1
|
Liu X, Pan B, Wang L, Zhang Y, Zhao X, Han X, Liu X, Hu J. Water temperature and salt ions respectively drive the community assembly of bacterial generalists and specialists in diverse plateau lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175271. [PMID: 39102958 DOI: 10.1016/j.scitotenv.2024.175271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Plateau lakes (e.g., freshwater and saltwater lakes) are formed through intricate processes and harbor diverse microorganisms that mediate aquatic ecosystem functions. The adaptive mechanisms of lake microbiota to environmental changes and the ecological impacts of such changes on microbial community assembly are still poorly understood in plateau regions. This study investigated the structure and assembly of planktonic bacterial communities in 24 lakes across the Qinghai-Tibetan and Inner Mongolia Plateaus, with particular focus on habitat generalists, opportunists, and specialists. High-throughput sequencing of the 16S ribosomal RNA genes revealed that bacterial generalists had a lower species number (2196) but higher alpha diversity than the specialist and opportunist counterparts. Taxonomic dissimilarity and phylogenetic diversity analyses unraveled less pronounced difference in the community composition of bacterial generalists compared to the specialist and opportunist counterparts. Geographical scale (14.4 %) and water quality (12.6 %) emerged as major ecological variables structuring bacterial communities. Selection by water temperature and related variables, including mean annual temperature, elevation, longitude, and latitude, mainly shaped the assembly of bacterial generalists. Ecological drift coupled with selection by salt ions and related variables, including total phosphorus, chlorophyll a, and salinity, predominantly drove the assembly of bacterial specialists and opportunists. This study uncovers distinct bacterial responses to interacting ecological variables in diverse plateau lakes and the ecological processes structuring bacterial communities across various lake habitats under anthropogenic disturbance or climate change.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China.
| | - Lixin Wang
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010021, China
| | - Yichi Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Jingxiang Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| |
Collapse
|
2
|
Eglit Y, Williams SK, Roger AJ, Simpson AGB. Characterization of Skoliomonas gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada). J Eukaryot Microbiol 2024:e13048. [PMID: 39225178 DOI: 10.1111/jeu.13048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Metamonads are a large and exclusively anaerobic group of protists. Additionally, they are one of the three clades proposed to ancestrally possess an "excavate" cell morphology, with a conspicuous ventral groove accompanied by a posterior flagellum with a vane. Here, we cultivate and characterize four anaerobic bacterivorous flagellates from hypersaline and alkaline soda lake environments, which represent a novel clade. Small subunit ribosomal RNA (SSU rRNA) gene phylogenies support recent phylogenomic analyses in placing them as the sister of barthelonids, a group that is itself sister to or deeply branching within Fornicata (Metamonada). The new isolates have a distinctive morphology: the hunchbacked cell body is traversed by a narrow ventral groove ending in a large opening to a conspicuous recurrent cytopharynx. The right margin of the groove is defined by a thin "lip." The posterior flagellum bears a wide ventral-facing vane. The narrow ventral groove and elongate cytopharynx are shared with barthelonids. We describe one isolate as Skoliomonas litria, gen. et sp. nov. Further investigation of their mitochondrial-related organelles (MROs) and detailed ultrastructural studies would be important to understanding the adaptation to anaerobic conditions in Metamonads-especially fornicates-as well as the evolution of the "excavate" cell architecture.
Collapse
Affiliation(s)
- Yana Eglit
- Department of Biology, and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shelby K Williams
- Department of Biochemistry, and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Department of Biochemistry, and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alastair G B Simpson
- Department of Biology, and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Pellegrinetti TA, Cotta SR, Feitosa YB, Melo PLA, Bieluczyk W, Silva AMM, Mendes LW, Sarmento H, Camargo PB, Tsai SM, Fiore MF. The role of microbial communities in biogeochemical cycles and greenhouse gas emissions within tropical soda lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174646. [PMID: 38986696 DOI: 10.1016/j.scitotenv.2024.174646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.
Collapse
Affiliation(s)
- Thierry A Pellegrinetti
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil.
| | - Simone R Cotta
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Yara B Feitosa
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Paul L A Melo
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Wanderlei Bieluczyk
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Antonio M M Silva
- University of São Paulo (USP), "Luiz de Queiroz" College of Agriculture, Soil Science Department, Piracicaba, São Paulo 13418-900, Brazil
| | - Lucas W Mendes
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Hugo Sarmento
- Federal University of São Carlos (UFSCar), Department of Hydrobiology, São Carlos, São Paulo 13565-905, Brazil
| | - Plinio B Camargo
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Siu M Tsai
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Marli F Fiore
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil.
| |
Collapse
|
4
|
Sorokin DY, Merkel AY, Kolganova TV, Bale NJ, Sinninghe Damsté JS. Natronospira bacteriovora sp. nov., and Natronospira elongata sp. nov., extremely salt-tolerant predatory proteolytic bacteria from soda lakes and proposal to classify the genus Natronospira into Natronospiraceae fam. nov., and Natronospirales ord. nov., within the class Gammaproteobacteria. Syst Appl Microbiol 2024; 47:126519. [PMID: 38759530 DOI: 10.1016/j.syapm.2024.126519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The genus Natronospira is represented by a single species of extremely salt-tolerant aerobic alkaliphilic proteolytic bacterium, isolated from hypersaline soda lakes. When cells of Gram-positive cocci were used as a substrate instead of proteins at extremely haloalkaline conditions, two new members of this genus were enriched and isolated in pure culture from the same sites. Strains AB-CW1 and AB-CW4 are obligate aerobic heterotrophic proteolytic bacteria able to feed on both live and dead cells of staphylococci and a range of proteins and peptides. Similar to the type species, N. proteinivora, the isolates are extremely salt-tolerant obligate alkaliphiles. However, N. proteinivora was unable to use bacterial cells as a substrate. Electron microscopy showed direct contact between the prey and predator cells. Functional analysis of the AB-CW1 and AB-CW4 genomes identified two sets of genes coding for extracellular enzymes potentially involved in the predation and proteolysis, respectively. The first set includes several copies of lysozyme-like GH23 peptidoglycan-lyase and murein-specific M23 [Zn]-di-peptidase enabling the cell wall degradation. The second set features multiple copies of secreted serine and metallopeptidases apparently allowing for the strong proteolytic phenotype. Phylogenomic analysis placed the isolates into the genus Natronospira as two novel species members, and furthermore indicated that this genus forms a deep-branching lineage of a new family (Natronospiraceae) and order (Natronospirales) within the class Gammaproteobacteria. On the basis of distinct phenotypic and genomic properties, strain AB-CW1T (JCM 335396 = UQM 41579) is proposed to be classified as Natronospira elongata sp. nov., and AB-CW4T (JCM 335397 = UQM 41580) as Natronospira bacteriovora sp. nov.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia; Department of Biotechnology, TU Delft, The Netherlands.
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana V Kolganova
- Skryabin Insitutute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, Texel, The Netherlands
| |
Collapse
|
5
|
Jeilu O, Alexandersson E, Johansson E, Simachew A, Gessesse A. A novel GH3-β-glucosidase from soda lake metagenomic libraries with desirable properties for biomass degradation. Sci Rep 2024; 14:10012. [PMID: 38693138 PMCID: PMC11063200 DOI: 10.1038/s41598-024-60645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, β-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a β-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the β-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the β-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied β-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Institute of Biotechnology, Addis Ababa University, P O Box 1176, Addis Ababa, Ethiopia.
| | - Erik Alexandersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, P O Box 1176, Addis Ababa, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, P O Box 1176, Addis Ababa, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
6
|
Samylina OS, Kosyakova AI, Krylov AA, Sorokin DY, Pimenov NV. Salinity-induced succession of phototrophic communities in a southwestern Siberian soda lake during the solar activity cycle. Heliyon 2024; 10:e26120. [PMID: 38404883 PMCID: PMC10884861 DOI: 10.1016/j.heliyon.2024.e26120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/09/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
A variety of lakes located in the dry steppe area of southwestern Siberia are exposed to rapid climatic changes, including intra-century cycles with alternating dry and wet phases driven by solar activity. As a result, the salt lakes of that region experience significant fluctuations in water level and salinity, which have an essential impact on the indigenous microbial communities. But there are few microbiological studies that have analyzed this impact, despite its importance for understanding the functioning of regional water ecosystems. This work is a retrospective study aimed at analyzing how solar activity-related changes in hydrological regime affect phototrophic microbial communities using the example of the shallow soda lake Tanatar VI, located in the Kulunda steppe (Altai Region, Russia, southwestern Siberia). The main approach used in this study was the comparison of hydrochemical and microscopic data obtained during annual field work with satellite and solar activity data for the 12-year observation period (2011-2022). The occurrence of 33 morphotypes of cyanobacteria, two key morphotypes of chlorophytes, and four morphotypes of anoxygenic phototrophic bacteria was analyzed due to their easily recognizable morphology. During the study period, the lake surface changed threefold and the salinity changed by more than an order of magnitude, which strongly correlated with the phases of the solar activity cycles. The periods of high (2011-2014; 100-250 g/L), medium (2015-2016; 60 g/L), extremely low (2017-2020; 13-16 g/L), and low (2021-2022; 23-34 g/L) salinity with unique biodiversity of phototrophic communities were distinguished. This study shows that solar activity cycles determine the dynamics of the total salinity of a southwestern Siberian soda lake, which in turn determines the communities and microorganisms that will occur in the lake, ultimately leading to cyclical changes in alternative states of the ecosystem (dynamic stability).
