1
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
2
|
Recent progress in the synthesis of advanced biofuel and bioproducts. Curr Opin Biotechnol 2023; 80:102913. [PMID: 36854202 DOI: 10.1016/j.copbio.2023.102913] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Energy is one of the most complex fields of study and an issue that influences nearly every aspect of modern life. Over the past century, combustion of fossil fuels, particularly in the transportation sector, has been the dominant form of energy release. Refining of petroleum and natural gas into liquid transportation fuels is also the centerpiece of the modern chemical industry used to produce materials, solvents, and other consumer goods. In the face of global climate change, the world is searching for alternative, sustainable means of producing energy carriers and chemical building blocks. The use of biofuels in engines predates modern refinery optimization and today represents a small but significant fraction of liquid transportation fuels burnt each year. Similarly, white biotechnology has been used to produce many natural products through fermentation. The evolution of recombinant DNA technology into modern synthetic biology has expanded the scope of biofuels and bioproducts that can be made by biocatalysts. This opinion examines the current trends in this research space, highlighting the substantial growth in computational tools and the growing influence of renewable electricity in the design of metabolic engineering strategies. In short, advanced biofuel and bioproduct synthesis remains a vibrant and critically important field of study whose focus is shifting away from the conversion of lignocellulosic biomass toward a broader consideration of how to reduce carbon dioxide to fuels and chemical products.
Collapse
|
3
|
Du Z, Li Y, Liu Y, Shi T. Molecular Insights into Bifunctional Ambruticin DH3 for Substrate Specificity and Catalytic Mechanism. Chemistry 2023; 29:e202203420. [PMID: 36464909 DOI: 10.1002/chem.202203420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Dehydratase (DH), a domain located at polyketide synthase (PKS) modules, commonly catalyzes the dehydration of β-hydroxy to an α,β-unsaturated acyl intermediate. As a unique bifunctional dehydratase, AmbDH3 (the DH domain of module 3 of the ambruticin PKS) is verified to be responsible for both dehydration and the following pyran-forming cyclization. Besides, in vitro studies showed that its catalytic efficiency varies with different chiral substrates. However, the detailed molecular mechanism of AmbDH3 remains unclear. In this work, the structural rationale for the substrate specificity (2R/2S- and 6R/6S-substrates) in AmbDH3 was elucidated and the complete reaction pathways including dehydration and cyclization were presented. Both MD simulations and binding free energy calculations indicated AmbDH3 had a stronger preference for 2R-substrates (2R6R-2, 2R6S-3) than 2S-substrates (2S6R-1), and residue H51 and G61 around the catalytic pocket were emphasized by forming stable hydrogen bonds with 2R-substrates. In addition, AmbDH3's mild tolerance at C6 was explained by comparison of substrate conformation and hydrogen bond network in 6S- and 6R-substrate systems. The QM/MM results supported a consecutive one-base dehydration and cyclization mechanism for 2R6S-3 substrate with the energy barrier of 25.2 kcal mol-1 and 24.5 kcal mol-1 , respectively. Our computational results uncover the substrate recognition and catalytic process of the first bifunctional dehydratase-cyclase AmbDH3, which will shed light on the application of multifunctional DH domains in PKSs for diverse natural product analogs and benefit the chemoenzymatic synthesis of stereoselective pyran-containing products.
Collapse
Affiliation(s)
- Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongzhen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yihan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ting Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
5
|
Gu D, Zhang W. Engineered biosynthesis of alkyne-tagged polyketides. Methods Enzymol 2022; 665:347-373. [PMID: 35379442 PMCID: PMC9829517 DOI: 10.1016/bs.mie.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyketides have demonstrated their significance as therapeutics, industrial products, pesticides, and biological probes following intense study over the past decades. Tagging polyketides with a bioorthogonal functionality enables various applications such as diversification, quantification, visualization and mode-of-action elucidation. The terminal alkyne moiety, as a small, stable and highly selective clickable functionality, is widely adopted in tagging natural products. De novo biosynthesis of alkyne-tagged polyketides offers the unique advantage of reducing the background from feeding the biorthogonal moiety itself, leading to the accomplishment of in situ generation of a clickable functionality for bioorthogonal reactions. Here, we introduce several engineering strategies to apply terminal alkyne biosynthetic machinery, represented by JamABC, which produces a short terminal alkyne-bearing fatty acyl chain on a carrier protein, to functions with different downstream polyketide synthases (PKSs). Successful results in engineering type III and type I PKSs provide engineering guidelines and strategies that are applicable to additional PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications.
