1
|
Job AM, Doran KS, Spencer BL. A group B streptococcal type VII-secreted LXG toxin mediates interbacterial competition and colonization of the murine female genital tract. mBio 2024; 15:e0208824. [PMID: 39189749 PMCID: PMC11481500 DOI: 10.1128/mbio.02088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia, and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has the potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Bacillota and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of intracellular expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.IMPORTANCECompetition between neighboring, non-kin bacteria is essential for microbial niche establishment in mucosal environments. Gram-positive bacteria encoding T7SSb have been shown to engage in competition through the export of LXG-motif-containing toxins, but these have not been characterized in group B Streptococcus (GBS), an opportunistic colonizer of the polymicrobial female genital tract. Here, we show a role for GBS T7SS in competition with mucosal pathobiont Enterococcus faecalis, both in vitro and in vivo. We further find that a GBS LXG protein contributing to this antagonism is exported by the T7SS and is intracellularly toxic to other bacteria; therefore, we have named this protein group B streptococcal LXG Toxin A (BltA). Finally, we show that BltA and its associated chaperones promote persistence within female genital tract tissues, in vivo. These data reveal previously unrecognized mechanisms by which GBS may compete with other mucosal opportunistic pathogens to persist within the female genital tract.
Collapse
Affiliation(s)
- Alyx M. Job
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| |
Collapse
|
2
|
Rodriguez-Marino N, Royer CJ, Rivera-Rodriguez DE, Seto E, Gracien I, Jones RM, Scharer CD, Gracz AD, Cervantes-Barragan L. Dietary fiber promotes antigen presentation on intestinal epithelial cells and development of small intestinal CD4 +CD8αα + intraepithelial T cells. Mucosal Immunol 2024:S1933-0219(24)00092-8. [PMID: 39244090 DOI: 10.1016/j.mucimm.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.
Collapse
Affiliation(s)
- Naomi Rodriguez-Marino
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Charlotte J Royer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Current affiliation. Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States; Division of Infectious Diseases, Department of Medicine, , Emory University School of Medicine, Atlanta, GA, United States
| | - Emma Seto
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Isabelle Gracien
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, , Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
3
|
Kayongo A, Ntayi ML, Olweny G, Kyalo E, Ndawula J, Ssengooba W, Kigozi E, Kalyesubula R, Munana R, Namaganda J, Caroline M, Sekibira R, Bagaya BS, Kateete DP, Joloba ML, Jjingo D, Sande OJ, Mayanja-Kizza H. Airway microbiome signature accurately discriminates Mycobacterium tuberculosis infection status. iScience 2024; 27:110142. [PMID: 38904070 PMCID: PMC11187240 DOI: 10.1016/j.isci.2024.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. Amidst efforts to control TB, long treatment duration, drug toxicity, and resistance underscore the need for novel therapeutic strategies. Despite advances in understanding the interplay between microbiome and disease in humans, the specific role of the microbiome in predicting disease susceptibility and discriminating infection status in tuberculosis still needs to be fully investigated. We investigated the impact of M.tb infection and M.tb-specific IFNγ immune responses on airway microbiome diversity by performing TB GeneXpert and QuantiFERON-GOLD assays during the follow-up phase of a longitudinal HIV-Lung Microbiome cohort of individuals recruited from two large independent cohorts in rural Uganda. M.tb rather than IFNγ immune response mainly drove a significant reduction in airway microbiome diversity. A microbiome signature comprising Streptococcus, Neisseria, Fusobacterium, Prevotella, Schaalia, Actinomyces, Cutibacterium, Brevibacillus, Microbacterium, and Beijerinckiacea accurately discriminated active TB from Latent TB and M.tb-uninfected individuals.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Moses Levi Ntayi
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Geoffrey Olweny
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Edward Kyalo
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Josephine Ndawula
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Willy Ssengooba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Robert Kalyesubula
- Department of Research, African Community Center for Social Sustainability (ACCESS), Nakaseke 256, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Richard Munana
- Department of Research, African Community Center for Social Sustainability (ACCESS), Nakaseke 256, Uganda
| | - Jesca Namaganda
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Musiime Caroline
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Rogers Sekibira
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Bernard Sentalo Bagaya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Moses Lutaakome Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Daudi Jjingo
- College of Computing and Information Sciences, Computer Science, Makerere University, Kampala 256, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Infectious Diseases Institute, Kampala 256, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, Makerere University, College of Health Sciences, Kampala 256, Uganda
| |
Collapse
|
4
|
Lowry E, Mitchell A. Colibactin-induced damage in bacteria is cell contact independent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600066. [PMID: 38948699 PMCID: PMC11212979 DOI: 10.1101/2024.06.21.600066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The bacterial toxin colibactin, produced primarily by the B2 phylogroup of Escherichia coli, underlies some cases of colorectal cancers. Colibactin crosslinks DNA and induces genotoxic damage in both mammalian and bacterial cells. While the mechanisms facilitating colibactin delivery remain unclear, results from multiple studies supported a delivery model that necessitates cell-cell contact. We directly tested this requirement in bacterial cultures by monitoring the spatiotemporal dynamics of the DNA damage response using a fluorescent transcriptional reporter. We found that in mixed-cell populations, DNA damage saturated within twelve hours and was detectable even in reporter cells separated from colibactin producers by hundreds of microns. Experiments with distinctly separated producer and reporter colonies revealed that the intensity of DNA damage decays similarly with distance regardless of colony contact. Our work reveals that cell contact is inconsequential for colibactin delivery in bacteria and suggests that contact-dependence needs to be reexamined in mammalian cells as well. Importance Colibactin is a bacteria-produced toxin that binds and damages DNA. It has been widely studied in mammalian cells due to its potential role in tumorigenesis. However, fundamental questions about its impact in bacteria remain underexplored. We used E. coli as a model system to study colibactin toxicity in neighboring bacteria and directly tested if cell-cell contact is required for toxicity, as has previously been proposed. We found that colibactin can induce DNA damage in bacteria hundreds of microns away and that the intensity of DNA damage presents similarly regardless of cell-cell contact. Our work further suggests that the requirement for cell-cell contact for colibactin-induced toxicity also needs to be reevaluated in mammalian cells.
