resistance in food animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18377-18384. [PMID: 29802609 DOI: 10.1007/s11356-018-1852-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Ju X, Zhu M, Han J, Lu Z, Zhao H, Bie X. Combined Effects and Cross-Interactions of Different Antibiotics and Polypeptides in Salmonella bredeney. Microb Drug Resist 2018; 24:1450-1459. [PMID: 29792562 DOI: 10.1089/mdr.2017.0367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella spp. are health-threatening foodborne pathogens. The increasingly common spread of antibiotic-resistant Salmonella spp. is a major public healthcare issue worldwide. In this study, we wished to explore (1) antibiotic or polypeptide combinations to inhibit multidrug-resistant Salmonella bredeney and (2) the regulation of cross-resistance and collateral sensitivity of antibiotics and polypeptides. We undertook a study to select antibiotic combinations. Then, we promoted drug-resistant strains of S. bredeney after 15 types of antibiotic treatment. From each evolving population, the S. bredeney strain was exposed to a particular single drug. Then, we analyzed how the evolved S. bredeney strains acquired resistance or susceptibility to other drugs. A total of 105 combinations were tested against S. bredeney following the protocols of CLSI-2016 and EUCAST-2017. The synergistic interactions between drug pairings were diverse. Notably, polypeptides were more likely to be linked to synergistic combinations: 56% (19/34) of the synergistic pairings were relevant to polypeptides. Simultaneously, macrolides demonstrated antagonism toward polypeptides. The latter were more frequently related to collateral sensitivity than the other drugs because the other 13 drugs sensitized S. bredeney to polypeptides. In an experimental evolution involving 15 drugs, single drug-evolved strains were examined against the other 14 drugs, and the results were compared with the minimal inhibitory concentration of the ancestral strain. Single drug-evolved S. bredeney strains could alter the sensitivity to other drugs, and S. bredeney evolution against antibiotics could sensitize it to polypeptides.
Collapse
Affiliation(s)
- Xiangyu Ju
- Department of Food Quality and Safety, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, People's Republic of China
| | - Mengjiao Zhu
- Department of Food Quality and Safety, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, People's Republic of China
| | - Jinzhi Han
- Department of Food Quality and Safety, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxin Lu
- Department of Food Quality and Safety, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, People's Republic of China
| | - Haizhen Zhao
- Department of Food Quality and Safety, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, People's Republic of China
| | - Xiaomei Bie
- Department of Food Quality and Safety, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Hudson JA, Frewer LJ, Jones G, Brereton PA, Whittingham MJ, Stewart G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Antimicrobial resistance in human populations: challenges and opportunities. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS 2017; 2:e4. [PMID: 29276617 PMCID: PMC5732576 DOI: 10.1017/gheg.2017.4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance (AMR) is a global public health threat. Emergence of AMR occurs naturally, but can also be selected for by antimicrobial exposure in clinical and veterinary medicine. Despite growing worldwide attention to AMR, there are substantial limitations in our understanding of the burden, distribution and determinants of AMR at the population level. We highlight the importance of population-based approaches to assess the association between antimicrobial use and AMR in humans and animals. Such approaches are needed to improve our understanding of the development and spread of AMR in order to inform strategies for the prevention, detection and management of AMR, and to support the sustainable use of antimicrobials in healthcare.
Collapse
|
22
|
Lhermie G, Gröhn YT, Raboisson D. Addressing Antimicrobial Resistance: An Overview of Priority Actions to Prevent Suboptimal Antimicrobial Use in Food-Animal Production. Front Microbiol 2017; 7:2114. [PMID: 28111568 PMCID: PMC5216048 DOI: 10.3389/fmicb.2016.02114] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
The growing concern regarding emergence of bacteria resistant to antimicrobials and their potential for transmission to humans via animal production has led various authorities worldwide to implement measures to decrease antimicrobial use (AMU) in livestock production. These measures are influenced by those implemented in human medicine, and emphasize the importance of antimicrobial stewardship, surveillance, infection prevention and control and research. In food producing animals, unlike human medicine, antimicrobials are used to control diseases which cause economic losses. This major difference may explain the failure of the public policies implemented to control antimicrobial usage. Here we first review the specific factors influencing AMU across the farm animal sector and highlighting the farmers' decision-making process of AMU. We then discuss the efficiency of existing regulations implemented by policy makers, and assess the need for alternative strategies, such as substitution between antimicrobials and other measures for infectious disease control. We also discuss the interests of regulating antimicrobial prices. Finally, we emphasize the value of optimizing antimicrobial regimens, and developing veterinary precision medicine to achieve clinical efficacy in animals while limiting negative impacts on public health. The fight against antimicrobial resistance requires both a reduction and an optimization of antimicrobial consumption. The set of actions currently implemented by policy makers does not adequately address the economic interests of farmers' use of antimicrobials.
