1
|
Zhang P, Ma Y, Wang Y, Dong E, Ma S. Design, Synthesis, and Biological Evaluation of 2-Phenoxyalkylhydrazide Benzoxazole Derivatives as Quorum Sensing Inhibitors with Strong Antibiofilm Effect. J Med Chem 2024; 67:5721-5743. [PMID: 38564271 DOI: 10.1021/acs.jmedchem.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With the increasing problem of bacterial resistance to traditional antibiotics, there is an urgent need for new antibacterial agents with novel mechanisms to treat infections caused by drug-resistant bacteria. In this paper, we designed and synthesized 2-phenoxyalkylhydrazide benzoxazole derivatives and evaluated their quorum sensing inhibition activity. Among them, 26c at a concentration of 102.4 μg/mL not only inhibited the production of pyocyanin and rhamnolipid by 45.6% and 38.3%, respectively, but also suppressed 76.6% of biofilm production at 32 μg/mL. In addition, 26c did not affect bacterial growth, but in a mouse model infected with P. aeruginosa PAO1, it could help ciprofloxacin effectively eliminate the living bacteria. In the targeting experiment, 26c could inhibit the fluorescence intensity of PAO1-lasB-gfp and PAO1-pqsA-gfp in a concentration-dependent manner, indicating that the compound acts on the quorum sensing system. Overall, 26c is worthy of further investigation as a quorum sensing inhibitor with strong antibiofilm effect.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Yangchun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Yingmei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Enhui Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
2
|
Zhang P, Chen W, Ma YC, Bai B, Sun G, Zhang S, Chang X, Wang Y, Jiang N, Zhang X, Ma S. Design and Synthesis of 4-Fluorophenyl-5-methylene-2(5 H)-furanone Derivatives as Potent Quorum Sensing Inhibitors. J Med Chem 2023. [PMID: 37310919 DOI: 10.1021/acs.jmedchem.2c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quorum sensing inhibitors (QSIs) are a class of compounds that can reduce the pathogenicity of bacteria without affecting bacterial growth. In this study, we designed and synthesized four series of 4-fluorophenyl-5-methylene-2(5H)-furanone derivatives and evaluated their QSI activities. Among them, compound 23e not only showed excellent inhibitory activity against various virulence factors but also significantly enhanced the inhibitory activity of antibiotics ciprofloxacin and clarithromycin against two strains of Pseudomonas aeruginosa in vitro. What is even more exciting is that it remarkably increased the antibacterial effect in vivo in combination with ciprofloxacin in the bacteremia model infected with P. aeruginosa PAO1. Moreover, 23e had little hemolytic activity to mouse erythrocytes. Further, the results of GFP reporter fluorescence strain inhibition and β-galactosidase activity inhibition experiments demonstrated that 23e simultaneously targeted the three quorum sensing systems in P. aeruginosa. As a result, compound 23e could be used as an effective QSI for further development against bacterial infections.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yang-Chun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Guanglin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shenyan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiaohong Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yingmei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Nan Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xianghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
3
|
Liu Z, Zhang P, Qin Y, Zhang N, Teng Y, Venter H, Ma S. Design and synthesis of aryl-substituted pyrrolidone derivatives as quorum sensing inhibitors. Bioorg Chem 2020; 105:104376. [PMID: 33099165 DOI: 10.1016/j.bioorg.2020.104376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 09/04/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Quorum sensing, a common cell-to-cell communication system, is considered to have promising application in antibacterial therapy since they are expected to induce lower bacterial resistance than conventional antibiotics. However, most of present quorum sensing inhibitors have potent cell toxicity, which limits their application. In this study we evaluated the diverse quorum sensing inhibition activities of different biaromatic furanones and brominated pyrrolones. On this basis, we further designed and synthesized a new series of aryl-substituted pyrrolones 12a-12f. In the quorum sensing inhibition assay, compound 12a showed improved characteristics and low toxicity against human hepatocellular carcinoma cell. In particular, it can inhibit the pyocyanin production and protease activity of Pseudomonas aeruginosa by 80.6 and 78.5%, respectively. Besides, in this series, some compounds exerted moderate biofilm inhibition activity. To sum up, all the findings indicate that aryl-substituted pyrrolidone derivatives are worth further investigation as quorum sensing inhibitors.
