1
|
Martínez-Caballero S, Freton C, Molina R, Bartual SG, Gueguen-Chaignon V, Mercy C, Gago F, Mahasenan KV, Muñoz IG, Lee M, Hesek D, Mobashery S, Hermoso JA, Grangeasse C. Molecular basis of the final step of cell division in Streptococcus pneumoniae. Cell Rep 2023; 42:112756. [PMID: 37418323 PMCID: PMC10434722 DOI: 10.1016/j.celrep.2023.112756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP. Structural and cellular studies notably reveal that the temporal and spatial localization of LytB is governed by the interaction between specific modules of LytB and the final PASTA domain of StkP. Our data collectively provide a comprehensive understanding of how LytB performs final separation of daughter cells and highlights the regulatory role of eukaryotic-like kinases on lytic machineries in the last step of cell division in streptococci.
Collapse
Affiliation(s)
- Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergio G Bartual
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Chryslène Mercy
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France
| | - Federico Gago
- Department of Biomedical Sciences & Instituto de Química Médica-CSIC Associated Unit, School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Inés G Muñoz
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France.
| |
Collapse
|
2
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
3
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
4
|
Vitamin K3 inhibits FtsZ assembly, disrupts the Z-ring in Streptococcus pneumoniae, and displays anti-pneumococcal activity. Biochem J 2022; 479:1543-1558. [PMID: 35789252 DOI: 10.1042/bcj20220077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
The respiratory pathogen, Streptococcus pneumoniae has acquired multiple-drug resistance over the years. An attractive strategy to combat pneumococcal infection is to target cell division to inhibit the proliferation of S. pneumoniae. This work presents Vitamin K3 as a potential anti-pneumococcal drug that targets FtsZ, the master coordinator of bacterial cell division. Vitamin K3 strongly inhibited S. pneumoniae proliferation with a Minimum Inhibitory Concentration (MIC) and a Minimum Bactericidal Concentration (MBC) of 6 μg/mL. Vitamin K3 disrupted the Z-ring localization in both S. pneumoniae and Bacillus subtilis within 30 minutes of treatment, while the membrane integrity and nucleoid segregation remain unchanged. Several complementary experiments showed that Vitamin K3 inhibits the assembly of purified S. pneumoniae FtsZ (SpnFtsZ) and induces conformational changes in the protein. Interestingly, Vitamin K3 interfered with GTP-binding onto FtsZ and increased the GTPase activity of FtsZ polymers. The intrinsic tryptophan fluorescence of SpnFtsZ revealed that Vitamin K3 delays the nucleation of FtsZ polymers and reduces the rate of polymerization. In the presence of a non-hydrolyzable analog of GTP, Vitamin K3 did not show inhibition of FtsZ polymerization. These results indicated that Vitamin K3 induces conformational changes in FtsZ that increase GTP hydrolysis and thereby, destabilize the FtsZ polymers. Together, our data provide evidence that Vitamin K3 derives its potent anti-pneumococcal activity by inhibiting FtsZ assembly.