Collapse
|
5
|
Job AM, Doran KS, Spencer BL. A group B streptococcal type VII secreted LXG toxin mediates interbacterial competition and colonization of the female genital tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598350. [PMID: 38915665 PMCID: PMC11195062 DOI: 10.1101/2024.06.10.598350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Firmicutes and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) that contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.
Collapse
Affiliation(s)
- Alyx M. Job
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
6
|
Yao Y, Shang W, Bao L, Peng Z, Wu C. Epithelial-immune cell crosstalk for intestinal barrier homeostasis. Eur J Immunol 2024; 54:e2350631. [PMID: 38556632 DOI: 10.1002/eji.202350631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The intestinal barrier is mainly formed by a monolayer of epithelial cells, which forms a physical barrier to protect the gut tissues from external insults and provides a microenvironment for commensal bacteria to colonize while ensuring immune tolerance. Moreover, various immune cells are known to significantly contribute to intestinal barrier function by either directly interacting with epithelial cells or by producing immune mediators. Fulfilling this function of the gut barrier for mucosal homeostasis requires not only the intrinsic regulation of intestinal epithelial cells (IECs) but also constant communication with immune cells and gut microbes. The reciprocal interactions between IECs and immune cells modulate mucosal barrier integrity. Dysregulation of barrier function could lead to dysbiosis, inflammation, and tumorigenesis. In this overview, we provide an update on the characteristics and functions of IECs, and how they integrate their functions with tissue immune cells and gut microbiota to establish gut homeostasis.
Collapse
Affiliation(s)
- Yikun Yao
- Shanghai Institute of Nutrition & Health, Chinese Academy of Science, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Raghu AK, Palanikumar I, Raman K. Designing function-specific minimal microbiomes from large microbial communities. NPJ Syst Biol Appl 2024; 10:46. [PMID: 38702322 PMCID: PMC11068740 DOI: 10.1038/s41540-024-00373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Microorganisms exist in large communities of diverse species, exhibiting various functionalities. The mammalian gut microbiome, for instance, has the functionality of digesting dietary fibre and producing different short-chain fatty acids. Not all microbes present in a community contribute to a given functionality; it is possible to find a minimal microbiome, which is a subset of the large microbiome, that is capable of performing the functionality while maintaining other community properties such as growth rate and metabolite production. Such a minimal microbiome will also contain keystone species for SCFA production in that community. In this work, we present a systematic constraint-based approach to identify a minimal microbiome from a large community for a user-proposed function. We employ a top-down approach with sequential deletion followed by solving a mixed-integer linear programming problem with the objective of minimising the L1-norm of the membership vector. Notably, we consider quantitative measures of community growth rate and metabolite production rates. We demonstrate the utility of our algorithm by identifying the minimal microbiomes corresponding to three model communities of the gut, and discuss their validity based on the presence of the keystone species in the community. Our approach is generic, flexible and finds application in studying a variety of microbial communities. The algorithm is available from https://github.com/RamanLab/minMicrobiome .
Collapse
Affiliation(s)
- Aswathy K Raghu
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India
- Department of Chemical and Biological Engineering, Northwestern University, IL, 60208, USA
| | - Indumathi Palanikumar
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600 036, India
| | - Karthik Raman
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600 036, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, 600 036, India.