Collapse
Affiliation(s)
- Zhiyang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Nan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, SA 5000, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China.
| |
Collapse
|
4
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
5
|
Han Y, Wang Y, Li L, Xu G, Liu J, Yang K. Bacterial population and chemicals in bioaerosols from indoor environment: Sludge dewatering houses in nine municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:469-478. [PMID: 29136598 DOI: 10.1016/j.scitotenv.2017.11.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 05/04/2023]
Abstract
Municipal wastewater treatment plants (MWTPs) are regarded as sources of airborne microorganisms. Sludge dewatering house (SDH) is one of the most serious indoor bioaerosol pollution treatment sectors in MWTPs. In this study, properties of bioaerosols from SDHs of nine MWTPs were investigated in China. Results suggested that bioaerosols were generated mainly from the mixed liquor and will be promoted by the mechanical motion of belts of dewatering devices. They will accumulate in the SDHs due to the treatment devices placed inside. Levels of airborne bacteria and chemicals showed regional variations. In Hefei and Yixing, the emissions of total suspended particles (TSP) and airborne bacteria were higher than those in Beijing and Guangzhou. Results of bacterial population showed that bacterial species in bioaerosols from SDHs also presented significant regional disparity; these regional disparities were closely related with the source of bioaerosols in SDHs. Among these identified bacterial species, some common potential pathogens were detected in all SDHs, such as Aeromonas caviae, Flavobacterium sp., and Staphylococcus lentus. Relative humidity (RH) and temperature were the major parameters on bioaerosols to survive. As shown in this study, SDHs in wastewater treatment plants should be provided considerable attention for being an emission source of indoor bioaerosols.
Collapse
Affiliation(s)
- Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yanjie Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Guangsu Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
6
|
Sordi MB, Moreira TA, Montero JFD, Barbosa LC, Benfatti CAM, Magini RDS, Pimenta ADL, Souza JCMD. Effect of γ-lactones and γ-lactams compounds on Streptococcus mutans biofilms. J Appl Oral Sci 2018; 26:e20170065. [PMID: 29489934 PMCID: PMC5831975 DOI: 10.1590/1678-7757-2017-0065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/14/2017] [Indexed: 01/31/2023] Open
Abstract
Considering oral diseases, antibiofilm compounds can decrease the accumulation of pathogenic species such as Streptococcus mutans at micro-areas of teeth, dental restorations or implant-supported prostheses. OBJECTIVE To assess the effect of thirteen different novel lactam-based compounds on the inhibition of S. mutans biofilm formation. MATERIAL AND METHODS We synthesized compounds based on γ-lactones analogues from rubrolides by a mucochloric acid process and converted them into their corresponding γ-hydroxy-γ-lactams by a reaction with isobutylamine and propylamine. Compounds concentrations ranging from 0.17 up to 87.5 μg mL-1 were tested against S. mutans. We diluted the exponential cultures in TSB and incubated them (37°C) in the presence of different γ-lactones or γ-lactams dilutions. Afterwards, we measured the planktonic growth by optical density at 630 nm and therefore assessed the biofilm density by the crystal violet staining method. RESULTS Twelve compounds were active against biofilm formation, showing no effect on bacterial viability. Only one compound was inactive against both planktonic and biofilm growth. The highest biofilm inhibition (inhibition rate above 60%) was obtained for two compounds while three other compounds revealed an inhibition rate above 40%. CONCLUSIONS Twelve of the thirteen compounds revealed effective inhibition of S. mutans biofilm formation, with eight of them showing a specific antibiofilm effect.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Thaís Altoé Moreira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Juan Felipe Dumes Montero
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Luis Cláudio Barbosa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - César Augusto Magalhães Benfatti
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Ricardo de Souza Magini
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Andréa de Lima Pimenta
- Laboratório de Tecnologias Integradas, Departamento de Engenharia Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Júlio César Matias de Souza
- Centro de Ensino e Pesquisa em Implantes Dentários, Departamento de Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| |
Collapse
|
7
|
Kentache T, Ben Abdelkrim A, Jouenne T, Dé E, Hardouin J. Global Dynamic Proteome Study of a Pellicle-forming Acinetobacter baumannii Strain. Mol Cell Proteomics 2017; 16:100-112. [PMID: 27799293 PMCID: PMC5217776 DOI: 10.1074/mcp.m116.061044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
For several decades, many bacteria, among which A. baumannii, have shown their ability to colonize the upper surface of static liquids, forming a biofilm at the air-liquid interface named pellicle. Despite the ubiquity of these pellicles in both natural and artificial environments, few studies have investigated this biofilm type. The present data set provides the first description of the whole proteome of A. baumannii cells grown as pellicle, using a label-free mass spectrometry approach. Results are in accord with the general findings reporting that sessile bacteria are far more resistant to detrimental conditions than their planktonic counterparts, by the accumulation of stress proteins. The present investigation also confirmed previous studies suggesting a correlation between the pellicle forming ability and the bacterial virulence. Indeed, we showed the up-regulation of numerous virulence factors during the pellicle growth, e.g. phospholipases, adhesion factors, as well as those of the GacAS Two-Component System (TCS) and Type 6 Secretion System (T6SS). We also highlighted that Bam and Tam systems, both related to the OM insertion machinery, play a critical role during pellicle biogenesis. Moreover, sessile bacteria activate several pathways, e.g. iron, magnesium, phosphate pathways, which allows for increasing the panel of nutrient sources.