Collapse
Affiliation(s)
- Guillaume Lhermie
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, IthacaNY, USA
- BioEpar, Oniris, Institut National de la Recherche Agronomique (INRA)Nantes, France
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Didier Raboisson
- Interactions Hôtes Agents Pathogènes, Institut National de la Recherche Agronomique (INRA) – Ecole Nationale Vétérinaire Toulouse, Université de ToulouseToulouse, France
| |
Collapse
|
23
|
Effects of In-Feed Chlortetracycline Prophylaxis in Beef Cattle on Animal Health and Antimicrobial-Resistant Escherichia coli. Appl Environ Microbiol 2016; 82:7197-7204. [PMID: 27736789 DOI: 10.1128/aem.01928-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr) Escherichia coli and third-generation cephalosporin-resistant (3GCr) E. coli We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal health, TETr E. coli, and 3GCr E. coli A control group of cattle (n = 150) received no CTC, while a CTC group (n = 150) received in-feed CTC (10 mg/lb of body weight/day) from the 5th to the 9th day after feedlot arrival. Over 25% (38/150) of the animals in the control group developed illnesses requiring therapeutic treatment with antimicrobials critically important to human medicine. Only two animals (1.3%) in the CTC group required such treatments. Fecal swab and pen surface occurrences of generic E. coli (isolated on media that did not contain antimicrobials of interest and were not isolated based on any specific resistance), TETr E. coli, and 3GCr E. coli were determined on five sampling occasions: arrival at the feedlot, 5 days posttreatment (5 dpt), 27 dpt, 75 dpt, and 117 dpt. On 5 dpt, TETr E. coli concentrations were higher for the CTC group than the control group (P < 0.01). On 27 dpt, 75 dpt, and 117 dpt, TETr E. coli concentrations did not differ between groups. 3GCr E. coli occurrences did not differ between control and CTC groups on any sampling occasion. For both groups, generic, TETr, and 3GCr E. coli occurrences were highest on 75 dpt and 117 dpt, suggesting that factors other than in-feed CTC contributed more significantly to antimicrobial-resistant E. coli occurrence. IMPORTANCE The occurrence of human bacterial infections resistant to antimicrobial therapy has been increasing. It has been postulated that antimicrobial resistance was inevitable, but the life span of the antimicrobial era has been prematurely compromised due to the misuse of antimicrobials in clinical and agricultural practices. Direct evidence relating the use of antimicrobials in livestock production to diminished human health outcomes due to antimicrobial resistance is lacking, and the U.S. Food and Drug Administration has taken an approach to maximize therapeutic efficacy and minimize the selection of resistant microorganisms through judicious use of antimicrobials. This study demonstrated that prophylactic in-feed treatment of chlortetracycline administered for 5 days to calves entering feedlots is judicious, as this therapy reduced animal morbidity, reduced the use of antimicrobials more critical to human health, and had no long-term impact on the occurrence of antimicrobial-resistant E. coli.
Collapse
|
24
|
Toutain PL, Ferran AA, Bousquet-Melou A, Pelligand L, Lees P. Veterinary Medicine Needs New Green Antimicrobial Drugs. Front Microbiol 2016; 7:1196. [PMID: 27536285 PMCID: PMC4971058 DOI: 10.3389/fmicb.2016.01196] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem.