| |
Collapse
|
8
|
Lee J, Menon N, Lim CT. Dissecting Gut-Microbial Community Interactions using a Gut Microbiome-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302113. [PMID: 38414327 PMCID: PMC11132043 DOI: 10.1002/advs.202302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Indexed: 02/29/2024]
Abstract
While the human gut microbiota has a significant impact on gut health and disease, understanding of the roles of gut microbes, interactions, and collective impact of gut microbes on various aspects of human gut health is limited by the lack of suitable in vitro model system that can accurately replicate gut-like environment and enable the close visualization on causal and mechanistic relationships between microbial constitutents and the gut. , In this study, we present a scalable Gut Microbiome-on-a-Chip (GMoC) with great imaging capability and scalability, providing a physiologically relevant dynamic gut-microbes interfaces. This chip features a reproducible 3D stratified gut epithelium derived from Caco-2 cells (µGut), mimicking key intestinal architecture, functions, and cellular complexity, providing a physiolocially relevant gut environment for microbes residing in the gut. Incorporating tumorigenic bacteria, enterotoxigenic Bacteroides fragilis (ETBF), into the GMoC enable the observation of pathogenic behaviors of ETBF, leading to µGut disruption and pro-tumorigenic signaling activations. Pre-treating the µGut with a beneficial gut microbe Lactobacillus spp., effectively prevent ETBF-mediated gut pathogenesis, preserving the healthy state of the µGut through competition-mediated colonization resistance. The GMoC holds potential as a valuable tool for exploring unknown roles of gut microbes in microbe-induced pathogenesis and microbe-based therapeutic development.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
| | - Nishanth Menon
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| |
Collapse
|
9
|
Andary CM, Al KF, Chmiel JA, Gibbons S, Daisley BA, Parvathy SN, Maleki Vareki S, Bowdish DME, Silverman MS, Burton JP. Dissecting mechanisms of fecal microbiota transplantation efficacy in disease. Trends Mol Med 2024; 30:209-222. [PMID: 38195358 DOI: 10.1016/j.molmed.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Catherine M Andary
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Shaeley Gibbons
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Seema Nair Parvathy
- Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Saman Maleki Vareki
- Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Dawn M E Bowdish
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Michael S Silverman
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
10
|
Beschastnov V, Shirokova I, Belyanina N, Pogodin I, Tulupov A, Tochilina A, Belova I, Tyumenkov Y, Kovalishena O, Soloveva I. Evaluation of the Feasibility of Using Commercial Wound Coatings as a Carrier Matrix for Bacteriophages. Sovrem Tekhnologii Med 2024; 16:45-52. [PMID: 39421627 PMCID: PMC11482097 DOI: 10.17691/stm2024.16.1.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 10/19/2024] Open
Abstract
The aim of the investigation is to study the possibility of applying commercial wound coatings for treating infected wounds as a carrier matrix for bacteriophages. Materials and Methods Twelve varieties of commercial wound coverings based on biopolymers of natural and synthetic origin, a biological preparation Staphylophag produced by scientific-industrial association Microgen (Russia), registration certificate P N001973/01, and the S. aureus 3196 test strain (GenBank JARQZO000000000) isolated from a patient with a burn wound have been used in our work. The ability of commercial biological wound coatings to absorb solutions was examined by immersing them in a physiological solution (pH 7.0-7.2) followed by weighing. The lytic activity of three bacteriophage series against the test strain was studied using the Appelman method and a spot test. The lytic activity of the bacteriophage in the wound samples was studied within 7 days after its absorption by the wound coatings. Results The greatest volume of fluid was absorbed by the LycoSorb, NEOFIX FibroSorb Ag, Biatravm, and Chitocol-S wound coatings. All bacteriophage series have been found to have a high lytic activity against the test strain. It has also been shown that Chitocol-S, Collachit-FA, Algipran, and Aquacel Ag Extra possessed their own inherent antibacterial activity under in vitro conditions stable for 7 days; moreover, the lysis zones of the test strain increased after their saturation with bacteriophage. On day 0, a high level of bacteriophage lytic activity with the maximum size of the test strain lysis zones from 49 to 59 mm have been found to remain in all samples of the wound coverings. The bacteriophage activity persisted for 1 day in the samples of Hydrofilm, Polypran, and NEOFIX FibroCold Ag coatings, up to 4 days in Algipran, Nano-Aseptica, and Biatravm coatings; and for 7 days in the Chitocol-S, Collachit-FA, Opsite Post-Op Visible, NEOFIX FibroSorb Ag, Aquacel Ag Extra, and LycoSorb samples. Conclusion Modern commercial wound dressings based on chitosan-collagen complex (Chitocol-S, Collachit-FA), polyurethane (Opsite Post-Op Visible, LycoSorb, NEOFIX FibroSorb Ag), and Hydrofiber (Aquacel Ag Extra) have a sufficient level of bacteriophage solution absorption, provide a stable preservation of the bacteriophage lytic activity under in vitro conditions up to 7 days. Thus, the in vitro studies prove the possibility of their use as a carrier matrix for bacteriophages.
Collapse
Affiliation(s)
- V.V. Beschastnov
- Professor, Senior Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I.Yu. Shirokova
- Head of the Bacteriology Laboratory, Research Institute of Preventive Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Associate Professor, Department of Epidemiology, Microbiology and Evidence-Based Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N.A. Belyanina
- Junior Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I.E. Pogodin
- Orthopedic Traumatologist, Head of the Burns Department (for Adults), University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.A. Tulupov
- Junior Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.G. Tochilina
- Associate Professor, Department of Epidemiology, Microbiology and Evidence-Based Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Senior Researcher, Laboratory of Human Microbiome and Means for its Correction; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, R
| | - I.V. Belova
- Associate Professor, Department of Epidemiology, Microbiology and Evidence-Based Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Leading Researcher, Laboratory of Human Microbiome and Means for its Correction; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, R
| | - Yu.O. Tyumenkov
- Junior Researcher, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - O.V. Kovalishena
- Professor, Head of the Department of Epidemiology, Microbiology and Evidence-Based Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Director of the Research Institute of Preventive Medicine, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I.V. Soloveva
- Associate Professor, Leading Researcher, Head of the Laboratory of Human Microbiome and Means for its Correction; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
11
|
Njoroge TM, Berenbaum MR, Stone CM, Kim CH, Dunlap C, Muturi EJ. Culex pipiens and Culex restuans larval interactions shape the bacterial communities in container aquatic habitats. FEMS MICROBES 2024; 5:xtae002. [PMID: 38450098 PMCID: PMC10917442 DOI: 10.1093/femsmc/xtae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Container aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.