Collapse
Affiliation(s)
- Di Gu
- Department of Chemistry, University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States,Corresponding author:
| |
Collapse
|
6
|
Kalkreuter E, Bingham KS, Keeler AM, Lowell AN, Schmidt JJ, Sherman DH, Williams GJ. Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. Nat Commun 2021; 12:2193. [PMID: 33850151 PMCID: PMC8044089 DOI: 10.1038/s41467-021-22497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds. ATs have been targeted extensively to site-selectively introduce various extenders into polyketides. Yet, a complete inventory of AT residues responsible for substrate selection has not been established, limiting the scope of AT engineering. Here, molecular dynamics simulations are used to prioritize ~50 mutations within the active site of EryAT6 from erythromycin biosynthesis, leading to identification of two previously unexplored structural motifs. Exchanging both motifs with those from ATs with alternative extender specificities provides chimeric PKS modules with expanded and inverted substrate specificity. Our enhanced understanding of AT substrate selectivity and application of this motif-swapping strategy are expected to advance our ability to engineer PKSs towards designer polyketides.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle S Bingham
- Department of Chemistry, NC State University, Raleigh, NC, USA
- UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron M Keeler
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer J Schmidt
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Zheng CJ, Kalkreuter E, Fan BY, Liu YC, Dong LB, Shen B. PtmC Catalyzes the Final Step of Thioplatensimycin, Thioplatencin, and Thioplatensilin Biosynthesis and Expands the Scope of Arylamine N-Acetyltransferases. ACS Chem Biol 2021; 16:96-105. [PMID: 33314918 DOI: 10.1021/acschembio.0c00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The members of the arylamine N-acetyltransferase (NAT) family of enzymes are important for their many roles in xenobiotic detoxification in bacteria and humans. However, very little is known about their roles outside of detoxification or their specificities for acyl donors larger than acetyl-CoA. Herein, we report the detailed study of PtmC, an unusual NAT homologue encoded in the biosynthetic gene cluster for thioplatensimycin, thioplatencin, and a newly reported scaffold, thioplatensilin, thioacid-containing diterpenoids and highly potent inhibitors of bacterial and mammalian fatty acid synthases. As the final enzyme of the pathway, PtmC is responsible for the selection of a thioacid arylamine over its cognate carboxylic acid and coupling to at least three large, 17-carbon ketolide-CoA substrates. Therefore, this study uses a combined approach of enzymology and molecular modeling to reveal how PtmC has evolved from the canonical NAT scaffold into a key part of a natural combinatorial biosynthetic pathway. Additionally, genome mining has revealed the presence of other related NATs located within natural product biosynthetic gene clusters. Thus, findings from this study are expected to expand our knowledge of how enzymes evolve for expanded substrate diversity and enable additional predictions about the activities of NATs involved in natural product biosynthesis and xenobiotic detoxification.
Collapse
|
8
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
9
|
Liu L, Yu Q, Zhang H, Tao W, Wang R, Bai L, Zhao YL, Shi T. Theoretical study on substrate recognition and catalytic mechanisms of gephyronic acid dehydratase DH1. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01776k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bifunctional dehydratase GphF DH1 catalyzes both the dehydration of β-hydroxy and the double bond isomerization with the energy barrier of 27.0 kcal mol−1 and 17.2 kcal mol−1 respectively.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Qian Yu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Haoqing Zhang
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Rufan Wang
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
10
|
Huang HM, Stephan P, Kries H. Engineering DNA-Templated Nonribosomal Peptide Synthesis. Cell Chem Biol 2020; 28:221-227.e7. [PMID: 33238159 DOI: 10.1016/j.chembiol.2020.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Diffusive escape of intermediates limits the rate enhancement that nanocontainers or macromolecular scaffolds can provide for artificial biocatalytic cascades. Nonribosomal peptide synthetases (NRPSs) naturally form gigantic assembly lines and prevent escape by covalently tethering intermediates. Here, we have built DNA-templated NRPS (DT-NRPS) by adding zinc-finger tags to split NRPS modules. The zinc fingers direct the NRPS modules to 9-bp binding sites on a DNA strand, where they form a catalytically active enzyme cascade. Geometric constraints of the DT-NRPSs were investigated using the template DNA as a molecular ruler. Up to four DT-NRPS modules were assembled on DNA to synthesize peptides. DT-NRPSs outperform previously reported DNA-templated enzyme cascades in terms of DNA acceleration, which demonstrates that covalent intermediate channeling is possible along the DNA template. Attachment of assembly line enzymes to a DNA scaffold is a promising catalytic strategy for the sequence-controlled biosynthesis of nonribosomal peptides and other polymers.
