1
|
Terzin M, Robbins SJ, Bell SC, Lê Cao KA, Gruber RK, Frade PR, Webster NS, Yeoh YK, Bourne DG, Laffy PW. Gene content of seawater microbes is a strong predictor of water chemistry across the Great Barrier Reef. MICROBIOME 2025; 13:11. [PMID: 39819379 PMCID: PMC11737092 DOI: 10.1186/s40168-024-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health. Microbial indicator analysis has centered around measuring the taxonomic composition of seawater microbial communities, but this can obscure heterogeneity of gene content between taxonomically similar microbes, and thus, microbial functional genes have been hypothesized to have more scope for predictive potential, though empirical validation for this hypothesis is still pending. Using a metagenomics study framework, we establish a functional baseline of seawater microbiomes across offshore Great Barrier Reef (GBR) sites to compare the diagnostic value between taxonomic and functional information in inferring continuous physico-chemical metrics in the surrounding reef. RESULTS Integrating gene-centric metagenomics analyses with 17 physico-chemical variables (temperature, salinity, and particulate and dissolved nutrients) across 48 reefs revealed that associations between microbial functions and environmental parameters were twice as stable compared to taxonomy-environment associations. Distinct seasonal variations in surface water chemistry were observed, with nutrient concentrations up to threefold higher during austral summer, explained by enhanced production of particulate organic matter (POM) by photoautotrophic picocyanobacteria, primarily Synechococcus. In contrast, nutrient levels were lower in winter, and POM production was also attributed to Prochlorococcus. Additionally, heterotrophic microbes (e.g., Rhodospirillaceae, Burkholderiaceae, Flavobacteriaceae, and Rhodobacteraceae) were enriched in reefs with elevated dissolved organic carbon (DOC) and phytoplankton-derived POM, encoding functional genes related to membrane transport, sugar utilization, and energy metabolism. These microbes likely contribute to the coral reef microbial loop by capturing and recycling nutrients derived from Synechococcus and Prochlorococcus, ultimately transferring nutrients from picocyanobacterial primary producers to higher trophic levels. CONCLUSION This study reveals that functional information in reef-associated seawater microbes more robustly associates with physico-chemical variables than taxonomic data, highlighting the importance of incorporating microbial function in reef monitoring initiatives. Our integrative approach to mine for stable seawater microbial biomarkers can be expanded to include additional continuous metrics of reef health (e.g., benthic cover of corals and macroalgae, fish counts/biomass) and may be applicable to other large-scale reef metagenomics datasets beyond the GBR. Video Abstract.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Steven J Robbins
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Sara C Bell
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Renee K Gruber
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, Vienna, 1010, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
2
|
Seong HJ, Kim JJ, Kim T, Ahn SJ, Rho M, Lee KJ, Sul WJ. Recovery of 240 metagenome-assembled genomes from coastal mariculture environments in South Korea. Sci Data 2024; 11:902. [PMID: 39164259 PMCID: PMC11336123 DOI: 10.1038/s41597-024-03769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
The mariculture industry has seen a rapid expansion in recent years due to the increasing global demand for seafood. However, the industry faces challenges from climate change and increased pathogen pressure. Additionally, the chemicals used to enhance mariculture productivity are changing ocean ecosystems. This study analyzed 36 surface-water metagenomes from South Korean mussel, oyster, scallop, and shrimp farms to expand our understanding of aquaculture microbial genetic resources and the potential impacts of these anthropogenic inputs. We recovered 240 non-redundant species-level metagenome-assembled genomes (MAGs), comprising 224 bacteria, 13 archaea, and three eukaryotes. Most MAGs were assigned to Proteobacteria, Bacteroidota, and Actinobacteriota, with 40.7% remaining unclassified at the species level. Among the three eukaryotic MAGs, one was identified as a novel lineage of green algae, highlighting the uncharacterized genetic diversity in mariculture environments. Additionally, 22 prokaryotic MAGs harbored 26 antibiotic and metal resistance genes, with MAGs carrying beta-lactamases being particularly prevalent in most farms. The obtained microbiome data from mariculture environments can be utilized in future studies to foster healthy, sustainable mariculture practices.
Collapse
Affiliation(s)
- Hoon Je Seong
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jin Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Taeyune Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sung Jae Ahn
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Kwang Jun Lee
- Division of Zoonotic and Vector Borne Disease Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea.