Collapse
Affiliation(s)
- Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin- Carmichael Hall, 1234 N. Notre Dame Ave, South Bend, IN 46617, United States
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801, United States
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801, United States
| | - Christopher M Stone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - Chang-Hyun Kim
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, 1815 N. University St., Peoria, IL 61604, United States
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, 1815 N. University St., Peoria, IL 61604, United States
| |
Collapse
|
12
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy MK, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Eren AM, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. mBio 2024; 15:e0283023. [PMID: 38063424 PMCID: PMC10790697 DOI: 10.1128/mbio.02830-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE The Gram-negative bacterium Bacteroides fragilis is a common member of the human gut microbiota that colonizes multiple host niches and can influence human physiology through a variety of mechanisms. Identification of genes that enable B. fragilis to grow across a range of host environments has been impeded in part by the relatively limited genetic tractability of this species. We have developed a high-throughput genetic resource for a B. fragilis strain isolated from a UC pouchitis patient. Bile acids limit microbial growth and are altered in abundance in UC pouches, where B. fragilis often blooms. Using this resource, we uncovered pathways and processes that impact B. fragilis fitness in bile and that may contribute to population expansions during bouts of gut inflammation.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Miette K. Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Cai R, Zhou C, Tang R, Meng Y, Zeng J, Li Y, Wen X. Current insights on gut microbiome and chronic urticaria: progress in the pathogenesis and opportunities for novel therapeutic approaches. Gut Microbes 2024; 16:2382774. [PMID: 39078229 PMCID: PMC11290762 DOI: 10.1080/19490976.2024.2382774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic urticaria (CU) is a prevalent skin disorder greatly impacting the patients' life quality, in which immune dysregulation mediated by gut microbiome plays a significant role. Several studies have found the gut dysbiosis exists in patients with CU. In addition, infection may also be one of the causes of CU. The primary treatment currently used for CU is the second-generation non-sedating H1-antihistamines (nsAH). However, there are some limitations in current therapies. Based on the latest evidence, this review provides an updated overview of how the gut dysbiosis influences CU development, explores potential therapeutic approaches based on the gut microbiota and summarizes the interaction between gut microbiota and current treatment.
Collapse
Affiliation(s)
- Rui Cai
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruisi Tang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanling Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Sun X, Tong W, Wu G, Yang G, Zhou J, Feng L. A collaborative effect of solid-phase denitrification and algae on secondary effluent purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119393. [PMID: 37925989 DOI: 10.1016/j.jenvman.2023.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
This study explored the collaborative effect on nutrients removal performance and microbial community in solid-phase denitrification based bacteria-algae symbiosis system. Three biodegradable carriers (apple wood, poplar wood and corncob) and two algae species (Chlorella vulgaris and Chlorella pyrenoidosa) were selected in these bacteria-algae symbiosis systems. Results demonstrated that corncob as the carrier exhibited the highest average removal efficiencies of total nitrogen (83.7%-85.1%) and phosphorus removal (38.1%-49.1%) in comparison with apple wood (65.8%-71.5%, 25.5%-32.7%) and poplar wood (42.5%-49.1%, 14.2%-20.7%), which was mainly attributed to the highest organics availability of corncob. The addition of Chlorella acquired approximately 3%-5% of promotion rates for nitrated removal among three biodegradable carriers, but only corncob reactor acquired significant promotions by 3%-11% for phosphorous removal. Metagenomics sequencing analysis further indicated that Proteobacteria was the largest phylum in all wood reactors (77.1%-93.3%) and corncob reactor without Chlorella (85.8%), while Chlorobi became the most dominant phylum instead of Proteobacteria (20.5%-41.3%) in the corncob with addition of Chlorella vulgaris (54.5%) and Chlorella pyrenoidosa (76.3%). Thus, the higher organics availability stimulated the growth of algae, and promoted the performance of bacteria-algae symbiosis system based biodegradable carriers.