Collapse
|
5
|
Dresen M, Rohde M, Arenas J, de Greeff A, Nerlich A, Valentin‐Weigand P. Identification and characterization of the cell division protein MapZ from Streptococcus suis. Microbiologyopen 2021; 10:e1234. [PMID: 34713609 PMCID: PMC8501179 DOI: 10.1002/mbo3.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022] Open
Abstract
Streptococcus suis, an emerging zoonotic pathogen, causes invasive diseases in pigs, including sepsis, meningitis, endocarditis, pneumonia, and arthritis. Importantly, similar pathologies are reported in human S. suis infections. In previous work, the locus SSU0375 of S. suis strain P1.7 had been identified as a conditionally essential gene by intrathecal experimental infection of pigs with a transposon library of S. suis. This study aimed to identify the function of the corresponding gene product. Bioinformatics analysis and homology modeling revealed sequence and structural homologies with the Streptococcus pneumoniae mid-cell-anchored protein Z (MapZ) that is involved in cell division in different bacterial species. Indeed, depletion of this locus in S. suis strain 10 revealed a growth defect as compared to the wild type. Electron microscopy analysis of the corresponding mutant demonstrated morphological growth defects as compared to the wild-type strain, including an irregular cell shape and size as well as mispositioned division septa. Light microscopy and subsequent quantitative image analysis confirmed these morphological alterations. In the genetic rescue strain, the wild-type phenotype was completely restored. In summary, we proposed that SSU0375 or the corresponding locus in strain 10 encode for a S. suis MapZ homolog that guides septum positioning as evidenced for other members of the Streptococci family.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for MicrobiologyCenter for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Manfred Rohde
- Central Facility for MicroscopyHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Jesús Arenas
- Unit of Microbiology and ImmunologyFaculty of VeterinaryUniversity of ZaragozaZaragozaSpain
| | - Astrid de Greeff
- Wageningen Bioveterinary ResearchPart of Wageningen University and ResearchLelystadThe Netherlands
| | - Andreas Nerlich
- Institute for MicrobiologyCenter for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
- Veterinary Centre for Resistance ResearchFreie Universität BerlinBerlinGermany
| | - Peter Valentin‐Weigand
- Institute for MicrobiologyCenter for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
6
|
Garcia PS, Duchemin W, Flandrois JP, Gribaldo S, Grangeasse C, Brochier-Armanet C. A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Mol Biol Evol 2021; 38:2396-2412. [PMID: 33533884 PMCID: PMC8136486 DOI: 10.1093/molbev/msab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.
Collapse
Affiliation(s)
- Pierre S Garcia
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France.,Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Wandrille Duchemin
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| |
Collapse
|
7
|
Abstract
Bacterial cell division, with a few exceptions, is driven by FtsZ through a treadmilling mechanism to remodel and constrict the rigid peptidoglycan (PG) layer. Yet different organisms may differ in the composition of the cell division complex (divisome). In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, hetF is required for the initiation of the differentiation of heterocysts, cells specialized in N2 fixation under combined-nitrogen deprivation. In this study, we demonstrate that hetF is expressed in vegetative cells and necessary for cell division under certain conditions. Under nonpermissive conditions, cells of a ΔhetF mutant stop dividing, consistent with increased levels of HetF under similar conditions in the wild type. Furthermore, HetF is a membrane protein located at midcell and cell-cell junctions. In the absence of HetF, FtsZ rings are still present in the elongated cells; however, PG remodeling is abolished. This phenotype is similar to that observed with the inhibition of the septal PG synthase FtsI. We further reveal that HetF is recruited to or stabilized at the divisome by interacting with FtsI and that this interaction is necessary for HetF function in cell division. Our results indicate that HetF is a member of the divisome depending mainly on light intensity and reveal distinct features of the cell division machinery in cyanobacteria that are of high ecological and environmental importance.
Collapse
|
8
|
Abstract
Control of peptidoglycan assembly is critical to maintain bacterial cell size and morphology. Penicillin-binding proteins (PBPs) are crucial enzymes for the polymerization of the glycan strand and/or their cross-linking via peptide branches. Over the last few years, it has become clear that PBP activity and localization can be regulated by specific cognate regulators. The first regulator of PBP activity in Gram-positive bacteria was discovered in the human pathogen Streptococcus pneumoniae This regulator, named CozE, controls the activity of the bifunctional PBP1a to promote cell elongation and achieve a proper cell morphology. In this work, we studied a previously undescribed CozE homolog in the pneumococcus, which we named CozEb. This protein displays the same membrane organization as CozE but is much more widely conserved among Streptococcaceae genomes. Interestingly, cozEb deletion results in cells that are smaller than their wild-type counterparts, which is the opposite effect of cozE deletion. Furthermore, double deletion of cozE and cozEb results in poor viability and exacerbated cell shape defects. Coimmunoprecipitation further showed that CozEb is part of the same complex as CozE and PBP1a. However, although we confirmed that CozE is required for septal localization of PBP1a, the absence of CozEb has no effect on PBP1a localization. Nevertheless, we found that the overexpression of CozEb can compensate for the absence of CozE in all our assays. Altogether, our results show that the interplay between PBP1a and the cell size regulators CozE and CozEb is required for the maintenance of pneumococcal cell size and shape.IMPORTANCE Penicillin-binding proteins (PBPs), the proteins catalyzing the last steps of peptidoglycan assembly, are critical for bacteria to maintain cell size, shape, and integrity. PBPs are consequently attractive targets for antibiotics. Resistance to antibiotics in Streptococcus pneumoniae (the pneumococcus) are often associated with mutations in the PBPs. In this work, we describe a new protein, CozEb, controlling the cell size of pneumococcus. CozEb is a highly conserved integral membrane protein that works together with other proteins to regulate PBPs and peptidoglycan synthesis. Deciphering the intricate mechanisms by which the pneumococcus controls peptidoglycan assembly might allow the design of innovative anti-infective strategies, for example, by resensitizing resistant strains to PBP-targeting antibiotics.