Collapse
Affiliation(s)
- Takfarinas Kentache
- From the ‡CNRS; UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France
- §Normandie University, UR, France
| | - Ahmed Ben Abdelkrim
- From the ‡CNRS; UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France
- §Normandie University, UR, France
| | - Thierry Jouenne
- From the ‡CNRS; UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France
- §Normandie University, UR, France
- ¶PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- From the ‡CNRS; UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France
- §Normandie University, UR, France
- ¶PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- From the ‡CNRS; UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France;
- §Normandie University, UR, France
- ¶PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| |
Collapse
|
8
|
Xavier JG, Geremias TC, Montero JFD, Vahey BR, Benfatti CAM, Souza JCM, Magini RS, Pimenta AL. Lactam inhibiting Streptococcus mutans growth on titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:837-841. [PMID: 27524086 DOI: 10.1016/j.msec.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml(-)(1)), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5×10(2)CFU/ml in the presence of lactam and 4×10(2)CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments.
Collapse
Affiliation(s)
- J G Xavier
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - T C Geremias
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - J F D Montero
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - B R Vahey
- Herman Ostrow School of Dentistry of USC, 925 W 34 St, Los Angeles, CA 90089, United States
| | - C A M Benfatti
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - J C M Souza
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - R S Magini
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - A L Pimenta
- Department of Biologia, ERRMECe, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin 95302 Cergy, Pontoise, France; Integrated Laboratories Technologies (InteLab), Dept. Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-970, Brazil.
| |
Collapse
|
9
|
Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:17-30. [DOI: 10.1007/5584_2016_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Inhibition of Enterococcus faecalis biofilm formation by highly active lactones and lactams analogues of rubrolides. Eur J Med Chem 2014; 82:127-38. [DOI: 10.1016/j.ejmech.2014.05.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 01/11/2023]
|
11
|
Zimaro T, Thomas L, Marondedze C, Sgro GG, Garofalo CG, Ficarra FA, Gehring C, Ottado J, Gottig N. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation. BMC Microbiol 2014; 14:96. [PMID: 24742141 PMCID: PMC4021560 DOI: 10.1186/1471-2180-14-96] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
12
|
Pereira UA, Barbosa LC, Maltha CR, Demuner AJ, Masood MA, Pimenta AL. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5 H )-ones analogues to rubrolides as inhibitors of biofilm formation by Gram-positive and Gram-negative bacteria. Bioorg Med Chem Lett 2014; 24:1052-6. [DOI: 10.1016/j.bmcl.2014.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
13
|
de Lima Pimenta A, Chiaradia-Delatorre LD, Mascarello A, de Oliveira KA, Leal PC, Yunes RA, de Aguiar CBNM, Tasca CI, Nunes RJ, Smânia A. Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Agents 2013; 42:519-23. [PMID: 24016798 DOI: 10.1016/j.ijantimicag.2013.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 01/06/2023]
Abstract
New unconventional approaches to the development of antimicrobial drugs must target inhibition of infection stages leading to host colonisation or virulence itself, rather than bacterial viability. Amongst the most promising unconventional targets for the development of new antimicrobial drugs is bacterial adherence and biofilm formation as well as their control system, the quorum-sensing (QS) system, a mechanism of communication used to co-ordinate bacterial activities. Here we describe the evaluation of synthetic organic compounds as bacterial biofilm inhibitors against a panel of clinically relevant Gram-positive and Gram-negative bacterial strains. This approach has successfully allowed the identification of five compounds (GEt, GHex, GOctad, G19 and C33) active not only against bacterial biofilms but also displaying potential to be used as antagonists and/or inhibitors of bacterial QS.