Collapse
Affiliation(s)
- Olga S. Samylina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
| | - Anastasia I. Kosyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
- Faculty of Soil Science, Moscow State University, GSP-1, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Artem A. Krylov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskiy Prospekt, 36, 117997 Moscow, Russia
| | - Dimitry Yu. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
| |
Collapse
|
7
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Chen Y, Xu Y, Ma Y, Lin J, Ruan A. Microbial community structure and its driving mechanisms in the Hangbu estuary of Chaohu Lake under different sedimentary areas. ENVIRONMENTAL RESEARCH 2023; 238:117153. [PMID: 37726029 DOI: 10.1016/j.envres.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Estuaries are known for their high ecological diversity and biological productivity. Sediment microorganisms, as crucial components of estuarine ecosystems, play a pivotal role in reflecting the intricate and dynamic ecological niches. However, our research on microbial community characteristics in estuarine ecosystems under different sedimentary types remains limited. In this study, we collected a total of 27 samples from three sampling sites at Hangbu estuary in Chaohu Lake, and three sedimentary areas were classified based on the overlying water flow conditions and sediment particle properties to elucidate their microbial community structure, environmental drivers, assembly processes, and co-occurrence network characteristics. Our results showed significant differences in microbial community composition and diversity among three sedimentary areas. Redundancy analysis indicated that the differences in microbial community composition at the OTU level among the three sedimentary areas were mainly determined by nitrate-nitrogen, temperature, and water content. Phylogenetic bin-based null model analysis revealed that temperature was a key factor influencing deterministic processes among the three sedimentary areas, while stochastic processes predominantly governed the assembly of microbial communities. In addition, co-occurrence network analysis demonstrated that the network in the hydraulically driven sedimentary area of the lake, consisting mainly of medium and fine silt, had the highest complexity, stability, and cohesion, but was missing potential keystone taxa. The remaining two sedimentary areas had 5 and 8 potential keystone taxa, respectively. Overall, our study proposes the delineation of sedimentary types and comprehensively elucidates the microbial community characteristics under different sedimentary areas, providing a new perspective for studying sediment microbial community structure and helping future scholars systematically study ecological dynamics in estuaries.
Collapse
Affiliation(s)
- Yang Chen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yaofei Xu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yunmei Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jie Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
9
|
Viana JLM, Steffler DA, Hernández AH, Dos Santos Costa J, Pellegrinetti TA, de Jesus ECR, Cancian M, Fiore MF, Rezende-Filho AT, Sussulini A, Barbiero L, Menegario AA, Fostier AH. Bioaccumulation and speciation of arsenic in plankton from tropical soda lakes along a salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165189. [PMID: 37391131 DOI: 10.1016/j.scitotenv.2023.165189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Uptake and transformation of arsenic (As) by living organisms can alter its distribution and biogeochemical cycles in the environment. Although well known for its toxicity, several aspects of As accumulation and biological transformation by field species are still little explored. In this study, the bioaccumulation and speciation of As in phytoplankton and zooplankton from five soda lakes in the Brazilian Pantanal wetland were studied. Such lakes exhibited contrasting biogeochemical characteristics along an environmental gradient. Additionally, the influence of contrasting climatic events was assessed by collecting samples during an exceptional drought in 2017 and a flood in 2018. Total As (AsTot) content and speciation were determined using spectrometric techniques, while a suspect screening of organoarsenicals in plankton samples was carried out by high-resolution mass spectrometry. Results showed that AsTot content ranged from 16.9 to 62.0 mg kg-1 during the dry period and from 2.4 to 12.3 mg kg-1 during the wet period. The bioconcentration and bioaccumulation factors (BCF and BAF) in phytoplankton and zooplankton were found to be highly dependent on the lake typology, which is influenced by an ongoing evapoconcentration process in the region. Eutrophic and As-enriched lakes exhibited the lowest BCF and BAF values, possibly due to the formation of non-labile As complexes with organic matter or limited uptake of As by plankton caused by high salinity stress. The season played a decisive role in the results, as significantly higher BCF and BAF values were observed during the flooding event when the concentration of dissolved As in water was low. The diversity of As species was found to be dependent on the lake typology and on the resident biological community, cyanobacteria being responsible for a significant portion of As metabolism. Arsenosugars and their degradation products were detected in both phytoplankton and zooplankton, providing evidence for previously reported detoxification pathways. Although no biomagnification pattern was observed, the diet seemed to be an important exposure pathway for zooplankton.
Collapse
Affiliation(s)
- José Lucas Martins Viana
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| | - Débora Aparecida Steffler
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | - Juliana Dos Santos Costa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario 303, 13400-970 Piracicaba, SP, Brazil
| | | | | | - Marianna Cancian
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Marli Fátima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario 303, 13400-970 Piracicaba, SP, Brazil
| | | | - Alessandra Sussulini
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Laurent Barbiero
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Université P. Sabatier, IRD, CNRS, OMP, Géoscience Environnement Toulouse (GET), 14 Avenue Edouard Belin, F31400 Toulouse, France; Center of Sciences and Technologies for Sustainability, São Carlos Federal University, Sorocaba, SP 18052-780, Brazil
| | - Amauri Antonio Menegario
- São Paulo State University (UNESP), Environmental Studies Center, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Anne Helene Fostier
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
10
|
Boltyanskaya Y, Zhilina T, Grouzdev D, Detkova E, Pimenov N, Kevbrin V. Halanaerobium polyolivorans sp. nov.-A Novel Halophilic Alkalitolerant Bacterium Capable of Polyol Degradation: Physiological Properties and Genomic Insights. Microorganisms 2023; 11:2325. [PMID: 37764169 PMCID: PMC10536098 DOI: 10.3390/microorganisms11092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
A search for the microorganisms responsible for the anaerobic degradation of osmoprotectants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth occurs at 1.6-2.1 M Na+, pH 8.0-8.5, and 31-35 °C. The strain utilized mainly sugars, low molecular polyols, and ethanolamine as well. The G+C content of the genomic DNA of strain Z-7514T was 33.3 mol%. Phylogenetic and phylogenomic analyses revealed that strain Z-7514T belongs to the genus Halanaerobium. On the basis of phenotypic properties and the dDDH and ANI values with close validly published species, it was proposed to evolve strain Z-7514T within the genus Halanaerobium into novel species, for which the name Halanaerobium polyolivorans sp. nov. was proposed. The type strain was Z-7514T (=KCTC 25405T = VKM B-3577T). For species of the genus Halanaerobium, the utilization of ethylene glycol, propylene glycol, and ethanolamine were shown for the first time. The anaerobic degradation of glycols and ethanolamine by strain Z-7514T may represent a novel metabiotic pathway within the alkaliphilic microbial community. Based on a detailed genomic analysis, the main pathways of catabolism of most of the used substrates have been identified.