Collapse
Affiliation(s)
- Xiaoran Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Weibing Tong
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guiyang Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
15
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy M, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Murat Eren A, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540287. [PMID: 37214927 PMCID: PMC10197588 DOI: 10.1101/2023.05.11.540287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteroides fragilis comprises 1-5% of the gut microbiota in healthy humans but can expand to >50% of the population in ulcerative colitis (UC) patients experiencing inflammation. The mechanisms underlying such microbial blooms are poorly understood, but the gut of UC patients has physicochemical features that differ from healthy patients and likely impact microbial physiology. For example, levels of the secondary bile acid deoxycholate (DC) are highly reduced in the ileoanal J-pouch of UC colectomy patients. We isolated a B. fragilis strain from a UC patient with pouch inflammation (i.e. pouchitis) and developed it as a genetic model system to identify genes and pathways that are regulated by DC and that impact B. fragilis fitness in DC and crude bile. Treatment of B. fragilis with a physiologically relevant concentration of DC reduced cell growth and remodeled transcription of one-quarter of the genome. DC strongly induced expression of chaperones and select transcriptional regulators and efflux systems and downregulated protein synthesis genes. Using a barcoded collection of ≈50,000 unique insertional mutants, we further defined B. fragilis genes that contribute to fitness in media containing DC or crude bile. Genes impacting cell envelope functions including cardiolipin synthesis, cell surface glycosylation, and systems implicated in sodium-dependent bioenergetics were major bile acid fitness factors. As expected, there was limited overlap between transcriptionally regulated genes and genes that impacted fitness in bile when disrupted. Our study provides a genome-scale view of a B. fragilis bile response and genetic determinants of its fitness in DC and crude bile.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Miette Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
17
|
Huang J, Wang X, Wang Z, Deng L, Wang Y, Tang Y, Luo L, Leung ELH. Extracellular vesicles as a novel mediator of interkingdom communication. Cytokine Growth Factor Rev 2023; 73:173-184. [PMID: 37634980 DOI: 10.1016/j.cytogfr.2023.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles secreted from almost all types of cells including bacteria, mammals and plants, and are presumed to be mediators of intercellular communication. Bacterial extracellular vesicles (BEVs) are nanoparticles with diverse diameters, ranging from 20 to 400 nm. BEVs are composed of soluble microbial metabolites, including nucleic acid, proteins, lipoglycans, and short-chain fatty acids (SCFAs). In addition, EVs may contain quorum sensing peptides that are endowed with the ability to protect bacteria against bacteriophages, form and maintain bacterial communities, and modulate the host immune system. BEVs are potentially promising therapeutic modalities for use in vaccine development, cancer immunotherapy regimens, and drug delivery cargos. Plant-derived EVs (PEVs), such as EVs derived from herbal medicines, can be absorbed by the gut microbiota and influence the composition and homeostasis of gut microbiota. This review highlights the roles of BEVs and PEVs in bacterial and plant physiology and discusses crosstalk among gut bacteria, host metabolism and herbal medicine. In summary, EVs represent crucial communication messengers in the gut microbiota, with potential therapeutic value in the delivery of herbal medicines.
Collapse
Affiliation(s)
- Jumin Huang
- Cancer Centre, Faculty of Health Sciences, Universty of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macao Special Administrative Region of China
| | - Xuanrun Wang
- Cancer Centre, Faculty of Health Sciences, Universty of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macao Special Administrative Region of China
| | - Ziming Wang
- Cancer Centre, Faculty of Health Sciences, Universty of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macao Special Administrative Region of China
| | - Liyan Deng
- The Marine Biomedical Research Institute, Guangdong Medical University, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| | - Elaine Lai-Han Leung
- Cancer Centre, Faculty of Health Sciences, Universty of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macao Special Administrative Region of China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao Special Administrative Region of China.
| |
Collapse
|
18
|
Sun D, Chen P, Xi Y, Sheng J. From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol 2023; 14:1274295. [PMID: 37841244 PMCID: PMC10570811 DOI: 10.3389/fimmu.2023.1274295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as critical factors involved in gut health regulation, transcending their traditional roles as byproducts of bacterial metabolism. These vesicles function as cargo carriers and contribute to various aspects of intestinal homeostasis, including microbial balance, antimicrobial peptide secretion, physical barrier integrity, and immune system activation. Therefore, any imbalance in BEV production can cause several gut-related issues including intestinal infection, inflammatory bowel disease, metabolic dysregulation, and even cancer. BEVs derived from beneficial or commensal bacteria can act as potent immune regulators and have been implicated in maintaining gut health. They also show promise for future clinical applications in vaccine development and tumor immunotherapy. This review examines the multifaceted role of BEVs in gut health and disease, and also delves into future research directions and potential applications.
Collapse
Affiliation(s)
- Desen Sun
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Pan Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Rombouts S, Mas A, Le Gall A, Fiche JB, Mignot T, Nollmann M. Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria. Nat Commun 2023; 14:5588. [PMID: 37696789 PMCID: PMC10495355 DOI: 10.1038/s41467-023-41193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Many species, such as fish schools or bird flocks, rely on collective motion to forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and moves collectively to prey and feed on other bacterial species. These activities require two distinct motility machines enabling adventurous (A) and social (S) gliding, however when and how these mechanisms are used has remained elusive. Here, we address this long-standing question by applying multiscale semantic cell tracking during predation. We show that: (1) foragers and swarms can comprise A- and S-motile cells, with single cells exchanging frequently between these groups; (2) A-motility is critical to ensure the directional movement of both foragers and swarms; (3) the combined action of A- and S-motile cells within swarms leads to increased predation efficiencies. These results challenge the notion that A- and S-motilities are exclusive to foragers and swarms, and show that these machines act synergistically to enhance predation efficiency.