Collapse
Affiliation(s)
- Andréa de Lima Pimenta
- Laboratório de Antibióticos, MIP, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Departamento de Odontologia, CEPID, CCS, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, CEP: 88040-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N. Insights into xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 2013; 13:186. [PMID: 23924281 PMCID: PMC3750573 DOI: 10.1186/1471-2180-13-186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
Collapse
Affiliation(s)
- Tamara Zimaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Ocampo y Esmeralda, Rosario, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Pott GB, Beard KS, Bryan CL, Merrick DT, Shapiro L. Alpha-1 antitrypsin reduces severity of pseudomonas pneumonia in mice and inhibits epithelial barrier disruption and pseudomonas invasion of respiratory epithelial cells. Front Public Health 2013; 1:19. [PMID: 24350188 PMCID: PMC3854847 DOI: 10.3389/fpubh.2013.00019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/07/2013] [Indexed: 12/12/2022] Open
Abstract
Nosocomial pneumonia (NP) is the third most common hospital-acquired infection and the leading cause of death due to hospital-acquired infection in the US. During pneumonia and non-pneumonia severe illness, respiratory tract secretions become enriched with the serine protease neutrophil elastase (NE). Several NE activities promote onset and severity of NP. NE in the airways causes proteolytic tissue damage, augments inflammation, may promote invasion of respiratory epithelium by bacteria, and disrupts respiratory epithelial barrier function. These NE activities culminate in enhanced bacterial replication, impaired gas exchange, fluid intrusion into the airways, and loss of bacterial containment that can result in bacteremia. Therefore, neutralizing NE activity may reduce the frequency and severity of NP. We evaluated human alpha-1 antitrypsin (AAT), the prototype endogenous NE inhibitor, as a suppressor of bacterial pneumonia and pneumonia-related pathogenesis. In AAT+/+ transgenic mice that express human AAT in lungs, mortality due to Pseudomonas aeruginosa (P.aer) pneumonia was reduced 90% compared to non-transgenic control animals. Exogenous human AAT given to non-transgenic mice also significantly reduced P.aer pneumonia mortality. P.aer-infected AAT+/+ mice demonstrated reduced lung tissue damage, decreased bacterial concentrations in lungs and blood, and diminished circulating cytokine concentrations compared to infected non-transgenic mice. In vitro, AAT suppressed P.aer internalization into respiratory epithelial cells and inhibited NE or P.aer-induced disruption of epithelial cell barrier function. The beneficial effects of human AAT in murine P.aer pneumonia raise the possibility of AAT use as a prophylactic treatment for NP in humans, and suggest a role for AAT as an innate immune mediator.
Collapse
Affiliation(s)
- Gregory B Pott
- Denver Veterans Affairs Medical Center , Denver, CO , USA ; University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - K Scott Beard
- Denver Veterans Affairs Medical Center , Denver, CO , USA ; University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Courtney L Bryan
- Denver Veterans Affairs Medical Center , Denver, CO , USA ; University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | | | - Leland Shapiro
- Denver Veterans Affairs Medical Center , Denver, CO , USA ; University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| |
Collapse
|
16
|
Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. FRONTIERS IN PLANT SCIENCE 2013; 4:287. [PMID: 23914197 PMCID: PMC3728486 DOI: 10.3389/fpls.2013.00287] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Collapse
Affiliation(s)
- Peter Kupferschmied
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology ZurichZurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
- *Correspondence: Christoph Keel, Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
17
|
Petrocelli S, Tondo ML, Daurelio LD, Orellano EG. Modifications of Xanthomonas axonopodis pv. citri lipopolysaccharide affect the basal response and the virulence process during citrus canker. PLoS One 2012; 7:e40051. [PMID: 22792211 PMCID: PMC3391215 DOI: 10.1371/journal.pone.0040051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/31/2012] [Indexed: 12/16/2022] Open
Abstract
Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.