Collapse
Affiliation(s)
- Yulia Boltyanskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Tatjana Zhilina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | | | - Ekaterina Detkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Nikolay Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Vadim Kevbrin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| |
Collapse
|
11
|
Ni G, Leung PM, Daebeler A, Guo J, Hu S, Cook P, Nicol GW, Daims H, Greening C. Nitrification in acidic and alkaline environments. Essays Biochem 2023; 67:753-768. [PMID: 37449414 PMCID: PMC10427799 DOI: 10.1042/ebc20220194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorganisms. While nitrification has primarily been studied in near-neutral environments, this process occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes. Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bacteria adapted to these environments. Here, we review the literature and identify knowledge gaps on the metabolic diversity, ecological distribution, and physiological adaptations of nitrifying microorganisms in acidic and alkaline environments. We emphasise that nitrifying microorganisms depend on a suite of physiological adaptations to maintain pH homeostasis, acquire energy and carbon sources, detoxify reactive nitrogen species, and generate a membrane potential at pH extremes. We also recognize the broader implications of their activities primarily in acidic environments, with a focus on agricultural productivity and nitrous oxide emissions, as well as promising applications in treating municipal wastewater.
Collapse
Affiliation(s)
- Gaofeng Ni
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, Queensland, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, Queensland, Australia
| | - Perran Cook
- School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Zhilina TN, Sorokin DY, Toshchakov SV, Kublanov IV, Zavarzina DG. Natronogracilivirga saccharolytica gen. nov., sp. nov. and Cyclonatronum proteinivorum gen. nov., sp. nov., haloalkaliphilic organotrophic bacteroidetes from hypersaline soda lakes forming a new family Cyclonatronaceae fam. nov. in the order Balneolales. Syst Appl Microbiol 2023; 46:126403. [PMID: 36736145 DOI: 10.1016/j.syapm.2023.126403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Two heterotrophic bacteroidetes strains were isolated as satellites from autotrophic enrichments inoculated with samples from hypersaline soda lakes in southwestern Siberia. Strain Z-1702T is an obligate anaerobic fermentative saccharolytic bacterium from an iron-reducing enrichment culture, while Ca. Cyclonatronum proteinivorum OmegaT is an obligate aerobic proteolytic microorganism from a cyanobacterial enrichment. Cells of isolated bacteria are characterized by highly variable morphology. Both strains are chloride-independent moderate salt-tolerant obligate alkaliphiles and mesophiles. Strain Z-1702T ferments glucose, maltose, fructose, mannose, sorbose, galactose, cellobiose, N-acetyl-glucosamine and alpha-glucans, including starch, glycogen, dextrin, and pullulan. Strain OmegaT is strictly proteolytic utilizing a range of proteins and peptones. The main polar lipid fatty acid in both strains is iso-C15:0, while other major components are various C16 and C17 isomers. According to pairwise sequence alignments using BLAST Gracilimonas was the nearest cultured relative to both strains (<90% of 16S rRNA gene sequence identity). Phylogenetic analysis placed strain Z-1702T and strain OmegaT as two different genera in a deep-branching clade of the new family level within the order Balneolales with genus. Based on physiological characteristics and phylogenetic position of strain Z-1702T it was proposed to represent a novel genus and species Natronogracilivirga saccharolityca gen. nov., sp. nov. (= DSMZ 109061T =JCM 32930T =VKM B 3262T). Furthermore, phylogenetic and phenotypic parameters of N. saccharolityca and C. proteinivorum gen. nov., sp. nov., strain OmegaT (=JCM 31662T, =UNIQEM U979T), make it possible to include them into a new family with a proposed designation Cyclonatronaceae fam. nov..
Collapse
Affiliation(s)
- Tatjana N Zhilina
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia; Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Stepan V Toshchakov
- Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", 1 ac. Kurchatov square, 123098 Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia; Microbiology Department, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1 bld. 12, 119234 Moscow, Russia
| | - Daria G Zavarzina
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| |
Collapse
|
13
|
Singh J, Kaushik S, Maharana C, Jhingan GD, Dhar DW. Elevated inorganic carbon and salinity enhances photosynthesis and ATP synthesis in picoalga Picocystis salinarum as revealed by label free quantitative proteomics. Front Microbiol 2023; 14:1059199. [PMID: 36937286 PMCID: PMC10020504 DOI: 10.3389/fmicb.2023.1059199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Saline soda lakes are of immense ecological value as they niche some of the most exclusive haloalkaliphilic communities dominated by bacterial and archaeal domains, with few eukaryotic algal representatives. A handful reports describe Picocystis as a key primary producer with great production rates in extremely saline alkaline habitats. An extremely haloalkaliphilic picoalgal strain, Picocystis salinarum SLJS6 isolated from hypersaline soda lake Sambhar, Rajasthan, India, grew robustly in an enriched soda lake medium containing mainly Na2CO3, 50 g/l; NaHCO3, 50 g/l, NaCl, 50 g/l (salinity ≈150‰) at pH 10. To elucidate the molecular basis of such adaptation to high inorganic carbon and NaCl concentrations, a high-throughput label-free quantitation based quantitative proteomics approach was applied. Out of the total 383 proteins identified in treated samples, 225 were differentially abundant proteins (DAPs), of which 150 were statistically significant (p < 0.05) including 70 upregulated and 64 downregulated proteins after 3 days of growth in highly saline-alkaline medium. Most DAPs were involved in photosynthesis, oxidative phosphorylation, glucose metabolism and ribosomal structural components envisaging that photosynthesis and ATP synthesis were central to the salinity-alkalinity response. Key components of photosynthetic machinery like photosystem reaction centres, adenosine triphosphate (ATP) synthase ATP, Rubisco, Fructose-1,6-bisphosphatase, Fructose-bisphosphate aldolase were highly upregulated. Enzymes peptidylprolyl isomerases (PPIase), important for correct protein folding showed remarkable marked-up regulation along with other chaperon proteins indicating their role in osmotic adaptation. Enhanced photosynthetic activity exhibited by P. salinarum in highly saline-alkaline condition is noteworthy as photosynthesis is suppressed under hyperosmotic conditions in most photosynthetic organisms. The study provided the first insights into the proteome of extremophilic alga P. salinarum exhibiting extraordinary osmotic adaptation and proliferation in polyextreme conditions prevailing in saline sodic ecosystems, potentially unraveling the basis of resilience in this not so known organism and paves the way for a promising future candidate for biotechnological applications and model organism for deciphering the molecular mechanisms of osmotic adaptation. The mass spectrometry proteomics data is available at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD037170.
Collapse
Affiliation(s)
- Jyoti Singh
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
- Department of Earth Sciences, Pondicherry University, Puducherry, India
- *Correspondence: Jyoti Singh,
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited, New Delhi, India
| | - Chinmaya Maharana
- Department of Earth Sciences, Pondicherry University, Puducherry, India
- Water Technology Centre, Indian Agricultural Research Institute, New Delhi, India
| | | | - Dolly Wattal Dhar
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Jeilu O, Simachew A, Alexandersson E, Johansson E, Gessesse A. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Front Microbiol 2022; 13:1059061. [PMID: 36569080 PMCID: PMC9768486 DOI: 10.3389/fmicb.2022.1059061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extremophiles provide a one-of-a-kind source of enzymes with properties that allow them to endure the rigorous industrial conversion of lignocellulose biomass into fermentable sugars. However, the fact that most of these organisms fail to grow under typical culture conditions limits the accessibility to these enzymes. In this study, we employed a functional metagenomics approach to identify carbohydrate-degrading enzymes from Ethiopian soda lakes, which are extreme environments harboring a high microbial diversity. Out of 21,000 clones screened for the five carbohydrate hydrolyzing enzymes, 408 clones were found positive. Cellulase and amylase, gave high hit ratio of 1:75 and 1:280, respectively. A total of 378 genes involved in the degradation of complex carbohydrates were identified by combining high-throughput sequencing of 22 selected clones and bioinformatics analysis using a customized workflow. Around 41% of the annotated genes belonged to the Glycoside Hydrolases (GH). Multiple GHs were identified, indicating the potential to discover novel CAZymes useful for the enzymatic degradation of lignocellulose biomass from the Ethiopian soda Lakes. More than 73% of the annotated GH genes were linked to bacterial origins, with Halomonas as the most likely source. Biochemical characterization of the three enzymes from the selected clones (amylase, cellulase, and pectinase) showed that they are active in elevated temperatures, high pH, and high salt concentrations. These properties strongly indicate that the evaluated enzymes have the potential to be used for applications in various industrial processes, particularly in biorefinery for lignocellulose biomass conversion.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
15
|
Zhao L, Shao H, Zhang L, Panno SV, Kelly WR, Lin TY, Liu WT, Flynn TM, Berger P. Impact of salinity origin on microbial communities in saline springs within the Illinois Basin, USA. Environ Microbiol 2022; 24:6112-6127. [PMID: 36222141 PMCID: PMC10099389 DOI: 10.1111/1462-2920.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
Saline springs within the Illinois Basin result from the discharge of deep-seated evaporated seawater (brine) and likely contain diverse and complex microbial communities that are poorly understood. In this study, seven saline/mineral springs with different geochemical characteristics and salinity origins were investigated using geochemical and molecular microbiological analyses to reveal the composition of microbial communities inhabiting springs and their key controlling factors. The 16S rRNA sequencing results demonstrated that each spring harbours a unique microbial community influenced by its geochemical properties and subsurface conditions. The microbial communities in springs that originated from Cambrian/Ordovician strata, which are deep confined units that have limited recharge from overlying formations, share a greater similarity in community composition and have a higher species richness and more overlapped taxa than those that originated from shallower Pennsylvanian strata, which are subject to extensive regional surface and groundwater recharge. The microbial distribution along the spring flow paths at the surface indicates that 59.8%-94.2% of total sequences in sedimentary samples originated from spring water, highlighting the role of springs in influencing microbiota in the immediate terrestrial environment. The results indicate that the springs introduce microbiota with a high biodiversity into surface terrestrial or aquatic ecosystems, potentially affecting microbial reservoirs in downstream ecosystems.