Collapse
Affiliation(s)
- Sara Rombouts
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Anna Mas
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Antoine Le Gall
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Marseille, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| |
Collapse
|
20
|
Kumar R, Huang MY, Chen CL, Wang HC, Lu HP. Resilience and probiotic interventions to prevent and recover from shrimp gut dysbiosis. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108886. [PMID: 37290613 DOI: 10.1016/j.fsi.2023.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
To counter the recurrent outbreaks of bacterial (acute hepatopancreatic necrosis disease; AHPND) and viral (white spot disease; WSD) shrimp diseases, which still remain a threat to the global industry, shrimp gut microbiota research has been gaining more attention in recent years, and the use of probiotics in aquaculture has had promising results in improving shrimp gut health and immunity. In this review based on our studies on AHPND and WSD, we summarize our current understanding of the shrimp gastrointestinal tract and the role of the microbiota in disease, as well as effects of probiotics. We focus particularly on the concept of microbiota resilience, and consider strategies that can be used to restore shrimp gut health by probiotic intervention at a crucial time during gut microbiota dysbiosis. Based on the available scientific evidence, we argue that the use of probiotics potentially has an important role in controlling disease in shrimp aquaculture.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ying Huang
- Division of Aquaculture, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Chih-Ling Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Graham DB, Xavier RJ. Conditioning of the immune system by the microbiome. Trends Immunol 2023; 44:499-511. [PMID: 37236891 DOI: 10.1016/j.it.2023.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The human intestinal microbiome has coevolved with its host to establish a stable homeostatic relationship with hallmark features of mutualistic symbioses, yet the mechanistic underpinnings of host-microbiome interactions are incompletely understood. Thus, it is an opportune time to conceive a common framework for microbiome-mediated regulation of immune function. We propose the term conditioned immunity to describe the multifaceted mechanisms by which the microbiome modulates immunity. In this regard, microbial colonization is a conditioning exposure that has durable effects on immune function through the action of secondary metabolites, foreign molecular patterns, and antigens. Here, we discuss how spatial niches impact host exposure to microbial products at the level of dose and timing, which elicit diverse conditioned responses.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
22
|
Oliveira RA, Cabral V, Torcato I, Xavier KB. Deciphering the quorum-sensing lexicon of the gut microbiota. Cell Host Microbe 2023; 31:500-512. [PMID: 37054672 DOI: 10.1016/j.chom.2023.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The enduring coexistence between the gut microbiota and the host has led to a symbiotic relationship that benefits both parties. In this complex, multispecies environment, bacteria can communicate through chemical molecules to sense and respond to the chemical, physical, and ecological properties of the surrounding environment. One of the best-studied cell-to-cell communication mechanisms is quorum sensing. Chemical signaling through quorum sensing is involved in regulating the bacterial group behaviors, often required for host colonization. However, most microbial-host interactions regulated by quorum sensing are studied in pathogens. Here, we will focus on the latest reports on the emerging studies of quorum sensing in the gut microbiota symbionts and on group behaviors adopted by these bacteria to colonize the mammalian gut. Moreover, we address the challenges and approaches to uncover molecule-mediated communication mechanisms, which will allow us to unravel the processes that drive the establishment of gut microbiota.
Collapse
Affiliation(s)
| | - Vitor Cabral
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Inês Torcato
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
23
|
Lee KW, Shin JS, Lee CM, Han HY, O Y, Kim HW, Cho TJ. Gut-on-a-Chip for the Analysis of Bacteria-Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet-Microbiota Relationship? Nutrients 2023; 15:nu15051131. [PMID: 36904133 PMCID: PMC10005057 DOI: 10.3390/nu15051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Bacterial co-culture studies using synthetic gut microbiomes have reported novel research designs to understand the underlying role of bacterial interaction in the metabolism of dietary resources and community assembly of complex microflora. Since lab-on-a-chip mimicking the gut (hereafter "gut-on-a-chip") is one of the most advanced platforms for the simulative research regarding the correlation between host health and microbiota, the co-culture of the synthetic bacterial community in gut-on-a-chip is expected to reveal the diet-microbiota relationship. This critical review analyzed recent research on bacterial co-culture with perspectives on the ecological niche of commensals, probiotics, and pathogens to categorize the experimental approaches for diet-mediated management of gut health as the compositional and/or metabolic modulation of the microbiota and the control of pathogens. Meanwhile, the aim of previous research on bacterial culture in gut-on-a-chip has been mainly limited to the maintenance of the viability of host cells. Thus, the integration of study designs established for the co-culture of synthetic gut consortia with various nutritional resources into gut-on-a-chip is expected to reveal bacterial interspecies interactions related to specific dietary patterns. This critical review suggests novel research topics for co-culturing bacterial communities in gut-on-a-chip to realize an ideal experimental platform mimicking a complex intestinal environment.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Song Shin
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Chan Min Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hea Yeon Han
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Yun O
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hye Won Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Correspondence: ; Tel.: +82-44-860-1433
| |
Collapse
|
24
|
Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients 2023; 15:nu15010228. [PMID: 36615885 PMCID: PMC9823358 DOI: 10.3390/nu15010228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dyslipidemia is a multifaceted condition with various genetic and environmental factors contributing to its pathogenesis. Further, this condition represents an important risk factor for its related sequalae including cardiovascular diseases (CVD) such as coronary artery disease (CAD) and stroke. Emerging evidence has shown that gut microbiota and their metabolites can worsen or protect against the development of dyslipidemia. Although there are currently numerous treatment modalities available including lifestyle modification and pharmacologic interventions, there has been promising research on dyslipidemia that involves the benefits of modulating gut microbiota in treating alterations in lipid metabolism. In this review, we examine the relationship between gut microbiota and dyslipidemia, the impact of gut microbiota metabolites on the development of dyslipidemia, and the current research on dietary interventions, prebiotics, probiotics, synbiotics and microbiota transplant as therapeutic modalities in prevention of cardiovascular disease. Overall, understanding the mechanisms by which gut microbiota and their metabolites affect dyslipidemia progression will help develop more precise therapeutic targets to optimize lipid metabolism.