Collapse
Affiliation(s)
- Hsin-Mei Huang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany
| | - Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany.
| |
Collapse
|
11
|
Koch AA, Schmidt JJ, Lowell AN, Hansen DA, Coburn KM, Chemler JA, Sherman DH. Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aaron A. Koch
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
| | - Jennifer J. Schmidt
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
| | - Andrew N. Lowell
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
- Current address: Department of Chemistry Virginia Tech Blacksburg VA 24061 USA
| | - Douglas A. Hansen
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
| | - Katherine M. Coburn
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
| | - Joseph A. Chemler
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
| | - David H. Sherman
- Life Sciences Institute The University of Michigan (USA) 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology The University of Michigan USA
| |
Collapse
|
12
|
|
13
|
Koch AA, Schmidt JJ, Lowell AN, Hansen DA, Coburn KM, Chemler JA, Sherman DH. Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases. Angew Chem Int Ed Engl 2020; 59:13575-13580. [PMID: 32357274 DOI: 10.1002/anie.202004991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/09/2022]
Abstract
Engineering polyketide synthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both native and non-native polyketide substrates. Reactions pairing wildtype PKS modules with non-native substrates primarily resulted in poor conversions to anticipated macrolactones. Likewise, product formation with native substrates and hybrid PKS modules bearing non-cognate TE domains was severely reduced. In contrast, non-native substrates were converted by most hybrid modules containing a substrate compatible TE, directly implicating this domain as the major catalytic gatekeeper and highlighting its value as a target for protein engineering to improve analog production in PKS pathways.
Collapse
Affiliation(s)
- Aaron A Koch
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - Jennifer J Schmidt
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - Andrew N Lowell
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA.,Current address: Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Douglas A Hansen
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - Katherine M Coburn
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - Joseph A Chemler
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - David H Sherman
- Life Sciences Institute, The University of Michigan (USA), 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA.,Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, The University of Michigan, USA
| |
Collapse
|
14
|
Porterfield WB, Poenateetai N, Zhang W. Engineered Biosynthesis of Alkyne-Tagged Polyketides by Type I PKSs. iScience 2020; 23:100938. [PMID: 32146323 PMCID: PMC7063234 DOI: 10.1016/j.isci.2020.100938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 01/20/2023] Open
Abstract
Polyketides produced by modular polyketide synthases (PKSs) are important small molecules widely used as drugs, pesticides, and biological probes. Tagging these polyketides with a clickable functionality enables the visualization, diversification, and mode of action study through bio-orthogonal chemistry. We report the de novo biosynthesis of alkyne-tagged polyketides by modular type I PKSs through starter unit engineering. Specifically, we use JamABC, a terminal alkyne biosynthetic machinery from the jamaicamide B biosynthetic pathway, in combination with representative modular PKSs. We demonstrate that JamABC works as a trans loading system for engineered type I PKSs to produce alkyne-tagged polyketides. In addition, the production efficiency can be improved by enhancing the interactions between the carrier protein (JamC) and PKSs using docking domains and site-directed mutagenesis of JamC. This work thus provides engineering guidelines and strategies that are applicable to additional modular type I PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications. Alkyne-tagged polyketides are de novo biosynthesized using type I PKSs Docking domains and ACP mutagenesis improve alkyne starter unit translocation Docking domains, but not ACP mutagenesis, perturb alkyne biosynthetic machinery
Collapse
Affiliation(s)
- William B Porterfield
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA
| | - Nannalin Poenateetai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Kornfuehrer T, Eustáquio AS. Diversification of polyketide structures via synthase engineering. MEDCHEMCOMM 2019; 10:1256-1272. [PMID: 32180918 PMCID: PMC7053703 DOI: 10.1039/c9md00141g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Polyketide natural products possess diverse biological activities including antibiotic, anticancer, and immunosuppressive. Their equally varied and complex structures arise from head-to-tail condensation of simple carboxyacyl monomers. Since the seminal discovery that biosynthesis of polyketides such as the macrolide erythromycin is catalyzed by uncharacteristically large, multifunctional enzymes, termed modular type I polyketide synthases, chemists and biologists alike have been inspired to harness the apparent modularity of the synthases to further diversify polyketide structures. Yet, initial attempts to perform "combinatorial biosynthesis" failed due to challenges associated with maintaining the structural and catalytic integrity of large, chimeric synthases. Fast forward nearly 30 years, and advancements in our understanding of polyketide synthase structure and function have allowed the field to make significant progress toward effecting desired modifications to polyketide scaffolds in addition to engineering small, chiral fragments. This review highlights selected examples of polyketide diversification via control of monomer selection, oxidation state, stereochemistry, and cyclization. We conclude with a perspective on the present and future of polyketide structure diversification and hope that the examples presented here will encourage medicinal chemists to embrace polyketide synthetic biology as a means to revitalize polyketide drug discovery.