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
3
|
Ferrera I, Auladell A, Balagué V, Reñé A, Garcés E, Massana R, Gasol JM. Seasonal and interannual variability of the free-living and particle-associated bacteria of a coastal microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13299. [PMID: 39081120 PMCID: PMC11289420 DOI: 10.1111/1758-2229.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 08/03/2024]
Abstract
Marine microbial communities differ genetically, metabolically, and ecologically according to their lifestyle, and they may respond differently to environmental changes. In this study, we investigated the seasonal dynamics of bacterial assemblies in the free-living (FL) and particle-associated (PA) fractions across a span of 6 years in the Blanes Bay Microbial Observatory in the Northwestern Mediterranean. Both lifestyles showed marked seasonality. The trends in alpha diversity were similar, with lower values in spring-summer than in autumn-winter. Samples from both fractions were grouped seasonally and the percentage of community variability explained by the measured environmental variables was comparable (32% in FL and 31% in PA). Canonical analyses showed that biotic interactions were determinants of bacterioplankton dynamics and that their relevance varies depending on lifestyles. Time-decay curves confirmed a high degree of predictability in both fractions. Yet, 'seasonal' Amplicon Sequence Variants (ASVs) (as defined by Lomb Scargle time series analysis) in the PA communities represented 46% of the total relative abundance while these accounted for 30% in the FL fraction. These results demonstrate that bacteria inhabiting both fractions exhibit marked seasonality, highlighting the importance of accounting for both lifestyles to fully comprehend the dynamics of marine prokaryotic communities.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO‐CSIC)MálagaSpain
| | - Adrià Auladell
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Present address:
Institut de Biologia Evolutiva (IBE‐UPF‐CSIC)BarcelonaCataloniaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Albert Reñé
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Esther Garcés
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Ramon Massana
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Josep M. Gasol
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| |
Collapse
|
4
|
Hernández-Zulueta J, Rubio-Bueno S, Zamora-Tavares MDP, Vargas-Ponce O, Rodríguez-Troncoso AP, Rodríguez-Zaragoza FA. Metabarcoding the Bacterial Assemblages Associated with Toxopneustes roseus in the Mexican Central Pacific. Microorganisms 2024; 12:1195. [PMID: 38930577 PMCID: PMC11205562 DOI: 10.3390/microorganisms12061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The Mexican Central Pacific (MCP) region has discontinuous coral ecosystems with different protection and anthropogenic disturbance. Characterizing the bacterial assemblage associated with the sea urchin Toxopneustes roseus and its relationship with environmental variables will contribute to understanding the species' physiology and ecology. We collected sea urchins from coral ecosystems at six sites in the MCP during the summer and winter for two consecutive years. The spatial scale represented the most important variation in the T. roseus bacteriome, particularly because of Isla Isabel National Park (PNII). Likewise, spatial differences correlated with habitat structure variables, mainly the sponge and live coral cover. The PNII exhibited highly diverse bacterial assemblages compared to other sites, characterized by families associated with diseases and environmental stress (Saprospiraceae, Flammeovirgaceae, and Xanthobacteraceae). The remaining five sites presented a constant spatiotemporal pattern, where the predominance of the Campylobacteraceae and Helicobacteraceae families was key to T. roseus' holobiont. However, the dominance of certain bacterial families, such as Enterobacteriaceae, in the second analyzed year suggests that Punto B and Islas e islotes de Bahía Chamela Sanctuary were exposed to sewage contamination. Overall, our results improve the understanding of host-associated bacterial assemblages in specific time and space and their relationship with the environmental condition.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Sharix Rubio-Bueno
- Programa de Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
| | - María del Pilar Zamora-Tavares
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Ofelia Vargas-Ponce
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Alma Paola Rodríguez-Troncoso
- Laboratorio de Ecología Marina, Centro Universitario de la Costa (CUCosta), Universidad de Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico;
| | - Fabián A. Rodríguez-Zaragoza
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
5
|
Wietz M, Engel A, Ramondenc S, Niwano M, von Appen WJ, Priest T, von Jackowski A, Metfies K, Bienhold C, Boetius A. The Arctic summer microbiome across Fram Strait: Depth, longitude, and substrate concentrations structure microbial diversity in the euphotic zone. Environ Microbiol 2024; 26:e16568. [PMID: 38268397 DOI: 10.1111/1462-2920.16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015-2019; 5-100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
Collapse
Affiliation(s)
- Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anja Engel
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Simon Ramondenc
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matomo Niwano
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Taylor Priest
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anabel von Jackowski
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - Christina Bienhold
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
7
|
Narla AV, Hwa T, Murugan A. Dynamic coexistence driven by physiological transitions in microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575059. [PMID: 38260536 PMCID: PMC10802591 DOI: 10.1101/2024.01.10.575059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.