Collapse
Affiliation(s)
- Pierre-Louis Toutain
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Aude A. Ferran
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Alain Bousquet-Melou
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Ludovic Pelligand
- Comparative Biomedical Sciences, The Royal Veterinary CollegeHatfield, UK
| | - Peter Lees
- Comparative Biomedical Sciences, The Royal Veterinary CollegeHatfield, UK
| |
Collapse
|
25
|
What is the evidence that point sources of anthropogenic effluent increase antibiotic resistance in the environment? Protocol for a systematic review. Anim Health Res Rev 2016; 17:9-15. [DOI: 10.1017/s1466252316000037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractHerein we describe a protocol for a systematic review of the evidence on whether point sources of anthropogenic effluent are associated with an increase in antibiotic resistance in the adjacent environment. The review question was based on the Population, Exposure, Comparator, Outcome, Study Design (PECOS) framework as follows: Is the prevalence or concentration of antibiotic resistant bacteria or resistance genes (O) in soil, water, air or free-living wildlife (P) higher in close proximity to, or downstream from, known or suspected sources of anthropogenic effluent (E) compared to areas more distant from or upstream from these sources (C)? A comprehensive search strategy was created to capture all relevant, published literature. Criteria for two stages of eligibility screening were developed to exclude publications that were not relevant to the question, and determine if the study used a design that permitted estimation of an association between a source and levels of resistance. A decision matrix was created for assessment of risk of bias to internal validity due to sample selection bias, information bias, and confounding. The goal of this protocol is to provide a method for determining the state of knowledge about the effect of point sources on antibiotic resistance in the environment.
Collapse
|
26
|
Abstract
In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans.
Collapse
Affiliation(s)
- Sophie Thanner
- Agroscope, Institute for Livestock Sciences, Posieux, Switzerland
| | - David Drissner
- Agroscope, Institute for Food Sciences, Waedenswil, Switzerland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
27
|
Durso LM, Wedin DA, Gilley JE, Miller DN, Marx DB. Assessment of Selected Antibiotic Resistances in Ungrazed Native Nebraska Prairie Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:454-62. [PMID: 27065391 DOI: 10.2134/jeq2015.06.0280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The inherent spatial heterogeneity and complexity of antibiotic-resistant bacteria and antibiotic resistance (AR) genes in manure-affected soils makes it difficult to sort out resistance that can be attributed to human antibiotic use from resistance that occurs naturally in the soil. This study characterizes native Nebraska prairie soils that have not been affected by human or food-animal waste products to provide data on background levels of resistance in southeastern Nebraskan soils. Soil samples were collected from 20 sites enumerated on tetracycline and cefotaxime media; screened for tetracycline-, sulfonamide-, β-lactamase-, and macrolide-resistance genes; and characterized for soil physical and chemical parameters. All prairies contained tetracycline- and cefotaxime-resistant bacteria, and 48% of isolates collected were resistant to two or more antibiotics. Most (98%) of the soil samples and all 20 prairies had at least one tetracycline gene. Most frequently detected were (D), (A) (O), (L), and (B). Sulfonamide genes, which are considered a marker of human or animal activity, were detected in 91% of the samples, despite the lack of human inputs at these sites. No correlations were found between either phenotypic or genotypic resistance and soil physical or chemical parameters. Heterogeneity was observed in AR within and between prairies. Therefore, multiple samples are necessary to overcome heterogeneity and to accurately assess AR. Conclusions regarding AR depend on the gene target measured. To determine the impacts of food-animal antibiotic use on resistance, it is essential that background and/or baseline levels be considered, and where appropriate subtracted out, when evaluating AR in agroecosystems.