Collapse
|
9
|
Hentschker C, Maaß S, Junker S, Hecker M, Hammerschmidt S, Otto A, Becher D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res 2020; 19:1435-1446. [DOI: 10.1021/acs.jproteome.9b00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Hentschker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sabryna Junker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
10
|
Hosek T, Bougault CM, Lavergne JP, Martinez D, Ayala I, Fenel D, Restelli M, Morlot C, Habenstein B, Grangeasse C, Simorre JP. Structural features of the interaction of MapZ with FtsZ and membranes in Streptococcus pneumoniae. Sci Rep 2020; 10:4051. [PMID: 32132631 PMCID: PMC7055233 DOI: 10.1038/s41598-020-61036-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
MapZ localizes at midcell and acts as a molecular beacon for the positioning of the cell division machinery in the bacterium Streptococcus pneumoniae. MapZ contains a single transmembrane helix that separates the C-terminal extracellular domain from the N-terminal cytoplasmic domain. Only the structure and function of the extracellular domain is known. Here, we demonstrate that large parts of the cytoplasmic domain is intrinsically disordered and that there are two regions (from residues 45 to 68 and 79 to 95) with a tendency to fold into amphipathic helices. We further reveal that these regions interact with the surface of liposomes that mimic the Streptococcus pneumoniae cell membrane. The highly conserved and unfolded N-terminal region (from residues 17 to 43) specifically interacts with FtsZ independently of FtsZ polymerization state. Moreover, we show that MapZ phosphorylation at positions Thr67 and Thr68 does not impact the interaction with FtsZ or liposomes. Altogether, we propose a model in which the MapZ-mediated recruitment of FtsZ to mid-cell is modulated through competition of MapZ binding to the cell membrane. The molecular interplay between the components of this tripartite complex could represent a key step toward the complete assembly of the divisome.
Collapse
Affiliation(s)
- Tomas Hosek
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Catherine M Bougault
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Jean-Pierre Lavergne
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Isabel Ayala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Marine Restelli
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France.
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38000, Grenoble, France.
| |
Collapse
|
11
|
Booth S, Lewis RJ. Structural basis for the coordination of cell division with the synthesis of the bacterial cell envelope. Protein Sci 2019; 28:2042-2054. [PMID: 31495975 PMCID: PMC6863701 DOI: 10.1002/pro.3722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023]
Abstract
Bacteria are surrounded by a complex cell envelope made up of one or two membranes supplemented with a layer of peptidoglycan (PG). The envelope is responsible for the protection of bacteria against lysis in their oft-unpredictable environments and it contributes to cell integrity, morphology, signaling, nutrient/small-molecule transport, and, in the case of pathogenic bacteria, host-pathogen interactions and virulence. The cell envelope requires considerable remodeling during cell division in order to produce genetically identical progeny. Several proteinaceous machines are responsible for the homeostasis of the cell envelope and their activities must be kept coordinated in order to ensure the remodeling of the envelope is temporally and spatially regulated correctly during multiple cycles of cell division and growth. This review aims to highlight the complexity of the components of the cell envelope, but focusses specifically on the molecular apparatuses involved in the synthesis of the PG wall, and the degree of cross talk necessary between the cell division and the cell wall remodeling machineries to coordinate PG remodeling during division. The current understanding of many of the proteins discussed here has relied on structural studies, and this review concentrates particularly on this structural work.