Collapse
Affiliation(s)
| | - Terence Hwa
- Department of Physics, University of California, San Diego
| | | |
Collapse
|
8
|
Wutkowska M, Vader A, Logares R, Pelletier E, Gabrielsen TM. Linking extreme seasonality and gene expression in Arctic marine protists. Sci Rep 2023; 13:14627. [PMID: 37669980 PMCID: PMC10480425 DOI: 10.1038/s41598-023-41204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
At high latitudes, strong seasonal differences in light availability affect marine organisms and regulate the timing of ecosystem processes. Marine protists are key players in Arctic aquatic ecosystems, yet little is known about their ecological roles over yearly cycles. This is especially true for the dark polar night period, which up until recently was assumed to be devoid of biological activity. A 12 million transcripts catalogue was built from 0.45 to 10 μm protist assemblages sampled over 13 months in a time series station in an Arctic fjord in Svalbard. Community gene expression was correlated with seasonality, with light as the main driving factor. Transcript diversity and evenness were higher during polar night compared to polar day. Light-dependent functions had higher relative expression during polar day, except phototransduction. 64% of the most expressed genes could not be functionally annotated, yet up to 78% were identified in Arctic samples from Tara Oceans, suggesting that Arctic marine assemblages are distinct from those from other oceans. Our study increases understanding of the links between extreme seasonality and biological processes in pico- and nanoplanktonic protists. Our results set the ground for future monitoring studies investigating the seasonal impact of climate change on the communities of microbial eukaryotes in the High Arctic.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway.
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
| | - Anna Vader
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Tove M Gabrielsen
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
9
|
Segaran TC, Azra MN, Lananan F, Wang Y. Microbe, climate change and marine environment: Linking trends and research hotspots. MARINE ENVIRONMENTAL RESEARCH 2023:106015. [PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
10
|
Brennan GL, Logares R. Tracking contemporary microbial evolution in a changing ocean. Trends Microbiol 2023; 31:336-345. [PMID: 36244921 DOI: 10.1016/j.tim.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 10/16/2022]
Abstract
Ocean microbes are fundamental for the functioning of the Earth system. Yet, our understanding of how they are reacting to global change in terms of evolution is limited. Microbes typically grow in large populations and reproduce quickly, which may allow them to rapidly adapt to environmental stressors compared to larger organisms. However, genetic evidence of contemporary evolution in wild microbes is scarce. We must begin coordinated efforts to establish new microbial time-series and explore novel tools, experiments, and data to fill this knowledge gap. The development of coordinated microbial 'genomic' observatories will provide the unprecedented opportunity to track contemporary microbial evolution in the ocean and explore the role of evolution in enabling wild microbes to respond to global change.
Collapse
Affiliation(s)
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Spain.
| |
Collapse
|
11
|
Kopprio GA, Martínez A, Fricke A, Hupfer M, Lara RJ, Graeve M, Gärdes A. Towards the outwelling hypothesis in a Patagonian estuary: First support from lipid markers and bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158670. [PMID: 36099952 DOI: 10.1016/j.scitotenv.2022.158670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Biogeochemical markers in combination with bacterial community composition were studied at two contrasting stations at the Río Negro (RN) estuary to assess the outwelling hypothesis in the Argentinian Patagonia. Inorganic nutrients and dissolved organic matter were exported clearly during the last hours of the ebb at the station Wetland. Moreover, a considerable outwelling of polyunsaturated fatty acids (PUFA), particulates and microalgae was inferred by this combined approach. The exported 22:6(n-3) and 20:5(n-3) contributed very likely to sustain higher trophic levels in the coasts of the Southwest Atlantic. The stable isotopes did not evidence clearly the outwelling; nevertheless, the combination of δ13C with fatty acid bacterial markers indicated organic matter degradation in the sediments. The dominance of Desulfobacterales and Desulfuromonadales suggested sulphate reduction in the sediments, a key mechanism for nutrient outwelling in salt marshes. Marivivens and other Rhodobacterales (Alphaproteobacteria) in the suspended particulate matter were clear indicators of the nutrient outwelling. The colonization of particles according to the island biogeography theory was a good hypothesis to explain the lower bacterial biodiversity at the wetland. The copiotrophic conditions of the RN estuary and particularly at the wetland were deduced also by the dynamic of some Actinobacteria, Bacteroidia and Gammaproteobacteria. This high-resolution snapshot combining isotopic, lipid and bacterial markers offers key pioneer insights into biogeochemical and ecological processes of the RN estuary.
Collapse
Affiliation(s)
- Germán A Kopprio
- Robert Koch Institute, Berlin, Germany; Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany; Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| | - Ana Martínez
- Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Anna Fricke
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Michael Hupfer
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Rubén J Lara
- Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Martin Graeve
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Astrid Gärdes
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; University of Applied Sciences, Bremerhaven, Germany
| |
Collapse
|
12
|
Raes EJ, Tolman J, Desai D, Ratten JM, Zorz J, Robicheau BM, Haider D, LaRoche J. Seasonal bacterial niche structures and chemolithoautotrophic ecotypes in a North Atlantic fjord. Sci Rep 2022; 12:15335. [PMID: 36097189 PMCID: PMC9468339 DOI: 10.1038/s41598-022-19165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.
Collapse
Affiliation(s)
- Eric J Raes
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Flourishing Oceans, Minderoo Foundation, Broadway, WA, 6009, Australia.