Collapse
Affiliation(s)
- Silvana Petrocelli
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - María Laura Tondo
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Lucas D. Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Elena G. Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
- * E-mail:
| |
Collapse
|
18
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
19
|
Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors. PLoS One 2011; 6:e26030. [PMID: 22046254 PMCID: PMC3203104 DOI: 10.1371/journal.pone.0026030] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/15/2011] [Indexed: 02/06/2023] Open
Abstract
Background Interestingly, Acinetobacter baumannii presents an enhanced capacity to form biofilms (also named pellicles) at the air-liquid interface as compared to the other Acinetobacter species. This characteristic questions the contribution of this phenotype to an increased risk of clinical infections by this pathogen. Methodology/Principal Findings By a proteomic approach using 2-D gel electrophoresis-LC-MS/MS mass spectrometry, we compared the membrane protein patterns of A. baumannii 77, a pellicle-forming clinical isolate, grown in planktonic and in sessile modes. We identified 52 proteins with a differential expression, including 32 up-regulated and 20 down-regulated in the pellicle state. Several proteins, differentially expressed during pellicle development, were of particular interest. We determined the over-expression of four siderophore iron uptake systems including the acinetobactin and enterobactin receptors and confirmed that the development of this type of biofilm is promoted by ferric ions. Two over-expressed proteins, CarO and an OprD-homologue, putative carbapenem-resistance associated porins, would be involved in the transport of specific compounds, like ornithine, a biosynthesis precursor of a siderophore from the hydroxamate family. We evidenced the overexpression of a lipase and a transporter of LCFA that may be involved in the recycling of lipids inside the pellicle matrix. Finally, we demonstrated both by proteomic and by AFM studies that this particular type of biofilm required multiple pili systems to maintain this cohesive structure at the air-liquid interface; two of these systems have never been described in A. baumannii. Conclusions/Significance Our study demonstrated that several proteins, overexpressed at a late state of pellicle development, could be potentially involved in virulence processes. Therefore, regarding the number of potential virulence factors that are over-expressed in this growth mode, the pellicle-forming clinical isolates should be kept under survey.
Collapse
|
20
|
Abstract
Porphyromonas gingivalis has been implicated in the etiology of adult periodontitis. In this study, we examined the viability of Drosophila melanogaster as a new model for examining P. gingivalis-host interactions. P. gingivalis (W83) infection of Drosophila resulted in a systemic infection that killed in a dose-dependent manner. Differences in the virulence of several clinically prevalent P. gingivalis strains were observed in the Drosophila killing model, and the results correlated well with studies in mammalian infection models and human epidemiologic studies. P. gingivalis pathobiology in Drosophila did not result from uncontrolled growth of the bacterium in the Drosophila hemolymph (blood) or overt damage to Drosophila tissues. P. gingivalis killing of Drosophila was multifactorial, involving several bacterial factors that are also involved in virulence in mammals. The results from this study suggest that many aspects of P. gingivalis pathogenesis in mammals are conserved in Drosophila, and thus the Drosophila killing model should be useful for characterizing P. gingivalis-host interactions and, potentially, polymicrobe-host interactions.
Collapse
|
21
|
Contributions of Francisella tularensis subsp. novicida chitinases and Sec secretion system to biofilm formation on chitin. Appl Environ Microbiol 2009; 76:596-608. [PMID: 19948864 DOI: 10.1128/aem.02037-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Francisella tularensis, the zoonotic cause of tularemia, can infect numerous mammals and other eukaryotes. Although studying F. tularensis pathogenesis is essential to comprehending disease, mammalian infection is just one step in the ecology of Francisella species. F. tularensis has been isolated from aquatic environments and arthropod vectors, environments in which chitin could serve as a potential carbon source and as a surface for attachment and growth. We show that F. tularensis subsp. novicida forms biofilms during the colonization of chitin surfaces. The ability of F. tularensis to persist using chitin as a sole carbon source is dependent on chitinases, since mutants lacking chiA or chiB are attenuated for chitin colonization and biofilm formation in the absence of exogenous sugar. A genetic screen for biofilm mutants identified the Sec translocon export pathway and 14 secreted proteins. We show that these genes are important for initial attachment during biofilm formation. We generated defined deletion mutants by targeting two chaperone genes (secB1 and secB2) involved in Sec-dependent secretion and four genes that encode putative secreted proteins. All of the mutants were deficient in attachment to polystyrene and chitin surfaces and for biofilm formation compared to wild-type F. novicida. In contrast, mutations in the Sec translocon and secreted factors did not affect virulence. Our data suggest that biofilm formation by F. tularensis promotes persistence on chitin surfaces. Further study of the interaction of F. tularensis with the chitin microenvironment may provide insight into the environmental survival and transmission mechanisms of this pathogen.