Collapse
Affiliation(s)
- Simon Booth
- Institute for Cell and Molecular Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
12
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
|
13
|
Calvez P, Jouhet J, Vié V, Durmort C, Zapun A. Lipid Phases and Cell Geometry During the Cell Cycle of Streptococcus pneumoniae. Front Microbiol 2019; 10:351. [PMID: 30936851 PMCID: PMC6432855 DOI: 10.3389/fmicb.2019.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 01/31/2023] Open
Abstract
The coexistence of different lipid phases is well-known in vitro, but evidence for their presence and function in cellular membranes remains scarce. Using a combination of fluorescent lipid probes, we observe segregation of domains that suggests the coexistence of liquid and gel phases in the membrane of Streptococcus pneumoniae, where they are localized to minimize bending stress in the ellipsoid geometry defined by the cell wall. Gel phase lipids with high bending rigidity would be spontaneously organized at the equator where curvature is minimal, thus marking the future division site, while liquid phase membrane maps onto the oblong hemispheres. In addition, the membrane-bound cell wall precursor with its particular dynamic acyl chain localizes at the division site where the membrane is highly curved. We propose a complete “chicken-and-egg” model where cell geometry determines the localization of lipid phases that positions the cell division machinery, which in turn alters the localization of lamellar phases by assembling the cell wall with a specific geometry.
Collapse
Affiliation(s)
| | - Juliette Jouhet
- UMR 5168 CNRS, CEA, INRA, CEA Grenoble, Laboratoire de Physiologie Cellulaire Végétale, Bioscience and Biotechnologies Institute of Grenoble, Université Grenoble Alpes, Grenoble, France
| | - Véronique Vié
- Univ Rennes, CNRS, IPR-UMR 6251, ScanMat-UMS2001, Rennes, France
| | | | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
14
|
Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2019; 116:3211-3220. [PMID: 30718427 PMCID: PMC6386697 DOI: 10.1073/pnas.1816018116] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen, Streptococcus pneumoniae Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZ mutant and another Streptococcus species. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells and ftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling in S. pneumoniae cells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate in S. pneumoniae.
Collapse
|
15
|
Li Y, Shao S, Xu X, Su X, Sun Y, Wei S. MapZ Forms a Stable Ring Structure That Acts As a Nanotrack for FtsZ Treadmilling in Streptococcus mutans. ACS NANO 2018; 12:6137-6146. [PMID: 29812902 DOI: 10.1021/acsnano.8b02469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial binary cell division requires accurate placement of division machinery. FtsZ, a vital component of the division machinery, can assemble into filaments and self-organize into a ring structure (Z ring) at the appropriate site for cell division. MapZ, a recently identified FtsZ regulator in Streptococcaceae, has been found to localize at the midcell where it helps to properly position the FtsZ ring. However, its mechanism is still unclear. Here, by using total internal reflection fluorescence microscopy, super-resolution imaging, and single molecule tracking, we investigated the mechanism by which MapZ controls the position of the FtsZ ring. Our results show that FtsZ exhibits a dynamic treadmilling motion in S. mutans. Importantly, depletion of MapZ leads to the unconstrained movement of treadmilling FtsZ filaments and a shorter lifetime of the constricting FtsZ ring, which is frequently misplaced. Furthermore, by revealing that MapZ forms an immobile ring-like nanostructure at the division site, our study suggests that MapZ forms a stable ring that acts as a nanotrack to guide and restrict treadmilling FtsZ filaments in S. mutans.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| | - Shipeng Shao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| |
Collapse
|
16
|
Righino B, Galisson F, Pirolli D, Vitale S, Réty S, Gouet P, De Rosa MC. Structural model of the full-length Ser/Thr protein kinase StkP from S. pneumoniae and its recognition of peptidoglycan fragments. J Biomol Struct Dyn 2017; 36:3666-3679. [PMID: 29057709 DOI: 10.1080/07391102.2017.1395767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The unique eukaryotic-like Ser/Thr protein kinases of Streptococcus pneumoniae, StkP, plays a primary role in the cell division process. It is composed of an intracellular kinase domain, a transmembrane helix and four extracellular PASTA subunits. PASTA domains were shown to interact with cell wall fragments but the key questions related to the molecular mechanism governing ligand recognition remain unclear. To address this issue, the full-length structural model of StkP was generated by combining small-angle X-ray scattering data with the results of computer simulations. Docking and molecular dynamics studies on the generated three-dimensional model structure reveal the possibility of peptidoglycan fragment binding at the hinge regions between PASTA subunits with a preference for a bent hinge between PASTA3 and PASTA4.