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jenni-Marie Ratten
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jackie Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Brent M Robicheau
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Diana Haider
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
13
|
Wietz M, Metfies K, Bienhold C, Wolf C, Janssen F, Salter I, Boetius A. Impact of preservation method and storage period on ribosomal metabarcoding of marine microbes: Implications for remote automated samplings. Front Microbiol 2022; 13:999925. [PMID: 36160263 PMCID: PMC9490091 DOI: 10.3389/fmicb.2022.999925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Automated sampling technologies can enhance the temporal and spatial resolution of marine microbial observations, particularly in remote and inaccessible areas. A critical aspect of automated microbiome sampling is the preservation of nucleic acids over long-term autosampler deployments. Understanding the impact of preservation method on microbial metabarcoding is essential for implementing genomic observatories into existing infrastructure, and for establishing best practices for the regional and global synthesis of data. The present study evaluates the effect of two preservatives commonly used in autosampler deployments (mercuric chloride and formalin) and two extraction kits (PowerWater and NucleoSpin) on amplicon sequencing of 16S and 18S rRNA gene over 50 weeks of sample storage. Our results suggest the combination of mercuric chloride preservation and PowerWater extraction as most adequate for 16S and 18S rRNA gene amplicon-sequencing from the same seawater sample. This approach provides consistent information on species richness, diversity and community composition in comparison to control samples (nonfixed, filtered and frozen) when stored up to 50 weeks at in situ temperature. Preservation affects the recovery of certain taxa, with specific OTUs becoming overrepresented (SAR11 and diatoms) or underrepresented (Colwellia and pico-eukaryotes) after preservation. In case eukaryotic sequence information is the sole target, formalin preservation and NucleoSpin extraction performed best. Our study contributes to the design of long-term autonomous microbial observations in remote ocean areas, allowing cross-comparison of microbiome dynamics across sampling devices (e.g., water and particle samplers) and marine realms.
Collapse
Affiliation(s)
- Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - Christina Bienhold
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christian Wolf
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Felix Janssen
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ian Salter
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Faroe Marine Research Institute, Torshavn, Faroe Islands
| | - Antje Boetius
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
14
|
Hu R, Liu S, Saleem M, Xiong Z, Zhou Z, Luo Z, Shu L, He Z, Wang C. Environmentally‐induced reconstruction of microbial communities alters particulate carbon flux of deep chlorophyll maxima in the South China sea. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruiwen Hu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
| | - Songfeng Liu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
| | - Muhammad Saleem
- Department of Biological Sciences Alabama State University Montgomery AL USA
| | - Zhiyao Xiong
- School of Marine Sciences Sun Yat‐sen University Zhuhai
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
| | - Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
- College of Agronomy Hunan Agricultural University Changsha China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat‐sen University Guangzhou China
| |
Collapse
|
15
|
Robicheau BM, Tolman J, Bertrand EM, LaRoche J. Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic. ISME COMMUNICATIONS 2022; 2:38. [PMID: 37938666 PMCID: PMC9723599 DOI: 10.1038/s43705-022-00119-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 10/01/2023]
Abstract
Microbial observatories can track phytoplankton at frequencies that resolve monthly, seasonal, and multiyear trends in environmental change from short-lived events. Using 4-years of weekly flow cytometry along with chloroplast and cyanobacterial 16S rRNA gene sequence data from a time-series station in the coastal Northwest Atlantic (Bedford Basin, Nova Scotia, Canada), we analyzed temporal observations for globally-relevant genera (e.g., Bolidomonas, Teleaulax, Minidiscus, Chaetoceros, Synechococcus, and Phaeocystis) in an oceanic region that has been recognized as a likely hotspot for phytoplankton diversity. Contemporaneous Scotian Shelf data also collected during our study established that the major phytoplankton within the Bedford Basin were important in the Scotian Shelf during spring and fall, therefore pointing to their broader significance within the coastal Northwest Atlantic (NWA). Temporal trends revealed a subset of indicator taxa along with their DNA signatures (e.g., Eutreptiella and Synechococcus), whose distribution patterns make them essential for timely detection of environmentally-driven shifts in the NWA. High-resolution sampling was key to identifying important community shifts towards smaller phytoplankton under anomalous environmental conditions, while further providing a detailed molecular view of community compositions underpinning general phytoplankton succession within the coastal NWA. Our study demonstrates the importance of accessible coastal time-series sites where high-frequency DNA sampling allows for the detection of shifting baselines in phytoplankton communities.