Collapse
Affiliation(s)
- Linduo Zhao
- Illinois Sustainable Technology Center, Illinois, USA.,Illinois State Water Survey, Illinois, USA
| | - Hongbo Shao
- Illinois State Geology Survey, Illinois, USA
| | - Li Zhang
- Illinois Sustainable Technology Center, Illinois, USA
| | | | | | - Tzu-Yu Lin
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Theodore M Flynn
- California Department of Water Resources, West Sacramento, California, USA
| | | |
Collapse
|
16
|
Limnospira fusiformis harbors dinitrogenase reductase (nifH)-like genes, but does not show N2 fixation activity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Li X, Yang M, Mu T, Miao D, Liu J, Xing J. Composition and key-influencing factors of bacterial communities active in sulfur cycling of soda lake sediments. Arch Microbiol 2022; 204:317. [PMID: 35567694 DOI: 10.1007/s00203-022-02925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Bacteria are important participants in sulfur cycle of the extremely haloalkaline environment, e.g. soda lake. The effects of physicochemical factors on the composition of sulfide-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in soda lake have remained elusive. Here, we surveyed the community structure of total bacteria, SOB and SRB based on 16S rRNA, soxB and dsrB gene sequencing, respectively, in five soda lakes with different physicochemical factors. The results showed that the dominant bacteria belonged to the phyla Proteobacteria, Bacteroidetes, Halanaerobiaeota, Firmicutes and Actinobacteria. SOB and SRB were widely distributed in lakes with different physicochemical characteristics, and the community composition were different. In general, salinity and inorganic nitrogen sources (NH4+-N, NO3--N) were the most significant factors. Specifically, the communities of SOB, mainly including Thioalkalivibrio, Burkholderia, Paracoccus, Bradyrhizobium, and Hydrogenophaga genera, were remarkably influenced by the levels of NH4+-N and salinity. Yet, for SRB communities, including Desulfurivibrio, Candidatus Electrothrix, Desulfonatronospira, Desulfonatronum, Desulfonatronovibrio, Desulfonatronobacter and so on, the most significant determinants were salinity and NO3--N. Besides, Rhodoplanes played a significant role in the interaction between SOB and SRB. From our results, the knowledge regarding the community structures of SOB and SRB in extremely haloalkaline environment was extended.
Collapse
Affiliation(s)
- Xiangyuan Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Delu Miao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinlong Liu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Sala D, Grossi V, Agogué H, Leboulanger C, Jézéquel D, Sarazin G, Antheaume I, Bernard C, Ader M, Hugoni M. Influence of aphotic haloclines and euxinia on organic biomarkers and microbial communities in a thalassohaline and alkaline volcanic crater lake. GEOBIOLOGY 2022; 20:292-309. [PMID: 34687126 DOI: 10.1111/gbi.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Studies on microbial communities, and their associated organic biomarkers, that are found thriving in the aphotic euxinic waters in modern stratified ecosystems are scarce compared to those undertaken in euxinic photic zones. The Dziani Dzaha (Mayotte, Indian Ocean) is a tropical, saline, alkaline crater lake that has recently been presented as a modern analog of Proterozoic Oceans due to its thalassohaline classification (having water of marine origin) and specific biogeochemical characteristics. Continuous intense photosynthetic production and microbial mineralization keep most of the water column permanently aphotic and anoxic preventing the development of a euxinic (sulfidic and anoxic) photic zone despite a high sulfide/sulfate ratio and the presence of permanent or seasonal haloclines. In this study, the molecular composition of the organic matter in Lake Dziani Dzaha was investigated and compared to the microbial diversity evaluated through 16S rRNA gene amplicon sequencing, over two contrasting seasons (rainy vs. dry) that influence water column stratification. Depth profiles of organic biomarker concentrations (chlorophyll-a and lipid biomarkers) and bacterial and archaeal OTU abundances appeared to be strongly dependent on the presence of aphotic haloclines and euxinia. OTU abundances revealed the importance of specific haloalkaliphilic bacterial and archaeal assemblages in phytoplanktonic biomass recycling and the biogeochemical functioning of the lake, suggesting new haloalkaline non-phototrophic anaerobic microbial precursors for some of the lipid biomarkers. Uncultured Firmicutes from the family Syntrophomonadaceae (Clostridiales), and Bacteroidetes from the ML635J-40 aquatic group, emerged as abundant chemotrophic bacterial members in the anoxic or euxinic waters and were probably responsible for the production of short-chain n-alkenes, wax esters, diplopterol, and tetrahymanol. Halocline-dependent euxinia also had a strong impact on the archaeal community which was dominated by Woesearchaeota in the sulfide-free waters. In the euxinic waters, methanogenic Euryarchaeota from the Methanomicrobia, Thermoplasmata, and WSA2 classes dominated and were likely at the origin of common hydrocarbon biomarkers of methanogens (phytane, pentamethyl-eicosenes, and partially hydrogenated squalene).
Collapse
Affiliation(s)
- David Sala
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Vincent Grossi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Hélène Agogué
- LIENSs, UMR 7266, La Rochelle Université - CNRS, La Rochelle, France
| | | | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, France
| | - Gérard Sarazin
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Ingrid Antheaume
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENSL, UJM, LGL-TPE, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Magali Ader
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
20
|
Gupta S, Plugge CM, Klok JBM, Muyzer G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol Biotechnol 2022; 106:1759-1776. [PMID: 35147744 PMCID: PMC8882115 DOI: 10.1007/s00253-022-11771-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Abstract In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. Key points • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11771-y.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Paqell B.V, Utrecht, The Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Sodium Energetic Cycle in the Natronophilic Bacterium Thioalkalivibrio versutus. Int J Mol Sci 2022; 23:ijms23041965. [PMID: 35216079 PMCID: PMC8874543 DOI: 10.3390/ijms23041965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c oxidase (CO). The enzyme generates a sodium-motive force (Δs) as high as −270 mV across the bacterial plasma membrane. However, in these bacteria, operation of the possible Δs consumers has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic cycle in these bacteria. The resulting motility was activated in the presence of the protonophore 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and was fully blocked by amiloride—an inhibitor of Na+-motive flagella. In immotile starving bacteria, ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions of soda lakes.
Collapse
|
22
|
Csitári B, Bedics A, Felföldi T, Boros E, Nagy H, Máthé I, Székely AJ. Anion-type modulates the effect of salt stress on saline lake bacteria. Extremophiles 2022; 26:12. [PMID: 35137260 PMCID: PMC8825391 DOI: 10.1007/s00792-022-01260-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Beside sodium chloride, inland saline aquatic systems often contain other anions than chloride such as hydrogen carbonate and sulfate. Our understanding of the biological effects of salt composition diversity is limited; therefore, the aim of this study was to examine the effect of different anions on the growth of halophilic bacteria. Accordingly, the salt composition and concentration preference of 172 strains isolated from saline and soda lakes that differed in ionic composition was tested using media containing either carbonate, chloride or sulfate as anion in concentration values ranging from 0 to 0.40 mol/L. Differences in salt-type preference among bacterial strains were observed in relationship to the salt composition of the natural habitat they were isolated from indicating specific salt-type adaptation. Sodium carbonate represented the strongest selective force, while majority of strains was well-adapted to growth even at high concentrations of sodium sulfate. Salt preference was to some extent associated with taxonomy, although variations even within the same bacterial species were also identified. Our results suggest that the extent of the effect of dissolved salts in saline lakes is not limited to their concentration but the type of anion also substantially impacts the growth and survival of individual microorganisms.