Collapse
|
22
|
Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 2009; 191:6618-31. [PMID: 19717596 DOI: 10.1128/jb.00698-09] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are responsible for the majority of all microbial infections and have profound impact on industrial and geochemical processes. While many studies documented phenotypic differentiation and gene regulation of biofilms, the importance of their structural and mechanical properties is poorly understood. Here we investigate how changes in lipopolysaccharide (LPS) core capping in Pseudomonas aeruginosa affect biofilm structure through modification of adhesive, cohesive, and viscoelastic properties at an early stage of biofilm development. Microbead force spectroscopy and atomic force microscopy were used to characterize P. aeruginosa biofilm interactions with either glass substrata or bacterial lawns. Using isogenic migA, wapR, and rmlC mutants with defined LPS characteristics, we observed significant changes in cell mechanical properties among these strains compared to wild-type strain PAO1. Specifically, truncation of core oligosaccharides enhanced both adhesive and cohesive forces by up to 10-fold, whereas changes in instantaneous elasticity were correlated with the presence of O antigen. Using confocal laser scanning microscopy to quantify biofilm structural changes with respect to differences in LPS core capping, we observed that textural parameters varied with adhesion or the inverse of cohesion, while areal and volumetric parameters were linked to adhesion, cohesion, or the balance between them. In conclusion, this report demonstrated for the first time that changes in LPS expression resulted in quantifiable cellular mechanical changes that were correlated with structural changes in bacterial biofilms. Thus, the interplay between architectural and functional properties may be an important contributor to bacterial community survival.
Collapse
|
23
|
Jakovljevic V, Jock S, Du Z, Geider K. Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae. Microb Biotechnol 2008; 1:416-24. [PMID: 21261861 PMCID: PMC3815248 DOI: 10.1111/j.1751-7915.2008.00043.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 11/29/2022] Open
Abstract
Fire blight caused by the Gram-negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl-homoserine lactone for bacterial cell-to-cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.
Collapse
Affiliation(s)
| | | | | | - Klaus Geider
- Max‐Planck‐Institut für Zellbiologie, Ladenburg and Julius Kühn Institut für Pflanzenschutz in Obst‐ und Weinbau, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| |
Collapse
|
24
|
Guyard-Nicodème M, Bazire A, Hémery G, Meylheuc T, Mollé D, Orange N, Fito-Boncompte L, Feuilloley M, Haras D, Dufour A, Chevalier S. Outer membrane Modifications of Pseudomonas fluorescens MF37 in Response to Hyperosmolarity. J Proteome Res 2008; 7:1218-25. [DOI: 10.1021/pr070539x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Muriel Guyard-Nicodème
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Gaëlle Hémery
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Thierry Meylheuc
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Daniel Mollé
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Dominique Haras
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| |
Collapse
|
25
|
Barrows BD, Haslam SM, Bischof LJ, Morris HR, Dell A, Aroian RV. Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J Biol Chem 2006; 282:3302-11. [PMID: 17135259 DOI: 10.1074/jbc.m606621200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation in the Caenorhabditis elegans bre-1 gene was isolated in a screen for Bacillus thuringiensis toxin-resistant (bre) mutants to the Cry5B crystal toxin made by B. thuringiensis. bre-1 mutant animals are different from the four other cloned bre mutants in that their level of resistance is noticeably lower. bre-1 animals also display a significantly reduced brood size at 25 degrees C. Here we cloned the bre-1 gene and characterized the bre-1 mutant phenotype. bre-1 encodes a protein with significant homology to a GDP-mannose 4,6-dehydratase, which catalyzes the first step in the biosynthesis of GDP-fucose from GDP-mannose. Injection of GDP-fucose but not fucose into C. elegans intestinal cells rescues bre-1 mutant phenotypes. Thus, C. elegans lacks a functional fucose salvage pathway. Furthermore, we demonstrate that bre-1 mutant animals are defective in production of fucosylated glycolipids and that bre-1 mutant animals make quantitatively reduced levels of glycolipid receptors for Cry5B. We finally show that bre-1 mutant animals, although viable, show a lack of fucosylated N- and O-glycans, based on mass spectrometric evidence. Thus, C. elegans can survive with little fucose and can develop resistance to crystal toxin by loss of a monosaccharide biosynthetic pathway.