Collapse
|
28
|
Xu S, Sura S, Zaheer R, Wang G, Smith A, Cook S, Olson AF, Cessna AJ, Larney FJ, McAllister TA. Dissipation of Antimicrobial Resistance Determinants in Composted and Stockpiled Beef Cattle Manure. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:528-536. [PMID: 27065400 DOI: 10.2134/jeq2015.03.0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Windrow composting or stockpiling reduces the viability of pathogens and antimicrobial residues in manure. However, the impact of these manure management practices on the persistence of genes coding for antimicrobial resistance is less well known. In this study, manure from cattle administered 44 mg of chlortetracycline kg feed (dry wt. basis) (CTC), 44 mg of CTC and 44 mg of sulfamethazine kg feed (CTCSMZ), 11 mg of tylosin kg feed (TYL), and no antimicrobials (control) were composted or stockpiled over 102 d. Temperature remained ≥55°C for 35 d in compost and 2 d in stockpiles. Quantitative PCR was used to measure levels of 16S rRNA genes and tetracycline [(B), (C), (L), (M), (W)], erythromycin [(A), (B), (F), (X)], and sulfamethazine [(1), (2)] resistance determinants. After 102 d, 16S rRNA genes and all resistance determinants declined by 0.5 to 3 log copies per gram dry matter. Copies of 16S rRNA genes were affected ( < 0.05) by antimicrobials with the ranking of control > CTC = TYL > CTCSMZ. Compared with the control, antimicrobials did not increase the abundance of resistance genes in either composted or stockpiled manure, except (M) and (2) in CTCSMZ ( < 0.05). The decline in 16S rRNA genes and resistance determinants was higher ( < 0.05) in composted than in stockpiled manure. We conclude that composting may be more effective than stockpiling in reducing the introduction of antimicrobial resistance genes into the environment before land application of manure.
Collapse
|
29
|
Williams-Nguyen J, Sallach JB, Bartelt-Hunt S, Boxall AB, Durso LM, McLain JE, Singer RS, Snow DD, Zilles JL. Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:394-406. [PMID: 27065386 DOI: 10.2134/jeq2015.07.0336] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts.
Collapse
|
30
|
An assessment of evidence data gaps in the investigation of possible transmission routes of extended spectrum β-lactamase producing Escherichia coli from livestock to humans in the UK. Prev Vet Med 2016; 124:1-8. [DOI: 10.1016/j.prevetmed.2015.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 01/30/2023]
|
31
|
Manges A. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016; 22:122-129. [DOI: 10.1016/j.cmi.2015.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
|
32
|
Cabello FC, Godfrey HP. Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environ Microbiol 2016; 18:311-3. [PMID: 26913818 DOI: 10.1111/1462-2920.13247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022]
Abstract
The potential negative impact for human health of veterinary use of antimicrobials in prophylaxis, metaphylaxis and growth promotion in animal husbandry was first established in the 1960s and 1970s. Determination of the molecular structure of antimicrobial resistance plasmids at that time explained the ability of antimicrobial resistance genes to disseminate among bacterial populations and elucidated the reasons for the negative effects of antimicrobials used in food animals for human health. In this issue of Environmental Microbiology, Liu et al. (2016) show that even therapeutic use of antimicrobials in dairy calves has an appreciable environmental microbiological footprint. We discuss the negative implications of this footprint for human health and the possibility they may lead to calls for increased regulation of veterinary antimicrobial use in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Felipe C Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Henry P Godfrey
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
33
|
Andreou C, Mirsafavi R, Moskovits M, Meinhart CD. Detection of low concentrations of ampicillin in milk. Analyst 2016; 140:5003-5. [PMID: 26087055 DOI: 10.1039/c5an00864f] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ampicillin, a common antibiotic, is detected at trace concentrations in milk using surface enhanced Raman spectroscopy in a microfluidic device, using less than 20 μL of sample, in 10 minutes, with minimal off-chip preparation. The device is configured so as to favor the interaction of the analyte with colloidal silver, and the optimization of the aggregation of the silver nanoparticles so as to increase the SERS intensity and the consequential sensitivity of analyte detection.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Institute of Collaborative Biotechnologies, University of California, Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
34
|