Collapse
Affiliation(s)
- Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Anna Bedics
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Depatment of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2100, Gödöllő, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Hajnalka Nagy
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104, Miercurea Ciuc, Romania
| | - Anna J Székely
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
23
|
Zhang M, Xue Q, Zhang S, Zhou H, Xu T, Zhou J, Zheng Y, Li M, Kumar S, Zhao D, Xiang H. Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium. AMB Express 2021; 11:142. [PMID: 34693461 PMCID: PMC8542531 DOI: 10.1186/s13568-021-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Microorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide’s dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min−1·g−1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.
Collapse
|
24
|
Xue Q, Zhao D, Zhang S, Zhou H, Zuo Z, Zhou J, Li M, Xiang H. Highly integrated adaptive mechanisms in Spiribacter halalkaliphilus, a bacterium abundant in Chinese soda-saline lakes. Environ Microbiol 2021; 23:6463-6482. [PMID: 34587356 PMCID: PMC9292931 DOI: 10.1111/1462-2920.15794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Soda-saline lakes are polyextreme environments inhabited by many haloalkaliphiles, including one of the most abundant Spiribacter species. However, its mechanisms of adaptation are not ecophysiologically characterized. Based on a large-scale cultivation strategy, we obtained a representative isolate of this Spiribacter species whose relative abundance was the highest (up to 15.63%) in a wide range of salinities in the soda-saline lakes in Inner Mongolia, China. This species is a chemoorganoheterotrophic haloalkaliphile. It has a small and streamlined genome and utilizes a wide variety of compatible solutes to resist osmotic pressure and multiple monovalent cation/proton antiporters for pH homeostasis. In addition to growth enhancement by light under microaerobic conditions, cell growth, organic substrate consumption and polyhydroxybutyrate biosynthesis were also improved by inorganic sulfide. Both quantitative RT-PCR and enzymatic assays verified that sulfide:quinone oxidoreductase was upregulated during this process. Metatranscriptomic analysis indicated that all genes related to environmental adaptation were transcribed in natural environments. Overall, this study has identified a novel abundant haloalkaliphile with multiple and highly integrated adaptive strategies and found that inorganic sulfide was able to improve the adaptation of a heterotroph to polyextreme environments.
Collapse
Affiliation(s)
- Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenqiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Belilla J, Iniesto M, Moreira D, Benzerara K, López-García JM, López-Archilla AI, Reboul G, Deschamps P, Gérard E, López-García P. Archaeal overdominance close to life-limiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environ Microbiol 2021; 23:7168-7182. [PMID: 34519149 DOI: 10.1111/1462-2920.15771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The Dallol protovolcanic area on the Danakil Depression (Afar region, Ethiopia) exhibits unique hydrothermal manifestations in hypersaline context, yielding varied polyextreme physicochemical conditions. Previous studies identified a wide archaeal diversity in less extreme brines but failed to identify microorganisms thriving in either high-chaotropicity, low-water-activity brines or hyperacidic-hypersaline Na-Fe-rich brines. Recently, we accessed several small lakes under intense degassing activity adjacent to the Round Mountain, west to the Dallol dome [Western Canyon Lakes (WCL); WCL1-5]. They exhibited intermediate parameter combinations (pH ~ 5, 34%-41% (weight/volume) NaCl-dominated salts with relatively high levels of chaotropic Mg-Ca salts) that should allow to better constrain life limits. These lakes were overwhelmingly dominated by Archaea, encompassing up to 99% of prokaryotic 16S rRNA gene amplicon sequences in metabarcoding studies. The majority belonged to Halobacteriota and Nanohaloarchaeota, the latter representing up to half of prokaryotic sequences. Optical and epifluorescence microscopy showed active cells in natural samples and diverse morphotypes in enrichment cultures. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed tiny cells (200-300 nm diameter) epibiotically associated with somewhat larger cells (0.6-1 μm) but also the presence of silica-dominated precipitates of similar size and shape, highlighting the difficulty of distinguishing microbes from mineral biomorphs in this kind of low-biomass systems.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Philippe Deschamps
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
26
|
Miralles-Robledillo JM, Bernabeu E, Giani M, Martínez-Serna E, Martínez-Espinosa RM, Pire C. Distribution of Denitrification among Haloarchaea: A Comprehensive Study. Microorganisms 2021; 9:1669. [PMID: 34442748 PMCID: PMC8400030 DOI: 10.3390/microorganisms9081669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Microorganisms from the Halobacteria class, also known as haloarchaea, inhabit a wide range of ecosystems of which the main characteristic is the presence of high salt concentration. These environments together with their microbial communities are not well characterized, but some of the common features that they share are high sun radiation and low availability of oxygen. To overcome these stressful conditions, and more particularly to deal with oxygen limitation, some microorganisms drive alternative respiratory pathways such as denitrification. In this paper, denitrification in haloarchaea has been studied from a phylogenetic point of view. It has been demonstrated that the presence of denitrification enzymes is a quite common characteristic in Halobacteria class, being nitrite reductase and nitric oxide reductase the enzymes with higher co-occurrence, maybe due to their possible role not only in denitrification, but also in detoxification. Moreover, copper-nitrite reductase (NirK) is the only class of respiratory nitrite reductase detected in these microorganisms up to date. The distribution of this alternative respiratory pathway and their enzymes among the families of haloarchaea has also been discussed and related with the environment in which they constitute the major populations. Complete denitrification phenotype is more common in some families like Haloarculaceae and Haloferacaceae, whilst less common in families such as Natrialbaceae and Halorubraceae.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Elena Martínez-Serna
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
27
|
Zhou J, Xing J. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments. WATER RESEARCH 2021; 201:117354. [PMID: 34157573 DOI: 10.1016/j.watres.2021.117354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
As bridge in global cycles of carbon, nitrogen, and sulfur, sulfate-reducing bacteria (SRB) play more and more important role under various environments, especially the saline-alkali environments with significant increase in area caused by human activities. Sulfate reduction can be inhibited by environmental nitrate. However, how SRB cope with environmental nitrate stress in these extreme environments still remain unclear. Here, after a long-term enrichment of sediment from saline-alkali Qinghai Lake of China using anaerobic filter reactors, nitrate was added to evaluate the response of SRB. With the increase in nitrate concentrations, the inhibition on sulfate reduction was gradually observed. Interestingly, extension of hydraulic retention time can relieve the inhibition caused by high nitrate concentration. Mass balance analysis showed that nitrate reduction is prior to sulfate reduction. Further metatranscriptomic analysis shows that, genes of nitrite reductase (periplasmic cytochrome c nitrite reductase gene) and energy metabolisms (lactate dehydrogenase, formate dehydrogenase, pyruvate:ferredoxin-oxidoreductase, and fumarate reductase genes) in SRB was down-regulated, challenging the long-held opinion that up-regulation of these genes can relieve the nitrate inhibition. Most importantly, the nitrate addition activated the denitrification pathway in denitrifying bacteria (DB) via significantly up-regulating the expression of the corresponding genes (nitrite reductase, nitric oxide reductase c subunit, nitric oxide reductase activation protein and nitrous oxide reductase genes), quickly reducing the environmental nitrate and relieving the nitrate inhibition on SRB. Our findings unravel that in response to environmental nitrate stress, haloalkaliphilic SRB show dependency on DB, and expand our knowledge of microbial relationship during sulfur and nitrogen cycles.