Collapse
Affiliation(s)
- Brad D Barrows
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | | | | | | | |
Collapse
|
26
|
Pimenta AL, Di Martino P, Blight MA. Positive correlation between in vivo and in vitro assays for the evaluation of Pseudomonas virulence. Res Microbiol 2006; 157:885-90. [PMID: 16901681 DOI: 10.1016/j.resmic.2006.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/12/2006] [Accepted: 06/27/2006] [Indexed: 11/30/2022]
Abstract
Some bacterial phenotypes measured in vitro can be used to access bacterial virulence, on the premise that they are positively correlated with data from in vivo experiments. We show here that in vitro assessment of bacterial phenotypes, such as adherence and cytotoxicity, are positively correlated with data from in vivo experiments in Drosophila and can be used to assess bacterial virulence in vivo. Manipulation of environmental parameters, such as iron availability, induced changes in the phenotypes measured in vitro that correlated with changes in vivo virulence of all strains tested. Applying these assays, we demonstrate the pathogenic potential of a Pseudomonas fluorescens strain, initially isolated as a non-pathogenic milk contaminant. This strain displayed adherence and cytotoxicity comparable to those of the Pseudomonas aeruginosa pathogenic strain PAK, and colonized the infected flies as rapidly as the PAK strain. These results indicate that this "a priori" non-pathogenic bacterium is capable of escaping the host immune response, supporting the use of in vitro tests for screening of potential pathogens.
Collapse
Affiliation(s)
- Andréa L Pimenta
- Département de Biologie, Laboratoire ERRMECe, Université de Cergy-Pontoise, 95302 Cergy-Pontoise cedex, France.
| | | | | |
Collapse
|
27
|
Scully LR, Bidochka MJ. Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol Lett 2006; 263:1-9. [PMID: 16958844 DOI: 10.1111/j.1574-6968.2006.00388.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The study of human diseases requires the testing of microorganisms in model systems. Although mammals are typically used, we argue the validity of using insects as models in order to examine human diseases, particularly the growing number of opportunistic microorganisms. Insects can be used in large numbers, are easily manipulated, and are not subject to the same ethical concerns as mammalian systems. Insects and mammals have many parallels with respect to microbial pathogenesis, from proteinaceous integuments that require breaching before infection to similarities in their innate immune responses. Reactions of insects to Candida and Pseudomonas spp. infections show good correlation with mouse models, providing precedent-setting examples of the study of human pathogens using insects. Insects as pathogen hosts also warrant study because they may act as reservoirs for emerging human pathogens. Finally, insect models may be used to examine the evolutionary processes involved in the acquisition of virulence factors and host-jumping mechanisms indispensable to emerging pathogens. Insect models may be used in 'niche' investigations where large sample sizes can facilitate rapid, informative screening of opportunistic diseases and provide insights into pathogen evolution, while reducing the cost and ethical concerns associated with mammalian models.
Collapse
Affiliation(s)
- Lisa R Scully
- Department of Biological Sciences, Brock University, ON, Canada
| | | |
Collapse
|
28
|
Beloin C, Michaelis K, Lindner K, Landini P, Hacker J, Ghigo JM, Dobrindt U. The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli. J Bacteriol 2006; 188:1316-31. [PMID: 16452414 PMCID: PMC1367212 DOI: 10.1128/jb.188.4.1316-1331.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the influence of regulatory and pathogenicity island-associated factors (Hha, RpoS, LuxS, EvgA, RfaH, and tRNA5Leu) on biofilm formation by uropathogenic Escherichia coli (UPEC) strain 536. Only inactivation of rfaH, which encodes a transcriptional antiterminator, resulted in increased initial adhesion and biofilm formation by E. coli 536. rfaH inactivation in nonpathogenic E. coli K-12 isolate MG1655 resulted in the same phenotype. Transcriptome analysis of wild-type strain 536 and an rfaH mutant of this strain revealed that deletion of rfaH correlated with increased expression of flu orthologs. flu encodes antigen 43 (Ag43), which mediates autoaggregation and biofilm formation. We confirmed that deletion of rfaH leads to increased levels of flu and flu-like transcripts in E. coli K-12 and UPEC. Supporting the hypothesis that RfaH represses biofilm formation through reduction of the Ag43 level, the increased-biofilm phenotype of E. coli MG1655rfaH was reversed upon inactivation of flu. Deletion of the two flu orthologs, however, did not modify the behavior of mutant 536rfaH. Our results demonstrate that the strong initial adhesion and biofilm formation capacities of strain MG1655rfaH are mediated by both increased steady-state production of Ag43 and likely increased Ag43 presentation due to null rfaH-dependent lipopolysaccharide depletion. Although the roles of rfaH in the biofilm phenotype are different in UPEC strain 536 and K-12 strain MG1655, this study shows that RfaH, in addition to affecting the expression of bacterial virulence factors, also negatively controls expression and surface presentation of Ag43 and possibly another Ag43-independent factor(s) that mediates cell-cell interactions and biofilm formation.