Benedict KM, Gow SP, McAllister TA, Booker CW, Hannon SJ, Checkley SL, Noyes NR, Morley PS. Antimicrobial Resistance in Escherichia coli Recovered from Feedlot Cattle and Associations with Antimicrobial Use. PLoS One 2015; 10:e0143995. [PMID: 26633649 PMCID: PMC4669080 DOI: 10.1371/journal.pone.0143995] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/12/2015] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to estimate the prevalence of antimicrobial resistance (AMR) and to investigate the associations between exposures to antimicrobial drugs (AMDs) and AMR in fecal non-type specific Escherichia coli (NTSEC) recovered from a large population of feedlot cattle. Two-stage random sampling was used to select individually identified cattle for enrollment, which were sampled at arrival and then a second time later in the feeding period. Advanced regression techniques were used to estimate resistance prevalences, and to investigate associations between AMD exposures in enrolled cattle and penmates and AMR identified in NTSEC recovered from the second sample set. Resistance was most commonly detected to tetracycline, streptomycin, and sulfisoxazole, and was rarely identified for critically important AMDs. All cattle were exposed to AMDs in feed, and 45% were treated parenterally. While resistance prevalence generally increased during the feeding period, most AMD exposures were not significantly associated with AMR outcomes. Exposures of enrolled cattle to tetracycline were associated with increased resistance to tetracycline and trimethoprim sulfa, while beta-lactam exposures were associated with decreased likelihood of detecting streptomycin resistance. Pen-level AMD exposure measures were not associated with resistance outcomes. These findings suggest that tetracycline treatment of feedlot cattle can be associated with modest increases in risk for recovery of resistant NTSEC, but the numerous treatments with an advanced macrolide (tulathromycin) were not associated with detectable increases in resistance in NTSEC. All cattle were exposed to in-feed treatments of tetracycline and this could limit the ability to identify the full impact of these exposures, but these exposures varied for enrolled cattle varied, providing an opportunity to evaluate a dose response. While AMD exposures were not associated with detectably increased risks for resistance to critically important AMDs, rare resistance outcomes and infrequent exposure to other important AMDs (e.g., cephalosporins) limited our ability to rigorously investigate questions regarding factors that can influence resistance to these important AMDs.
Collapse
Affiliation(s)
- Katharine M. Benedict
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sheryl P. Gow
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tim A. McAllister
- Lethbridge Research Center, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Calvin W. Booker
- Feedlot Health Management Services, Ltd., Okotoks, Alberta, Canada
| | - Sherry J. Hannon
- Feedlot Health Management Services, Ltd., Okotoks, Alberta, Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Noelle R. Noyes
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Paul S. Morley
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Unraveling antimicrobial resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken products in Japan. PLoS One 2015; 10:e0121189. [PMID: 25781022 PMCID: PMC4363150 DOI: 10.1371/journal.pone.0121189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/28/2015] [Indexed: 01/21/2023] Open
Abstract
Multidrug-resistant enterococci are considered crucial drivers for the dissemination of antimicrobial resistance determinants within and beyond a genus. These organisms may pass numerous resistance determinants to other harmful pathogens, whose multiple resistances would cause adverse consequences. Therefore, an understanding of the coexistence epidemiology of resistance genes is critical, but such information remains limited. In this study, our first objective was to determine the prevalence of principal resistance phenotypes and genes among Enterococcus faecalis isolated from retail chicken domestic products collected throughout Japan. Subsequent analysis of these data by using an additive Bayesian network (ABN) model revealed the co-appearance patterns of resistance genes and identified the associations between resistance genes and phenotypes. The common phenotypes observed among E. faecalis isolated from the domestic products were the resistances to oxytetracycline (58.4%), dihydrostreptomycin (50.4%), and erythromycin (37.2%), and the gene tet(L) was detected in 46.0% of the isolates. The ABN model identified statistically significant associations between tet(L) and erm(B), tet(L) and ant(6)-Ia, ant(6)-Ia and aph(3’)-IIIa, and aph(3’)-IIIa and erm(B), which indicated that a multiple-resistance profile of tetracycline, erythromycin, streptomycin, and kanamycin is systematic rather than random. Conversely, the presence of tet(O) was only negatively associated with that of erm(B) and tet(M), which suggested that in the presence of tet(O), the aforementioned multiple resistance is unlikely to be observed. Such heterogeneity in linkages among genes that confer the same phenotypic resistance highlights the importance of incorporating genetic information when investigating the risk factors for the spread of resistance. The epidemiological factors that underlie the persistence of systematic multiple-resistance patterns warrant further investigations with appropriate adjustments for ecological and bacteriological factors.
Collapse
|
36
|
Phenotypic and genotypic antibiotic resistance profiles of Escherichia coli O157 from cattle and slaughterhouse wastewater isolates. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0961-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|