Collapse
Affiliation(s)
- Taylor Kornfuehrer
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; Tel: +1 3124137082
| | - Alessandra S Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; Tel: +1 3124137082
| |
Collapse
|
17
|
Alanjary M, Cano-Prieto C, Gross H, Medema MH. Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 2019; 36:1249-1261. [PMID: 31259995 DOI: 10.1039/c9np00021f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2014 to 2019Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) have been the subject of engineering efforts for multiple decades. Their modular assembly line architecture potentially allows unlocking vast chemical space for biosynthesis. However, attempts thus far are often met with mixed success, due to limited molecular compatibility of the parts used for engineering. Now, new engineering strategies, increases in genomic data, and improved computational tools provide more opportunities for major progress. In this review we highlight some of the challenges and progressive strategies for the re-design of NRPSs & type I PKSs and survey useful computational tools and approaches to attain the ultimate goal of semi-automated and design-based engineering of novel peptide and polyketide products.
Collapse
Affiliation(s)
- Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Highlights of Streptomyces genetics. Heredity (Edinb) 2019; 123:23-32. [PMID: 31189905 DOI: 10.1038/s41437-019-0196-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Sixty years ago, the actinomycetes, which include members of the genus Streptomyces, with their bacterial cellular dimensions but a mycelial growth habit like fungi, were generally regarded as a possible intermediate group, and virtually nothing was known about their genetics. We now know that they are bacteria, but with many original features. Their genome is linear with a unique mode of replication, not circular like those of nearly all other bacteria. They transfer their chromosome from donor to recipient by a conjugation mechanism, but this is radically different from the E. coli paradigm. They have twice as many genes as a typical rod-shaped bacterium like Escherichia coli or Bacillus subtilis, and the genome typically carries 20 or more gene clusters encoding the biosynthesis of antibiotics and other specialised metabolites, only a small proportion of which are expressed under typical laboratory screening conditions. This means that there is a vast number of potentially valuable compounds to be discovered when these 'sleeping' genes are activated. Streptomyces genetics has revolutionised natural product chemistry by facilitating the analysis of novel biosynthetic steps and has led to the ability to engineer novel biosynthetic pathways and hence 'unnatural natural products', with potential to generate lead compounds for use in the struggle to combat the rise of antimicrobial resistance.