Collapse
Affiliation(s)
- Benedetta Righino
- a Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , L.go F. Vito 1, Rome 00168 , Italy
| | - Frédéric Galisson
- b Molecular Microbiology and Structural Biochemistry Institute , UMR5086 CNRS Univ-Lyon , Cedex 7, Lyon F-69367 , France
| | - Davide Pirolli
- a Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , L.go F. Vito 1, Rome 00168 , Italy.,c Istituto di Chimica del Riconoscimento Molecolare (ICRM) , CNR c/o Università Cattolica del Sacro Cuore L.go F , Vito 1, Rome 00168 , Italy
| | - Serena Vitale
- a Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , L.go F. Vito 1, Rome 00168 , Italy
| | - Stéphane Réty
- b Molecular Microbiology and Structural Biochemistry Institute , UMR5086 CNRS Univ-Lyon , Cedex 7, Lyon F-69367 , France
| | - Patrice Gouet
- b Molecular Microbiology and Structural Biochemistry Institute , UMR5086 CNRS Univ-Lyon , Cedex 7, Lyon F-69367 , France
| | - Maria Cristina De Rosa
- c Istituto di Chimica del Riconoscimento Molecolare (ICRM) , CNR c/o Università Cattolica del Sacro Cuore L.go F , Vito 1, Rome 00168 , Italy
| |
Collapse
|
17
|
Escobar-Álvarez E, Leinisch F, Araya G, Monasterio O, Lorentzen LG, Silva E, Davies MJ, López-Alarcón C. The peroxyl radical-induced oxidation of Escherichia coli FtsZ and its single tryptophan mutant (Y222W) modifies specific side-chains, generates protein cross-links and affects biological function. Free Radic Biol Med 2017; 112:60-68. [PMID: 28733212 DOI: 10.1016/j.freeradbiomed.2017.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
FtsZ (filamenting temperature-sensitive mutant Z) is a key protein in bacteria cell division. The wild-type Escherichia coli FtsZ sequence (FtsZwt) contains three tyrosine (Tyr, Y) and sixteen methionine (Met, M) residues. The Tyr at position 222 is a key residue for FtsZ polymerization. Mutation of this residue to tryptophan (Trp, W; mutant Y222W) inhibits GTPase activity resulting in an extended time in the polymerized state compared to FtsZwt. Protein oxidation has been highlighted as a determinant process for bacteria resistance and consequently oxidation of FtsZwt and the Y222W mutant, by peroxyl radicals (ROO•) generated from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was studied. The non-oxidized proteins showed differences in their polymerization behavior, with this favored by the presence of Trp at position 222. AAPH-treatment of the proteins inhibited polymerization. Protein integrity studies using SDS-PAGE revealed the presence of both monomers and oligomers (dimers, trimers and high mass material) on oxidation. Western blotting indicated the presence of significant levels of protein carbonyls. Amino acid analysis showed that Tyr, Trp (in the Y222W mutant), and Met were consumed by ROO•. Quantification of the number of moles of amino acid consumed per mole of ROO• shows that most of the initial oxidant can be accounted for at low radical fluxes, with Met being a major target. Western blotting provided evidence for di-tyrosine cross-links in the dimeric and trimeric proteins, confirming that oxidation of Tyr residues, at positions 339 and/or 371, are critical to ROO•-mediated crosslinking of both the FtsZwt and Y222W mutant protein. These findings are in agreement with di-tyrosine, N-formyl kynurenine, and kynurenine quantification assessed by UPLC, and with LC-MS data obtained for AAPH-treated protein samples.
Collapse
Affiliation(s)
- Elizabeth Escobar-Álvarez
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabian Leinisch
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eduardo Silva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|