Collapse
Affiliation(s)
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
16
|
Ansari MI, Calleja MLI, Silva L, Viegas M, Ngugi DK, Huete-Stauffer TM, Morán XAG. High-Frequency Variability of Bacterioplankton in Response to Environmental Drivers in Red Sea Coastal Waters. Front Microbiol 2022; 13:780530. [PMID: 35432231 PMCID: PMC9009512 DOI: 10.3389/fmicb.2022.780530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Autotrophic and heterotrophic bacterioplankton are essential to the biogeochemistry of tropical ecosystems. However, the processes that govern their dynamics are not well known. We provide here a high-frequency assessment of bacterial community dynamics and concurrent environmental factors in Red Sea coastal waters. Weekly sampling of surface samples during a full annual cycle at an enclosed station revealed high variability in ecological conditions, which reflected in changes of major bacterioplankton communities. Temperature varied between 23 and 34°C during the sampling period. Autotrophic (Synechococcus, 1.7–16.2 × 104 cells mL−1) and heterotrophic bacteria (1.6–4.3 × 105 cells mL−1) showed two maxima in abundance in spring and summer, while minima were found in winter and autumn. Heterotrophic cells with high nucleic acid content (HNA) peaked in July, but their contribution to the total cell counts (35–60%) did not show a clear seasonal pattern. Actively respiring cells (CTC+) contributed between 4 and 51% of the total number of heterotrophic bacteria, while live cells (with intact membrane) consistently accounted for over 90%. Sequenced 16S rRNA amplicons revealed a predominance of Proteobacteria in summer and autumn (>40%) and a smaller contribution in winter (21–24%), with members of the Alphaproteobacteria class dominating throughout the year. The contribution of the Flavobacteriaceae family was highest in winter (21%), while the Rhodobacteraceae contribution was lowest (6%). Temperature, chlorophyll-a, and dissolved organic carbon concentration were the environmental variables with the greatest effects on bacterial abundance and diversity patterns.
Collapse
Affiliation(s)
- Mohd Ikram Ansari
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biosciences, Integral University, Lucknow, India
- *Correspondence: Mohd Ikram Ansari, ; Xosé Anxelu G. Morán,
| | - Maria LI. Calleja
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, Germany
| | - Luis Silva
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Miguel Viegas
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David Kamanda Ngugi
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tamara Megan Huete-Stauffer
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G. Morán
- Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centro Oceanográfico de Gijón/Xixón (IEO, CSIC), Gijón/Xixón, Spain
- *Correspondence: Mohd Ikram Ansari, ; Xosé Anxelu G. Morán,
| |
Collapse
|
17
|
Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. THE ISME JOURNAL 2022; 16:178-189. [PMID: 34285363 PMCID: PMC8692485 DOI: 10.1038/s41396-021-01053-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.
Collapse
Affiliation(s)
- Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Center for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Fuengirola, Málaga, Spain.
| |
Collapse
|
18
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6523362. [DOI: 10.1093/femsec/fiac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
|
19
|
Wietz M, Bienhold C, Metfies K, Torres-Valdés S, von Appen WJ, Salter I, Boetius A. The polar night shift: seasonal dynamics and drivers of Arctic Ocean microbiomes revealed by autonomous sampling. ISME COMMUNICATIONS 2021; 1:76. [PMID: 37938651 PMCID: PMC9723606 DOI: 10.1038/s43705-021-00074-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 06/15/2023]
Abstract
The Arctic Ocean features extreme seasonal differences in daylight, temperature, ice cover, and mixed layer depth. However, the diversity and ecology of microbes across these contrasting environmental conditions remain enigmatic. Here, using autonomous samplers and sensors deployed at two mooring sites, we portray an annual cycle of microbial diversity, nutrient concentrations and physical oceanography in the major hydrographic regimes of the Fram Strait. The ice-free West Spitsbergen Current displayed a marked separation into a productive summer (dominated by diatoms and carbohydrate-degrading bacteria) and regenerative winter state (dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria, and archaea). The autumn post-bloom with maximal nutrient depletion featured Coscinodiscophyceae, Rhodobacteraceae (e.g. Amylibacter) and the SAR116 clade. Winter replenishment of nitrate, silicate and phosphate, linked to vertical mixing and a unique microbiome that included Magnetospiraceae and Dadabacteriales, fueled the following phytoplankton bloom. The spring-summer succession of Phaeocystis, Grammonema and Thalassiosira coincided with ephemeral peaks of Aurantivirga, Formosa, Polaribacter and NS lineages, indicating metabolic relationships. In the East Greenland Current, deeper sampling depth, ice cover and polar water masses concurred with weaker seasonality and a stronger heterotrophic signature. The ice-related winter microbiome comprised Bacillaria, Naviculales, Polarella, Chrysophyceae and Flavobacterium ASVs. Low ice cover and advection of Atlantic Water coincided with diminished abundances of chemoautotrophic bacteria while others such as Phaeocystis increased, suggesting that Atlantification alters microbiome structure and eventually the biological carbon pump. These insights promote the understanding of microbial seasonality and polar night ecology in the Arctic Ocean, a region severely affected by climate change.