Collapse
Affiliation(s)
- Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianmin Xing
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Evaluation of temperature, pH and nutrient conditions in bacterial growth and extracellular hydrolytic activities of two Alicyclobacillus spp. strains. Arch Microbiol 2021; 203:4557-4570. [PMID: 34159433 DOI: 10.1007/s00203-021-02332-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/16/2022]
Abstract
Extremophile bacteria have developed the metabolic machinery for living in extreme temperatures, pH, and high-salt content. Two novel bacterium strains Alicyclobacillus sp. PA1 and Alicyclobacillus sp. PA2, were isolated from crater lake El Chichon in Chiapas, Mexico. Phylogenetic tree analysis based on the 16SrRNA gene sequence revealed that the strain Alicyclobacillus sp. PA1 and Alicyclobacillus sp. PA2 were closely related to Alicyclobacillus species (98% identity and 94.73% identity, respectively). Both strains were Gram variable, and colonies were circular, smooth and creamy. Electron microscopy showed than Alicyclobacillus sp. PA1 has a daisy-like form and Alicyclobacillus sp. PA2 is a regular rod. Both strains can use diverse carbohydrates and triglycerides as carbon source and they also can use organic and inorganic nitrogen source. But, the two strains can grow without any carbon or nitrogen sources in the culture medium. Temperature, pH and nutrition condition affect bacterial growth. Maximum growth was produced at 65 °C for Alicyclobacillus sp. PA1 (0.732 DO600) at pH 3 and Alicyclobacillus sp. PA2 (0.725 DO600) at pH 5. Inducible extracellular extremozyme activities were determined for β-galactosidase (Alicyclobacillus sp. PA1: 88.07 ± 0.252 U/mg, Alicyclobacillus sp. PA2: 51.57 ± 0.308 U/mg), cellulose (Alicyclobacillus sp. PA1: 141.20 ± 0.585 U/mg, Alicyclobacillus sp. PA2: 51.57 ± 0.308 U/mg), lipase (Alicyclobacillus sp. PA1: 138.25 ± 0.600 U/mg, Alicyclobacillus sp. PA2: 175.75 ± 1.387 U/mg), xylanase (Alicyclobacillus sp. PA1: 174.72 ± 1.746 U/mg, Alicyclobacillus sp. PA2: 172.69 ± 0.855U/mg), and protease (Alicyclobacillus sp. PA1: 15.12 ± 0.121 U/mg, Alicyclobacillus sp. PA2: 15.33 ± 0.284 U/mg). These results provide new insights on extreme enzymatic production on Alicyclobacillus species.
Collapse
|
29
|
Molecular and Physiological Adaptations to Low Temperature in Thioalkalivibrio Strains Isolated from Soda Lakes with Different Temperature Regimes. mSystems 2021; 6:6/2/e01202-20. [PMID: 33906913 PMCID: PMC8092127 DOI: 10.1128/msystems.01202-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection. Author Video: An author video summary of this article is available.
Collapse
|
30
|
Shilova AV, Maksimov AY, Maksimova YG. Isolation and Identification of Alkalitolerant Bacteria with Hydrolytic Activity from a Soda Sludge Storage. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Quillaguamán J, Guzmán D, Campero M, Hoepfner C, Relos L, Mendieta D, Higdon SM, Eid D, Fernández CE. The microbiome of a polluted urban lake harbors pathogens with diverse antimicrobial resistance and virulence genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116488. [PMID: 33485000 DOI: 10.1016/j.envpol.2021.116488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Bacterial resistance to antibiotics is one of the greatest threats to the modern human population. Paradoxically, urban settlements are often culpable in generating such resistance by influencing the adaptation of bacterial communities via pollution of natural ecosystems. Urban lakes are well-known examples of this problem, as they often receive discharges of both domestic and industrial wastewater. In this study, we used shotgun metagenome sequencing to examine the microbial diversity of water and sediment samples of Lake Alalay, a polluted urban lake near Cochabamba, Bolivia. We found that Proteobacteria dominated the relative abundance of both water and sediment samples at levels over 25% and that a significant proportion of the microbial diversity could not be classified (about 9% in water and 22% in sediment). Further metagenomic investigation of antimicrobial resistance (AR) genes identified 277 and 150 AR genes in water and sediment samples, respectively. These included genes with functional annotations for resistance to fluoroquinolones, tetracyclines, phenicols, macrolides, beta-lactams, and rifamycin. A high number of genes involved in bacterial virulence also occurred in both water and sediment samples (169 and 283, respectively), where the virulence gene pscP normally found in the Pseudomonas aeruginosa type III secretion system had the highest relative abundance. Isolated and identified bacteria from water samples also revealed the presence of pathogenic bacteria among the microbiota of Lake Alalay. Seeing as most AR and virulence genes detected in this study are commonly described in nosocomial infections, we provide evidence suggesting that the microbial ecosystem of Lake Alalay presents a severe health risk to the surrounding population.
Collapse
Affiliation(s)
- Jorge Quillaguamán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Daniel Guzmán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Melina Campero
- Center of Limnology and Aquatic Resources, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Claudia Hoepfner
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Laura Relos
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Daniela Mendieta
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Shawn M Higdon
- Department of Plant Sciences, University of California, Davis, CA, 95616, United States
| | - Daniel Eid
- Institute of Biomedical Research and Social Research, Faculty of Medicine, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Carla E Fernández
- Center of Limnology and Aquatic Resources, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| |
Collapse
|
32
|
Sorokin DY, Mosier D, Zorz JK, Dong X, Strous M. Wenzhouxiangella Strain AB-CW3, a Proteolytic Bacterium From Hypersaline Soda Lakes That Preys on Cells of Gram-Positive Bacteria. Front Microbiol 2020; 11:597686. [PMID: 33281797 PMCID: PMC7691419 DOI: 10.3389/fmicb.2020.597686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3, was isolated from a system of hypersaline alkaline soda lakes in the Kulunda Steppe using cells of Staphylococcus aureus as growth substrate. AB-CW3's complete, circular genome was assembled from combined nanopore and Illumina sequencing and its proteome was determined for three different experimental conditions. AB-CW3 is an aerobic gammaproteobacterium feeding mainly on proteins and peptides. Unique among Wenzhouxiangella, it uses a flagellum for motility, fimbria for cell attachment and is capable of complete denitrification. AB-CW3 can use proteins derived from living or dead cells of Staphylococcus and other Gram-positive bacteria as the carbon and energy source. It encodes and expresses production of a novel Lantibiotic, a class of antimicrobial peptides which have so far only been found to be produced by Gram-positive bacteria. AB-CW3 likely excretes this peptide via a type I secretion system encoded upstream of the genes for production of the Lanthipeptide. Comparison of AB-CW3's genome to 18 other Wenzhouxiangella genomes from marine, hypersaline, and soda lake habitats indicated one or two transitions from marine to soda lake environments followed by a transition of W. marina back to the oceans. Only 19 genes appear to set haloalkaliphilic Wenzhouxiangella apart from their neutrophilic relatives. As strain AB-CW3 is only distantly related to other members of the genus, we propose to provisionally name it "Wenzhouxiangella alkaliphila".
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre for Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. THE ISME JOURNAL 2020; 14:2967-2979. [PMID: 32709974 PMCID: PMC7784846 DOI: 10.1038/s41396-020-0724-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
Collapse
Affiliation(s)
- Anne Daebeler
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Hanna Koch
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela Steinfeder
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jasmin Schwarz
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
34
|
Sorokin DY, Diender M, Merkel AY, Koenen M, Bale NJ, Pabst M, Sinninghe Damsté JS, Sousa DZ. Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO-utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class 'Natranaerobiia'. Environ Microbiol 2020; 23:3460-3476. [PMID: 32955149 PMCID: PMC8359318 DOI: 10.1111/1462-2920.15241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023]
Abstract
An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane‐forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep‐branching phylogenetic lineage at the level of a new family within the class ‘Natranaerobiia’. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood–Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr‐like operon. The organism obviously relies on Na‐based bioenergetics, since the genome encodes for the Na+‐Rnf complex, Na+‐F1F0 ATPase and Na+‐translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO‐oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Michel Koenen
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Nicole J Bale
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands.,Department of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
35
|
Zhao D, Zhang S, Xue Q, Chen J, Zhou J, Cheng F, Li M, Zhu Y, Yu H, Hu S, Zheng Y, Liu S, Xiang H. Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia. Front Microbiol 2020; 11:1740. [PMID: 32793172 PMCID: PMC7393216 DOI: 10.3389/fmicb.2020.01740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soda-saline lakes are a special type of alkaline lake in which the chloride concentration is greater than the carbonate/bicarbonate concentration. Due to the high pH and a usually higher osmotic pressure than that of a normal soda lake, the microbes may need more energy to thrive in such a double-extreme environment. In this study, we systematically investigated the microbiome of the brine and sediment samples of nine artificially separated ponds (salinities from 5.5% to saturation) within two soda-saline lakes in Inner Mongolia of China, assisted by deep metagenomic sequencing. The main inorganic ions shaped the microbial community in both the brines and sediments, and the chloride concentration exhibited the most significant effect. A total of 385 metagenome-assembled genomes (MAGs) were generated, in which 38 MAGs were revealed as the abundant species in at least one of the eighteen different samples. Interestingly, these abundant species also represented the most branches of the microbiome of the soda-saline lakes at the phylum level. These abundant taxa were close relatives of microorganisms from classic soda lakes and neutral saline environments, but forming a combination of both habitats. Notably, approximately half of the abundant MAGs had the potential to drive dissimilatory sulfur cycling. These MAGs included four autotrophic Ectothiorhodospiraceae MAGs, one Cyanobacteria MAG and nine heterotrophic MAGs with the potential to oxidize sulfur, as well as four abundant MAGs containing genes for elemental sulfur respiration. The possible reason is that reductive sulfur compounds could provide additional energy for the related species, and reductions of oxidative sulfur compounds are more prone to occur under alkaline conditions which support the sulfur cycling. In addition, a unique 1,4-alpha-glucan phosphorylation pathway, but not a normal hydrolysis one, was found in the abundant Candidatus Nanohaloarchaeota MAG NHA-1, which would produce more energy in polysaccharide degradation. In summary, this work has revealed the abundant taxa and favorable pathways in the soda-saline lakes, indicating that efficient energy regeneration pathway may increase the capacity for environmental adaptation in such saline-alkaline environments. These findings may help to elucidate the relationship between microbial metabolism and adaptation to extreme environments.