Collapse
|
25
|
Jansma J, Thome NU, Schwalbe M, Chatziioannou AC, Elsayed SS, van Wezel GP, van den Abbeele P, van Hemert S, El Aidy S. Dynamic effects of probiotic formula ecologic®825 on human small intestinal ileostoma microbiota: a network theory approach. Gut Microbes 2023; 15:2232506. [PMID: 37417553 PMCID: PMC10332219 DOI: 10.1080/19490976.2023.2232506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Nicola U. Thome
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Somayah S. Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P. van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Nie R, Zhu Z, Qi Y, Wang Z, Sun H, Liu G. Bacteriocin production enhancing mechanism of Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and proteomic analyses. Front Microbiol 2023; 14:1111516. [PMID: 36910197 PMCID: PMC9998909 DOI: 10.3389/fmicb.2023.1111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Plantaricin is a kind of bacteriocin with broad-spectrum antibacterial activity on several food pathogens and spoilage microorganisms, showing potential in biopreservation applications. However, the low yield of plantaricin limits its industrialization. In this study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and Lactiplantibacillus paraplantarum RX-8 could enhance plantaricin production. To investigate the response of L. paraplantarum RX-8 facing W. anomalus Y-5 and understand the mechanisms activated when increasing plantaricin yield, comparative transcriptomic and proteomic analyses of L. paraplantarum RX-8 were performed in mono-culture and co-culture. The results showed that different genes and proteins in the phosphotransferase system (PTS) were improved and enhanced the uptake of certain sugars; the key enzyme activity in glycolysis was increased with the promotion of energy production; arginine biosynthesis was downregulated to increase glutamate mechanism and then promoted plantaricin yield; and the expression of several genes/proteins related to purine metabolism was downregulated and those related to pyrimidine metabolism was upregulated. Meanwhile, the increase of plantaricin synthesis by upregulation of plnABCDEF cluster expression under co-culture indicated that the PlnA-mediated quorum sensing (QS) system took part in the response mechanism of L. paraplantarum RX-8. However, the absence of AI-2 did not influence the inducing effect on plantaricin production. Mannose, galactose, and glutamate were critical metabolites and significantly simulate plantaricin production (p < 0.05). In summary, the findings provided new insights into the interaction between bacteriocin-inducing and bacteriocin-producing microorganisms, which may serve as a basis for further research into the detailed mechanism.
Collapse
Affiliation(s)
- Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zekang Zhu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Zhao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haoxuan Sun
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
27
|
Puerariae lobatae Radix Alleviates Pre-Eclampsia by Remodeling Gut Microbiota and Protecting the Gut and Placental Barriers. Nutrients 2022; 14:nu14235025. [PMID: 36501055 PMCID: PMC9738998 DOI: 10.3390/nu14235025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Pre-eclampsia (PE) is a serious pregnancy complication, and gut dysbiosis is an important cause of it. Puerariae lobatae Radix (PLR) is a medicine and food homologous species; however, its effect on PE is unclear. This study aimed to investigate the efficacy of PLR in alleviating PE and its mechanisms. We used an NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model to examine the efficacy of preventive and therapeutic PLR supplementation. The results showed that both PLR interventions alleviated hypertension and proteinuria, increased fetal and placental weights, and elevated the levels of VEGF and PlGF. Moreover, PLR protected the placenta from oxidative stress via activating the Nrf2/HO-1/NQO1 pathway and mitigated placental damage by increasing intestinal barrier markers (ZO-1, Occludin, and Claudin-1) expression and reducing lipopolysaccharide leakage. Notably, preventive PLR administration corrected gut dysbiosis in PE mice, as evidenced by the increased abundance and positive interactions of beneficial bacteria including Bifidobacterium, Blautia, and Turicibacter. Fecal microbiota transplantation confirmed that the gut microbiota partially mediated the beneficial effects of PLR on PE. Our findings revealed that modulating the gut microbiota is an effective strategy for the treatment of PE and highlighted that PLR might be used as an intestinal nutrient supplement in PE patients.