Collapse
Affiliation(s)
- Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Christina Bienhold
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Sinhué Torres-Valdés
- Marine BioGeoScience, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Ian Salter
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Antje Boetius
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
20
|
Behera BK, Dehury B, Rout AK, Patra B, Mantri N, Chakraborty HJ, Sarkar DJ, Kaushik NK, Bansal V, Singh I, Das BK, Rao AR, Rai A. Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Cecchetto M, Di Cesare A, Eckert E, Fassio G, Fontaneto D, Moro I, Oliverio M, Sciuto K, Tassistro G, Vezzulli L, Schiaparelli S. Antarctic coastal nanoplankton dynamics revealed by metabarcoding of desalination plant filters: Detection of short-term events and implications for routine monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143809. [PMID: 33257075 DOI: 10.1016/j.scitotenv.2020.143809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
One of the main requirements of any sound biological monitoring is the availability of long term and, possibly, temporal data with a high resolution. This is often difficult to be achieved, especially in Antarctica, due to a variety of logistic constraints, which make continuous sampling and monitoring activities generally unfeasible. Here we focus on the 5 μm filters used in the desalination plant of the Italian research base "Mario Zucchelli" in the Terra Nova Bay area (Ross Sea, Antarctica) to evaluate intra-annual coastal nanoplankton dynamics. These filters, together with others of larger mesh sizes, are used to decrease the amount of organisms and debris in the input seawater before the desalination processes take place, hence automatically collect the plankton present in the water column around the desalination system intake. We have used a DNA metabarcoding approach to characterize the communities retained by filters' sets collected in January 2012 and 2013. Intra-annual dynamics were disclosed with an unprecedented detail, that would not have been possible by using standard sampling approaches, and highlighted the importance of extreme, stochastic events such as katabatic wind pulses, which triggered dramatic, short-term shifts in coastal nanoplankton composition. This method, by combining a cost-effective sampling and molecular techniques, may represent a viable solution for long-term monitoring programs focusing on Antarctic coastal communities.
Collapse
Affiliation(s)
- Matteo Cecchetto
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy; Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy.
| | - Andrea Di Cesare
- National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy
| | - Ester Eckert
- National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Diego Fontaneto
- National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy
| | - Isabella Moro
- Department of Biology, University of Padova, Padua, Italy
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Katia Sciuto
- Department of Biology, University of Padova, Padua, Italy
| | - Giovanni Tassistro
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Stefano Schiaparelli
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy; Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Fadeev E, Cardozo-Mino MG, Rapp JZ, Bienhold C, Salter I, Salman-Carvalho V, Molari M, Tegetmeyer HE, Buttigieg PL, Boetius A. Comparison of Two 16S rRNA Primers (V3-V4 and V4-V5) for Studies of Arctic Microbial Communities. Front Microbiol 2021; 12:637526. [PMID: 33664723 PMCID: PMC7920977 DOI: 10.3389/fmicb.2021.637526] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Microbial communities of the Arctic Ocean are poorly characterized in comparison to other aquatic environments as to their horizontal, vertical, and temporal turnover. Yet, recent studies showed that the Arctic marine ecosystem harbors unique microbial community members that are adapted to harsh environmental conditions, such as near-freezing temperatures and extreme seasonality. The gene for the small ribosomal subunit (16S rRNA) is commonly used to study the taxonomic composition of microbial communities in their natural environment. Several primer sets for this marker gene have been extensively tested across various sample sets, but these typically originated from low-latitude environments. An explicit evaluation of primer-set performances in representing the microbial communities of the Arctic Ocean is currently lacking. To select a suitable primer set for studying microbiomes of various Arctic marine habitats (sea ice, surface water, marine snow, deep ocean basin, and deep-sea sediment), we have conducted a performance comparison between two widely used primer sets, targeting different hypervariable regions of the 16S rRNA gene (V3-V4 and V4-V5). We observed that both primer sets were highly similar in representing the total microbial community composition down to genus rank, which was also confirmed independently by subgroup-specific catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) counts. Each primer set revealed higher internal diversity within certain bacterial taxonomic groups (e.g., the class Bacteroidia by V3-V4, and the phylum Planctomycetes by V4-V5). However, the V4-V5 primer set provides concurrent coverage of the archaeal domain, a relevant component comprising 10-20% of the community in Arctic deep waters and the sediment. Although both primer sets perform similarly, we suggest the use of the V4-V5 primer set for the integration of both bacterial and archaeal community dynamics in the Arctic marine environment.
Collapse
Affiliation(s)
- Eduard Fadeev
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Magda G. Cardozo-Mino
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Josephine Z. Rapp
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Christina Bienhold
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ian Salter
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Verena Salman-Carvalho
- Department of Microbiology, Morrill Science Center IVN, University of Massachusetts, Amherst, MA, United States
| | | | - Halina E. Tegetmeyer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Pier Luigi Buttigieg
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
23
|
Liu Y, Blain S, Crispi O, Rembauville M, Obernosterer I. Seasonal dynamics of prokaryotes and their associations with diatoms in the Southern Ocean as revealed by an autonomous sampler. Environ Microbiol 2020; 22:3968-3984. [PMID: 32755055 DOI: 10.1111/1462-2920.15184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 11/29/2022]
Abstract
The Southern Ocean remains one of the least explored marine environments. The investigation of temporal microbial dynamics has thus far been hampered by the limited access to this remote ocean. We present here high-resolution seasonal observations of the prokaryotic community composition during phytoplankton blooms induced by natural iron fertilization. A total of 18 seawater samples were collected by a moored remote autonomous sampler over 4 months at 5-11 day intervals in offshore surface waters (central Kerguelen Plateau). Illumina sequencing of the 16S rRNA gene revealed that among the most abundant amplicon sequence variants, SAR92 and Aurantivirga were the first bloom responders, Pseudomonadaceae, Nitrincolaceae and Polaribacter had successive peaks during the spring bloom decline, and Amylibacter increased in relative abundance later in the season. SAR11 and SUP05 were abundant prior to and after the blooms. Using network analysis, we identified two groups of diatoms representative of the spring and summer bloom that had opposite correlation patterns with prokaryotic taxa. Our study provides the first seasonal picture of microbial community dynamics in the open Southern Ocean and thereby offers biological insights to the cycling of carbon and iron, and to an important puzzling issue that is the modest nitrate decrease associated to iron fertilization.