Collapse
|
19
|
Liu Y, Ren CY, Wei WP, You D, Yin BC, Ye BC. A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-in Bidirectional Promoters. ACS Synth Biol 2019; 8:1134-1143. [PMID: 30951293 DOI: 10.1021/acssynbio.9b00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of biosynthetic pathways is a universal strategy for industrial strains that overproduce metabolites. Erythromycin produced by Saccharopolyspora erythraea has extensive clinical applications. In this study, promoters of the erythromycin biosynthesis gene cluster were tested by reporter mCherry. The SACE_0720 ( eryBIV)-SACE_0721 ( eryAI) spacer was selected as a target regulatory region, and bidirectional promoters with dual single guide RNAs (sgRNAs) were knocked-in using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method. qPCR results indicated that knock-in of Pj23119-PkasO, which replaced the native promoter, enabled biosynthetic gene cluster activation, with eryBIV and eryAI expression increased 32 and 79 times, respectively. High performance liquid chromatography results showed that, compared with the wild-type strain, the yield of erythromycin was increased (58.3%) in bidirectional promoter knock-in recombinant strains. On the basis of the activated strain Ab::Pj23119-PkasO, further investigation showed that CRISPR-based interference of sdhA gene affected erythromycin biosynthesis and cell growth. Finally, regulating the culture temperature to optimize the inhibition intensity of sdhA further increased the yield by 15.1%. In summary, this study showed that bidirectional promoter knock-in and CRISPR interference could regulate gene expression in S. erythraea. This strategy has potential application for biosynthetic gene cluster activation and gene regulation in Actinobacteria.
Collapse
Affiliation(s)
- Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Chong-Yang Ren
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , Zhejiang , China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , Zhejiang , China
- School of Chemistry and Chemical Engineering , Shihezi University , Xinjiang 832000 , China
| |
Collapse
|
20
|
Yñigez-Gutierrez AE, Bachmann BO. Fixing the Unfixable: The Art of Optimizing Natural Products for Human Medicine. J Med Chem 2019; 62:8412-8428. [PMID: 31026161 DOI: 10.1021/acs.jmedchem.9b00246] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecules isolated from natural sources including bacteria, fungi, and plants are a long-standing source of therapeutics that continue to add to our medicinal arsenal today. Despite their potency and prominence in the clinic, complex natural products often exhibit a number of liabilities that hinder their development as therapeutics, which may be partially responsible for the current trend away from natural product discovery, research, and development. However, advances in synthetic biology and organic synthesis have inspired a new generation of natural product chemists to tackle powerful undeveloped scaffolds. In this Perspective, we will present case studies demonstrating the historical and current focus on making targeted, but significant, changes to natural product scaffolds via biosynthetic gene cluster manipulation, total synthesis, semisynthesis, or a combination of these methods, with a focus on increasing activity, decreasing toxicity, or improving chemical and pharmacological properties.
Collapse
Affiliation(s)
| | - Brian O Bachmann
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
21
|
Lund S, Hall R, Williams GJ. An Artificial Pathway for Isoprenoid Biosynthesis Decoupled from Native Hemiterpene Metabolism. ACS Synth Biol 2019; 8:232-238. [PMID: 30648856 PMCID: PMC6556385 DOI: 10.1021/acssynbio.8b00383] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isoprenoids are constructed in nature using hemiterpene building blocks that are biosynthesized from lengthy enzymatic pathways with little opportunity to deploy precursor-directed biosynthesis. Here, an artificial alcohol-dependent hemiterpene biosynthetic pathway was designed and coupled to several isoprenoid biosynthetic systems, affording lycopene and a prenylated tryptophan in robust yields. This approach affords a potential route to diverse non-natural hemiterpenes and by extension isoprenoids modified with non-natural chemical functionality. Accordingly, the prototype chemo-enzymatic pathway is a critical first step toward the construction of engineered microbial strains for bioconversion of simple scalable building blocks into complex isoprenoid scaffolds.