Collapse
Affiliation(s)
- Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Zavarzina DG, Zhilina TN, Kostrikina NA, Toshchakov SV, Kublanov IV. Isachenkonia alkalipeptolytica gen. nov. sp. nov., a new anaerobic, alkaliphilic proteolytic bacterium capable of reducing Fe(III) and sulfur. Int J Syst Evol Microbiol 2020; 70:4730-4738. [PMID: 32697189 DOI: 10.1099/ijsem.0.004341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An obligately alkaliphilic, anaerobic, proteolytic bacterium was isolated from a sample of Tanatar III soda lake sediment (Altai region, Russia) and designated as strain Z-1701T. Cells of strain Z-1701T were short, straight, motile Gram-stain-positive rods. Growth of Z-1701T obligately depended on the presence of sodium carbonate. Strain Z-1701T could utilize various peptides mixtures, such as beef and yeast extracts, peptone, soytone, trypticase and tryptone, as well as such proteins as albumin, gelatin and sodium caseinate. It was able to grow oligotrophically with 0.02 g l-1 yeast extract as the sole energy and carbon source. Carbohydrates did not support the growth of strain Z-1701T. The main products released during the growth of strain Z-1701T on tryptone were formate, acetate and ammonium. Strain Z-1701T was able to reduce ferrihydrite, Fe(III)-EDTA, anthraquinone-2,6-disulfonate and elemental sulfur, using proteinaceous substrates as electron donors. In all cases the presence of the electron acceptor in the medium stimulated growth. The main cellular fatty acids were iso-C15 : 0, iso-C15 : 0 aldehyde, iso-C15 : 1 ω6, C16 : 0, iso-C17 : 0 aldehyde, C16 : 0 aldehyde and C14 : 0. The DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on the concatenated alignment of 120 protein-marker sequences revealed that strain Z-1701T falls into a cluster with the genus Tindallia, family Clostridiaceae. 16S rRNA gene sequence identity between strain Z-1701T and Tindallia species were 88.3-89.75 %. On the basis of its phenotypic characteristics and phylogenetic position, the novel isolate is considered to be a representative of a novel genus and species for which the name Isachenkonia alkalipeptolytica gen. nov., sp. nov. is proposed, with Z-1701T (=JCM 32929Т=DSM 109060Т=VKM B-3261Т) as its type strain.
Collapse
Affiliation(s)
- Daria G Zavarzina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Tatyana N Zhilina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Nadegda A Kostrikina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| |
Collapse
|
37
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
38
|
Lavrentyeva EV, Erdyneeva EB, Banzaraktsaeva TG, Kotsyurbenko OR, Baturina OA, Khakhinov VV, Kozyreva LP. Prokaryotic Diversity in the Biotopes of the Gudzhirganskoe Saline Lake (Barguzin Valley, Russia). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
A New Thioalkalivibrio sp. Strain Isolated from Petroleum-Contaminated Brackish Estuary Sediments: A New Candidate for Bio-Based Application for Sulfide Oxidation in Halo-Alkaline Conditions. WATER 2020. [DOI: 10.3390/w12051385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new halo-alkaline sulfur-oxidising bacterial strain was isolated from brackish estuary sediments contaminated by total petroleum hydrocarbon. The isolate was classified as a new strain of Thioalkalivibrio sulfidiphilus sp., showing a higher capability of adaptation to pH and a higher optimal sodium concentration for growth, when compared to Thioalkalivibrio sulfidiphilus sp. HL-EbGr7, type strain of the species. The strain was capable to grow in saline concentrations up to 1.5 M Na+ and pH up to 10. The genome of the new isolate was sequenced and annotated. The comparison with the genome of Thioalkalivibrio sulfidiphilus sp. HL-EbGr7 showed a duplication of an operon encoding for a putative primary sodium extruding pump and the presence of a sodium/proton antiporter with optimal efficiency at halo-alkaline conditions. The new strain was able to oxidize sulfide at halo-alkaline conditions at the rate of 1 mmol/mg-N/h, suitable for industrial applications dedicated to the recovery of alkaline scrubber for H2S emission absorption and abatement.
Collapse
|
40
|
Ding X, Liu K, Gong G, Tian L, Ma J. Volatile organic compounds in the salt-lake sediments of the Tibet Plateau influence prokaryotic diversity and community assembly. Extremophiles 2020; 24:307-318. [PMID: 32025854 DOI: 10.1007/s00792-020-01155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Volatile organic compounds (VOCs) are important environmental factors because they supply nutrients for microbial cells and mediate intercellular interactions. However, few studies have focused on the effects of VOCs on prokaryotic diversity and community composition. In this study, we examined the relationship between prokaryotic diversity and community composition and the content of VOCs in salt-lake sediments from the Tibet Plateau using amplicon sequencing of the 16S rRNA gene. Results showed that the alpha-diversity indices (Chao1, Shannon, and Simpson) were generally negatively correlated with the content of 36 VOCs (P < 0.05). The prokaryotic communities were significantly driven by multiple VOCs at the lineage-dependent pattern (P < 0.05). Further analysis indicated that VOCs, including 3-methylpyruvate, biuret, isocitric acid, and stearic acid, jointly explained 37.3% of the variations in prokaryotic communities. Supplemental VOCs-pyruvate, biuret, alanine, and aspartic acid-notably decreased the Chao1 and Shannon indices and significantly assembled co-occurrence networks for the bacterial communities in the saline sediments. Together, these results demonstrated that VOCs play a critical role in the regulation of the diversity, compositions, and network structures of prokaryotic communities in saline sediments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
41
|
|
42
|
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei AŞ, Ghai R, Sorokin DY, Muyzer G. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol 2019; 17:69. [PMID: 31438955 PMCID: PMC6704655 DOI: 10.1186/s12915-019-0688-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. RESULTS Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the "Candidatus Woesearchaeota." Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. CONCLUSIONS The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.
Collapse
Affiliation(s)
- Charlotte D Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Cherel Balkema
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Rutger van Hall
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Berben T, Overmars L, Sorokin DY, Muyzer G. Diversity and Distribution of Sulfur Oxidation-Related Genes in Thioalkalivibrio, a Genus of Chemolithoautotrophic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. Front Microbiol 2019; 10:160. [PMID: 30837958 PMCID: PMC6382920 DOI: 10.3389/fmicb.2019.00160] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Soda lakes are saline alkaline lakes characterized by high concentrations of sodium carbonate/bicarbonate which lead to a stable elevated pH (>9), and moderate to extremely high salinity. Despite this combination of extreme conditions, biodiversity in soda lakes is high, and the presence of diverse microbial communities provides a driving force for highly active biogeochemical cycles. The sulfur cycle is one of the most important of these and bacterial sulfur oxidation is dominated by members of the obligately chemolithoautotrophic genus Thioalkalivibrio. Currently, 10 species have been described in this genus, but over one hundred isolates have been obtained from soda lake samples. The genomes of 75 strains were sequenced and annotated previously, and used in this study to provide a comprehensive picture of the diversity and distribution of genes related to dissimilatory sulfur metabolism in Thioalkalivibrio. Initially, all annotated genes in 75 Thioalkalivibrio genomes were placed in ortholog groups and filtered by bi-directional best BLAST analysis. Investigation of the ortholog groups containing genes related to sulfur oxidation showed that flavocytochrome c (fcc), the truncated sox system, and sulfite:quinone oxidoreductase (soe) are present in all strains, whereas dissimilatory sulfite reductase (dsr; which catalyzes the oxidation of elemental sulfur) was found in only six strains. The heterodisulfide reductase system (hdr), which is proposed to oxidize sulfur to sulfite in strains lacking both dsr and soxCD, was detected in 73 genomes. Hierarchical clustering of strains based on sulfur gene repertoire correlated closely with previous phylogenomic analysis. The phylogenetic analysis of several sulfur oxidation genes showed a complex evolutionary history. All in all, this study presents a comprehensive investigation of sulfur metabolism-related genes in cultivated Thioalkalivibrio strains and provides several avenues for future research.