Collapse
Affiliation(s)
- Yan Liu
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls-sur-Mer, France.,College of Marine Life Sciences, Ocean University of China, Qingdao, China.,School of Life Sciences, Ludong University, Yantai, China
| | - Stéphane Blain
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls-sur-Mer, France
| | - Olivier Crispi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls-sur-Mer, France
| | - Mathieu Rembauville
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls-sur-Mer, France
| | - Ingrid Obernosterer
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls-sur-Mer, France
| |
Collapse
|
24
|
Anthropogenic dissolved organic carbon and marine microbiomes. ISME JOURNAL 2020; 14:2646-2648. [PMID: 32647311 DOI: 10.1038/s41396-020-0712-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022]
Abstract
Thousands of synthetic chemicals and hydrocarbons are released to the marine environment composing the anthropogenic dissolved organic carbon (ADOC). Most ADOC is disproportionally hydrophobic, and consequently, its concentrations in the cell membranes are between a thousand and hundred million fold higher than those in the dissolved phase. Marine microorganisms respond to ADOC by multiple strategies ranging from ADOC degradation to detoxifying metabolisms. We argue that the increasing concentrations of ADOC in the oceans deriving from rivers, atmospheric deposition, and plastic leachates can have an effect on the health of the oceans and influence the major biogeochemical cycles, thus influencing the Earth system during the Anthropocene.
Collapse
|
25
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
26
|
|
27
|
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17:569-586. [PMID: 31213707 PMCID: PMC7136171 DOI: 10.1038/s41579-019-0222-5] [Citation(s) in RCA: 736] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
Abstract
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial 'unseen majority'. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Boetius
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, and The Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | | | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Christine M Foreman
- Center for Biofilm Engineering, and Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - David A Hutchins
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science & Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David S Reay
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Virginia I Rich
- Microbiology Department, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Department of Microbiology, and Department of Civil, Environmental and Geodetic Engineering, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric A Webb
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. THE ISME JOURNAL 2019; 13:1975-1987. [PMID: 30914777 PMCID: PMC6776013 DOI: 10.1038/s41396-019-0401-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023]
Abstract
We studied the long-term temporal dynamics of the aerobic anoxygenic phototrophic (AAP) bacteria, a relevant functional group in the coastal marine microbial food web, using high-throughput sequencing of the pufM gene coupled with multivariate, time series and co-occurrence analyses at the Blanes Bay Microbial Observatory (NW Mediterranean). Additionally, using metagenomics, we tested whether the used primers captured accurately the seasonality of the most relevant AAP groups. Phylogroup K (Gammaproteobacteria) was the greatest contributor to community structure over all seasons, with phylogroups E and G (Alphaproteobacteria) being prevalent in spring. Diversity indices showed a clear seasonal trend, with maximum values in winter, which was inverse to that of AAP abundance. Multivariate analyses revealed sample clustering by season, with a relevant proportion of the variance explained by day length, temperature, salinity, phototrophic nanoflagellate abundance, chlorophyll a, and silicate concentration. Time series analysis showed robust rhythmic patterns of co-occurrence, but distinct seasonal behaviors within the same phylogroup, and even within different amplicon sequence variants (ASVs) conforming the same operational taxonomic unit (OTU). Altogether, our results picture the AAP assemblage as highly seasonal and recurrent but containing ecotypes showing distinctive temporal niche partitioning, rather than being a cohesive functional group.