Collapse
Affiliation(s)
- Sean Lund
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Present address: Amyris, 5885 Hollis St Ste. 100, Emeryville, California 94608, United States
| | - Rachael Hall
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Kalkreuter E, CroweTipton JM, Lowell AN, Sherman DH, Williams GJ. Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units. J Am Chem Soc 2019; 141:1961-1969. [PMID: 30676722 DOI: 10.1021/jacs.8b10521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is significant interest in diversifying the structures of polyketides to create new analogues of these bioactive molecules. This has traditionally been done by focusing on engineering the acyltransferase (AT) domains of polyketide synthases (PKSs) responsible for the incorporation of malonyl-CoA extender units. Non-natural extender units have been utilized by engineered PKSs previously; however, most of the work to date has been accomplished with ATs that are either naturally promiscuous and/or located in terminal modules lacking downstream bottlenecks. These limitations have prevented the engineering of ATs with low native promiscuity and the study of any potential gatekeeping effects by domains downstream of an engineered AT. In an effort to address this gap in PKS engineering knowledge, the substrate preferences of the final two modules of the pikromycin PKS were compared for several non-natural extender units and through active site mutagenesis. This led to engineering of the methylmalonyl-CoA specificity of both modules and inversion of their selectivity to prefer consecutive non-natural derivatives. Analysis of the product distributions of these bimodular reactions revealed unexpected metabolites resulting from gatekeeping by the downstream ketoreductase and ketosynthase domains. Despite these new bottlenecks, AT engineering provided the first full-length polyketide products incorporating two non-natural extender units. Together, this combination of tandem AT engineering and the identification of previously poorly characterized bottlenecks provides a platform for future advancements in the field.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| | - Jared M CroweTipton
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Chemistry and Department of Microbiology & Immunology , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Gavin J Williams
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
23
|
Liu L, Tao W, Bai L, Kim ES, Zhao YL, Shi T. Why does tautomycetin thioesterase prefer hydrolysis to macrocyclization? Theoretical study on its catalytic mechanism. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we attempted to uncover the reasons why Tautomycetin thioesterase (TMC TE) prefers hydrolysis rather than macrocyclization, and reveal the molecular basis of TE-catalyzed hydrolysis and macrocyclization.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Eung-Soo Kim
- Department of Biological Engineering
- Inha University
- Incheon
- Korea
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
24
|
Grote M, Kushnir S, Pryk N, Möller D, Erver J, Ismail-Ali A, Schulz F. Identification of crucial bottlenecks in engineered polyketide biosynthesis. Org Biomol Chem 2019; 17:6374-6385. [DOI: 10.1039/c9ob00831d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quo vadis combinatorial biosynthesis: STOP signs through substrate scope limitations lower the yields in engineered polyketide biosynthesis using cis-AT polyketide synthases.
Collapse
Affiliation(s)
- Marius Grote
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Susanna Kushnir
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Niclas Pryk
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - David Möller
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Julian Erver
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Ahmed Ismail-Ali
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Frank Schulz
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| |
Collapse
|
25
|
Carpenter SM, Williams GJ. Extender Unit Promiscuity and Orthogonal Protein Interactions of an Aminomalonyl-ACP Utilizing Trans-Acyltransferase from Zwittermicin Biosynthesis. ACS Chem Biol 2018; 13:3361-3373. [PMID: 30484625 DOI: 10.1021/acschembio.8b00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trans-acting acyltransferases (trans-ATs) are standalone enzymes that select and deliver extender units to polyketide synthase assembly lines. Accordingly, there is interest in leveraging trans-ATs as tools to regioselectively diversify polyketide structures. Yet, little is known regarding the extender unit and acyl carrier protein (ACP) specificity of trans-ATs, particularly those that utilize unusual ACP-linked extender units. For example, the biosynthesis of the antibiotic zwittermicin involves the trans-AT ZmaF, which is responsible for installing a rare ACP-linked aminomalonyl extender unit. Here, we developed a method to access a panel of non-natural and non-native ACP-linked extender units and used it to probe the promiscuity of ZmaF, revealing one of the most promiscuous ATs characterized to date. Furthermore, we demonstrated that ZmaF is highly orthogonal with respect to its ACP specificity, and the ability of ZmaF to trans-complement noncognate PKS modules was also explored. Together, these results set the stage for further engineering ZmaF as a tool for polyketide diversification.
Collapse
Affiliation(s)
- Samantha M. Carpenter
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Gavin J. Williams
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
26
|
Park JW, Yoon YJ. Recent advances in the discovery and combinatorial biosynthesis of microbial 14-membered macrolides and macrolactones. J Ind Microbiol Biotechnol 2018; 46:445-458. [PMID: 30415291 DOI: 10.1007/s10295-018-2095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition to their antibacterial activity, newly discovered 14-membered macrolides exhibit other therapeutic potentials, such as anti-proliferative and anti-protistal activities. Combinatorial biosynthetic approaches will allow us to create structurally diversified macrolide analogs, which are especially important during the emerging post-antibiotic era. This review focuses on recent advances in the discovery of new 14-membered macrolides (also including macrolactones) from microorganisms and the current status of combinatorial biosynthetic approaches, including polyketide synthase (PKS) and post-PKS tailoring pathways, and metabolic engineering for improved production together with heterologous production of 14-membered macrolides.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
27
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|