Collapse
|
28
|
Lee CC, Liao YC, Lee MC, Cheng YC, Chiou SY, Lin JS, Huang CC, Watanabe K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms 2022; 10:2181. [PMID: 36363775 PMCID: PMC9692508 DOI: 10.3390/microorganisms10112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 03/21/2024] Open
Abstract
Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve exercise performance, regulate body composition, and ameliorate age-related declines. Here, we performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise performance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day), and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-associated features and reduced exercise-induced inflammation, compared with controls. Viable TWK10 significantly promoted improved body composition, by increasing muscle mass proportion and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predictive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10. In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively. Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Shiou-Yun Chiou
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Koichi Watanabe
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
29
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Silveira MAD, Bilodeau S, Greten TF, Wang XW, Trinchieri G. The gut-liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer 2022; 8:583-597. [PMID: 35331674 DOI: 10.1016/j.trecan.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
Although their etiologies vary, tumors share a common trait: the control of an oncogenic transcriptional program that is regulated by the interaction of the malignant cells with the stromal and immune cells in the tumor microenvironment (TME). The TME shows high phenotypic and functional heterogeneity that may be modulated by interactions with commensal microbes (the microbiota) both systemically and locally. Unlike host cells, the microbiota adapts after environmental perturbations, impacting host-microbe interactions. In the liver, the bidirectional relationship in the gut and its associated microbiota creates an interdependent environment. Therefore, the gut microbiota and its metabolites modulate liver gene expression directly and indirectly, causing an imbalance in the gut-liver axis, which may result in disease, including carcinogenesis.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada; Centre de Recherche en Données Massives de l'Université Laval, Québec, QC G1V 0A6, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Giorgio Trinchieri
- NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Commensal and Pathogenic Bacterial-Derived Extracellular Vesicles in Host-Bacterial and Interbacterial Dialogues: Two Sides of the Same Coin. J Immunol Res 2022; 2022:8092170. [PMID: 35224113 PMCID: PMC8872691 DOI: 10.1155/2022/8092170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) cause effective changes in various domains of life. These bioactive structures are essential to the bidirectional organ communication. Recently, increasing research attention has been paid to EVs derived from commensal and pathogenic bacteria in their potential role to affect human disease risk for cancers and a variety of metabolic, gastrointestinal, psychiatric, and mental disorders. The present review presents an overview of both the protective and harmful roles of commensal and pathogenic bacteria-derived EVs in host-bacterial and interbacterial interactions. Bacterial EVs could impact upon human health by regulating microbiota–host crosstalk intestinal homeostasis, even in distal organs. The importance of vesicles derived from bacteria has been also evaluated regarding epigenetic modifications and applications. Generally, the evaluation of bacterial EVs is important towards finding efficient strategies for the prevention and treatment of various human diseases and maintaining metabolic homeostasis.
Collapse
|
32
|
Kidess E, Kleerebezem M, Brugman S. Colonizing Microbes, IL-10 and IL-22: Keeping the Peace at the Mucosal Surface. Front Microbiol 2021; 12:729053. [PMID: 34603258 PMCID: PMC8484919 DOI: 10.3389/fmicb.2021.729053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Our world is filled with microbes. Each multicellular organism has developed ways to interact with this microbial environment. Microbes do not always pose a threat; they can contribute to many processes that benefit the host. Upon colonization both host and microbes adapt resulting in dynamic ecosystems in different host niches. Regulatory processes develop within the host to prevent overt inflammation to beneficial microbes, yet keeping the possibility to respond when pathogens attempt to adhere and invade tissues. This review will focus on microbial colonization and the early (innate) host immune response, with special emphasis on the microbiota-modifying roles of IL-10 and IL-22 in the intestine. IL-10 knock out mice show an altered microbial composition, and spontaneously develop enterocolitis over time. IL-22 knock out mice, although not developing enterocolitis spontaneously, also have an altered microbial composition and increase of epithelial-adherent bacteria, mainly caused by a decrease in mucin and anti-microbial peptide production. Recently interesting links have been found between the IL-10 and IL-22 pathways. While IL-22 can function as a regulatory cytokine at the mucosal surface, it also has inflammatory roles depending on the context. For example, lack of IL-22 in the IL-10–/– mice model prevents spontaneous colitis development. Additionally, the reduced microbial diversity observed in IL-10–/– mice was also reversed in IL-10/IL-22 double mutant mice (Gunasekera et al., 2020). Since in early life, host immunity develops in parallel and in interaction with colonizing microbes, there is a need for future studies that focus on the effect of the timing of colonization in relation to the developmental phase of the host. To illustrate this, examples from zebrafish research will be compared with studies performed in mammals. Since zebrafish develop from eggs and are directly exposed to the outside microbial world, timing of the development of host immunity and subsequent control of microbial composition, is different from mammals that develop in utero and only get exposed after birth. Likewise, colonization studies using adult germfree mice might yield different results from those using neonatal germfree mice. Lastly, special emphasis will be given to the need for host genotype and environmental (co-housing) control of experiments.
Collapse
Affiliation(s)
- Evelien Kidess
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|