Collapse
Affiliation(s)
- Adrià Auladell
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalunya, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Isabel Ferrera
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain.
| |
Collapse
|
29
|
Glasl B, Bourne DG, Frade PR, Thomas T, Schaffelke B, Webster NS. Microbial indicators of environmental perturbations in coral reef ecosystems. MICROBIOME 2019; 7:94. [PMID: 31227022 PMCID: PMC6588946 DOI: 10.1186/s40168-019-0705-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/28/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coral reefs are facing unprecedented pressure on local and global scales. Sensitive and rapid markers for ecosystem stress are urgently needed to underpin effective management and restoration strategies. Although the fundamental contribution of microbes to the stability and functioning of coral reefs is widely recognised, it remains unclear how different reef microbiomes respond to environmental perturbations and whether microbiomes are sensitive enough to predict environmental anomalies that can lead to ecosystem stress. However, the lack of coral reef microbial baselines hinders our ability to study the link between shifts in microbiomes and ecosystem stress. In this study, we established a comprehensive microbial reference database for selected Great Barrier Reef sites to assess the diagnostic value of multiple free-living and host-associated reef microbiomes to infer the environmental state of coral reef ecosystems. RESULTS A comprehensive microbial reference database, originating from multiple coral reef microbiomes (i.e. seawater, sediment, corals, sponges and macroalgae), was generated by 16S rRNA gene sequencing for 381 samples collected over the course of 16 months. By coupling this database to environmental parameters, we showed that the seawater microbiome has the greatest diagnostic value to infer shifts in the surrounding reef environment. In fact, 56% of the observed compositional variation in the microbiome was explained by environmental parameters, and temporal successions in the seawater microbiome were characterised by uniform community assembly patterns. Host-associated microbiomes, in contrast, were five-times less responsive to the environment and their community assembly patterns were generally less uniform. By applying a suite of indicator value and machine learning approaches, we further showed that seawater microbial community data provide an accurate prediction of temperature and eutrophication state (i.e. chlorophyll concentration and turbidity). CONCLUSION Our results reveal that free-living microbial communities have a high potential to infer environmental parameters due to their environmental sensitivity and predictability. This highlights the diagnostic value of microorganisms and illustrates how long-term coral reef monitoring initiatives could be enhanced by incorporating assessments of microbial communities in seawater. We therefore recommend timely integration of microbial sampling into current coral reef monitoring initiatives.
Collapse
Affiliation(s)
- Bettina Glasl
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Pedro R Frade
- Centre of Marine Science, University of Algarve, Faro, Portugal
| | - Torsten Thomas
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Muller-Karger FE, Miloslavich P, Bax NJ, Simmons S, Costello MJ, Sousa Pinto I, Canonico G, Turner W, Gill M, Montes E, Best BD, Pearlman J, Halpin P, Dunn D, Benson A, Martin CS, Weatherdon LV, Appeltans W, Provoost P, Klein E, Kelble CR, Miller RJ, Chavez FP, Iken K, Chiba S, Obura D, Navarro LM, Pereira HM, Allain V, Batten S, Benedetti-Checchi L, Duffy JE, Kudela RM, Rebelo LM, Shin Y, Geller G. Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks. FRONTIERS IN MARINE SCIENCE 2018; 5. [PMID: 0 DOI: 10.3389/fmars.2018.00211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
31
|
Miloslavich P, Bax NJ, Simmons SE, Klein E, Appeltans W, Aburto-Oropeza O, Andersen Garcia M, Batten SD, Benedetti-Cecchi L, Checkley DM, Chiba S, Duffy JE, Dunn DC, Fischer A, Gunn J, Kudela R, Marsac F, Muller-Karger FE, Obura D, Shin YJ. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. GLOBAL CHANGE BIOLOGY 2018; 24:2416-2433. [PMID: 29623683 DOI: 10.1111/gcb.14108] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/21/2023]
Abstract
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.
Collapse
Affiliation(s)
- Patricia Miloslavich
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Nicholas J Bax
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- CSIRO, Oceans and Atmosphere, Hobart, Tas., Australia
| | | | - Eduardo Klein
- Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, IOC Project Office for IODE, Oostende, Belgium
| | - Octavio Aburto-Oropeza
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Melissa Andersen Garcia
- National Oceanic and Atmospheric Administration (NOAA), Office of International Affairs, Washington, DC, USA
| | - Sonia D Batten
- Sir Alister Hardy Foundation for Ocean Science (SAHFOS), Nanaimo, BC, Canada
| | | | | | - Sanae Chiba
- UN Environment-World Conservation Monitoring Centre, Cambridge, UK
- Research and Development Center for Global Change (RCGC), JAMSTEC, Yokohama, Japan
| | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| | - Daniel C Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Albert Fischer
- Intergovermental Oceanographic Commission IOC/UNESCO, Paris, France
| | - John Gunn
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Raphael Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Francis Marsac
- Institut de Recherche pour le Développement (IRD), UMR MARBEC 248, Université Montpellier, Montpellier, France
- Department of Oceanography, University of Cape Town, Rondebosch, South Africa
| | - Frank E Muller-Karger
- Institute for Marine Remote Sensing/IMaRS, College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Yunne-Jai Shin
- Institut de Recherche pour le Développement (IRD), UMR MARBEC 248, Université Montpellier, Montpellier, France
- Department of Biological Sciences, Ma-Re Institute, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
32
|
Ma A, Bohan DA, Canard E, Derocles SA, Gray C, Lu X, Macfadyen S, Romero GQ, Kratina P. A Replicated Network Approach to ‘Big Data’ in Ecology. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|