Collapse
Affiliation(s)
- Tom Berben
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute for Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Salah ZB, Charles CJ, Humphreys PN, Laws AP, Rout SP. Genomic Insights Into A Novel, Alkalitolerant Nitrogen Fixing Bacteria, Azonexus sp. Strain ZS02. J Genomics 2019; 7:1-6. [PMID: 30662569 PMCID: PMC6328298 DOI: 10.7150/jgen.28153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023] Open
Abstract
Alkaline environments represent a significant challenge to the growth of micro-organisms. Despite this, there are a number of alkaline environments which contain active microbial communities. Here we describe the genome of a diazotrophic, alkalitolerant strain of Azonexus, which was isolated from a microcosm seeded with hyperalkaline soils resulting from lime depositions. The isolate has a genome size 3.60 Mb with 3431 protein coding genes. The proteome indicated the presence of genes associated with the cycling of nitrogen, in particular the fixation of atmospheric nitrogen. Although closely related to Azonexus hydrophilus strain d8-1 by both 16S (97.9%) and in silico gDNA (84.1%) relatedness, the isolate demonstrates a pH tolerance above that reported for this strain. The proteome contained genes for the complete Na+/H+ antiporter (subunits A to G) for cytoplasmic pH regulation; this may account for the phenotypic characteristics of this strain which exhibited optimal growth conditions of pH 9 and 30°C.
Collapse
Affiliation(s)
- Zohier B Salah
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Christopher J Charles
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Paul N Humphreys
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Andrew P Laws
- Department of Chemical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Simon P Rout
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| |
Collapse
|
45
|
Guerreiro RL, Bergier I, McGlue MM, Warren LV, Abreu UGPD, Abrahão J, Assine ML. The soda lakes of Nhecolândia: A conservation opportunity for the Pantanal wetlands. Perspect Ecol Conserv 2019. [DOI: 10.1016/j.pecon.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Rodrigues RAL, Arantes TS, Oliveira GP, dos Santos Silva LK, Abrahão JS. The Complex Nature of Tupanviruses. Adv Virus Res 2019; 103:135-166. [PMID: 30635075 DOI: 10.1016/bs.aivir.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery of giant viruses revealed a new level of complexity in the virosphere, raising important questions about the diversity, ecology, and evolution of these viruses. The family Mimiviridae was the first group of amoebal giant viruses to be discovered (by Bernard La Scola and Didier Raoult team), containing viruses with structural and genetic features that challenged many concepts of classic virology. The tupanviruses are among the newest members of this family and exhibit structural, biological, and genetic features never previously observed in other giant viruses. The complexity of these viruses has put us one step forward toward the comprehension of giant virus biology and evolution, but also has raised important questions that still need to be addressed. In this chapter, we tell the history behind the discovery of one of the most complex viruses isolated to date, highlighting the unique features exhibited by tupanviruses, and discuss how these giant viruses have contributed to redefining limits for the virosphere.
Collapse
|
47
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
48
|
Sorokin DY, Muntyan MS, Toshchakov SV, Korzhenkov A, Kublanov IV. Phenotypic and Genomic Properties of a Novel Deep-Lineage Haloalkaliphilic Member of the Phylum Balneolaeota From Soda Lakes Possessing Na +-Translocating Proteorhodopsin. Front Microbiol 2018; 9:2672. [PMID: 30483225 PMCID: PMC6243061 DOI: 10.3389/fmicb.2018.02672] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Stable development of a heterotrophic bacterial satellite with a peculiar cell morphology has been observed in several enrichment cultures of haloalkaliphilic benthic filamentous cyanobacteria from a hypersaline soda lake in Kulunda Steppe (Altai, Russia). The organism was isolated in pure culture (strain Omega) using sonicated cyanobacterial cells as substrate and it was identified as a deep phylogenetic lineage within the recently proposed phylum Balneolaeota. It is an obligately aerobic heterotroph utilizing proteins and peptides for growth. The cell morphology significantly varied from semicircles to long filaments depending on the growth conditions. The cultures are red-orange colored due to a presence of carotenoids. The isolate is an obligate alkaliphile with a pH range for growth from 8.5 to 10.5 (optimum at 9.5-10) and moderately salt-tolerant with a range from 0.3 to 3 M total Na+ (optimum at 1 M). The genome analysis of strain Omega demonstrated a presence of gene, encoding a proteorhodopsin forming a separate branch in the sodium-translocating proteorhodopsin family. Experiments with washed cells of Omega confirmed light-dependent sodium export. A possible physiological role of the sodium proteorhodopsin in strain Omega is discussed. Phylogenomic analysis demostrated that strain Omega forms an deep, independent branch of a new genus and family level within a recently established phylum Balneolaeota.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stepan V. Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. MICROBIOME 2018; 6:168. [PMID: 30231921 PMCID: PMC6146748 DOI: 10.1186/s40168-018-0548-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/03/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Hypersaline soda lakes are characterized by extreme high soluble carbonate alkalinity. Despite the high pH and salt content, highly diverse microbial communities are known to be present in soda lake brines but the microbiome of soda lake sediments received much less attention of microbiologists. Here, we performed metagenomic sequencing on soda lake sediments to give the first extensive overview of the taxonomic diversity found in these complex, extreme environments and to gain novel physiological insights into the most abundant, uncultured prokaryote lineages. RESULTS We sequenced five metagenomes obtained from four surface sediments of Siberian soda lakes with a pH 10 and a salt content between 70 and 400 g L-1. The recovered 16S rRNA gene sequences were mostly from Bacteria, even in the salt-saturated lakes. Most OTUs were assigned to uncultured families. We reconstructed 871 metagenome-assembled genomes (MAGs) spanning more than 45 phyla and discovered the first extremophilic members of the Candidate Phyla Radiation (CPR). Five new species of CPR were among the most dominant community members. Novel dominant lineages were found within previously well-characterized functional groups involved in carbon, sulfur, and nitrogen cycling. Moreover, key enzymes of the Wood-Ljungdahl pathway were encoded within at least four bacterial phyla never previously associated with this ancient anaerobic pathway for carbon fixation and dissimilation, including the Actinobacteria. CONCLUSIONS Our first sequencing effort of hypersaline soda lake sediment metagenomes led to two important advances. First, we showed the existence and obtained the first genomes of haloalkaliphilic members of the CPR and several hundred other novel prokaryote lineages. The soda lake CPR is a functionally diverse group, but the most abundant organisms in this study are likely fermenters with a possible role in primary carbon degradation. Second, we found evidence for the presence of the Wood-Ljungdahl pathway in many more taxonomic groups than those encompassing known homo-acetogens, sulfate-reducers, and methanogens. Since only few environmental metagenomics studies have targeted sediment microbial communities and never to this extent, we expect that our findings are relevant not only for the understanding of haloalkaline environments but can also be used to set targets for future studies on marine and freshwater sediments.
Collapse
Affiliation(s)
- Charlotte D. Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Adrian-Stefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya pr-t, 7, bld. 2, Moscow, Russian Federation 117312
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| |
Collapse
|
50
|
Osimani A, Milanović V, Garofalo C, Cardinali F, Roncolini A, Sabbatini R, De Filippis F, Ercolini D, Gabucci C, Petruzzelli A, Tonucci F, Clementi F, Aquilanti L. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. Int J Food Microbiol 2018; 276:54-62. [DOI: 10.1016/j.ijfoodmicro.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|