Collapse
Affiliation(s)
- Christophe Beloin
- Institut für Molekulare Infektionsbiologie, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Spiers AJ, Rainey PB. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. MICROBIOLOGY-SGM 2005; 151:2829-2839. [PMID: 16151196 DOI: 10.1099/mic.0.27984-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The wrinkly spreader (WS) isolate of Pseudomonas fluorescens SBW25 forms a substantial biofilm at the air-liquid interface. The biofilm is composed of an extracellular partially acetylated cellulose-fibre matrix, and previous mutagenesis of WS with mini-Tn5 had identified both the regulatory and cellulose-biosynthetic operons. One uncharacterized WS mutant, WS-5, still expressed cellulose but produced very weak biofilms. In this work, the mini-Tn5 insertion site in WS-5 has been identified as being immediately upstream of the tol-pal operon. Like Tol-Pal mutants of other Gram-negative bacteria, WS-5 showed a "leaky-membrane" phenotype, including the serendipitous ability to utilize sucrose, increased uptake of the hydrophilic dye propidium iodide, and the loss of lipopolysaccharide (LPS) expression. WS-5 cells were altered in relative hydrophobicity, and showed poorer recruitment and maintenance in the biofilm than WS. The WS-5 biofilm was also less sensitive to chemical interference during development. However, growth rate, cellulose expression and attachment were not significantly different between WS and WS-5. Finally, WS-5 biofilms could be partially complemented with WS-4, a biofilm- and attachment-deficient mutant that expressed LPS, resulting in a mixed biofilm with significantly increased strength. These findings show that a major component of the WS air-liquid biofilm strength results from the interactions between LPS and the cellulose matrix of the biofilm--and that in the WS biofilm, cellulose fibres, attachment factor and LPS are required for biofilm development, strength and integrity.
Collapse
Affiliation(s)
- Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
30
|
Cossard E, Gallet O, Di Martino P. Comparative adherence to human A549 cells, plant fibronectin-like protein, and polystyrene surfaces of fourPseudomonas fluorescensstrains from different ecological origin. Can J Microbiol 2005; 51:811-5. [PMID: 16391662 DOI: 10.1139/w05-065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main objective of this study was to compare the adherence properties of four Pseudomonas fluorescens isolates from different ecological niches (human tissue, rhizosphere, drinking water, and cow milk). The substrates used to test P. fluorescens adherence were as follows: cultured human respiratory epithelial cells A549, immobilized plant fibronectin-like protein, and polystyrene. For all the experiments, bacteria were grown at 27 °C. The adherence assay to human cells was performed at 37 °C, whereas adherence to fibronectin and polystyrene was done at 27 °C. The four strains tested adhered to A549 cells but showed different adherence patterns. At 3 h, the milk isolate showed an aggregative adherence phenotype, whereas the three other isolates showed a diffuse adherence pattern. With a longer incubation time of 24 h, the aggregative pattern of the milk isolate disappeared, the adherence of the clinical strain increased, the adherence of the water isolate decreased, and morphological changes in A549 cells were observed with the clinical, water, and soil isolates. The four strains tested formed biofilms on polystyrene dishes. The clinical and milk isolates were the more efficient colonizers of polystyrene surfaces and also the more adherent to immobilized plant fibronectin-like protein. There was no relation between bacterial surface hydrophobicity and P. fluorescens adherence to the substrates tested. The main conclusions of these results are that P. fluorescens is an adherent bacterium, that no clear correlation exists between adherence and ecological habitat, and that P. fluorescens can adhere well to substrates not present in its natural environment.Key words: Pseudomonas fluorescens, adherence, biofilm, ecological niche, plant fibronectin-like protein, A549, polystyrene.
Collapse
Affiliation(s)
- Elisabeth Cossard
- Laboratoire ERRMECe, UFR Sciences et Techniques, Université de Cergy-Pontoise, France
| | | | | |
Collapse
|
31
|
Abstract
Biofilm formation by Pseudomonas aeruginosa is hypothesized to follow a developmental pattern initiated by attachment to a surface followed by microcolony formation and mature biofilm development. Swimming and twitching motility are important for attachment and biofilm development in P. aeruginosa. However, it is clear that many P. aeruginosa strains lacking swimming motility exist as biofilms in the lungs of cystic fibrosis patients. Consequently, we have developed a dynamic attachment assay to identify motility-independent attachment-defective mutants. Using transposon mutagenesis, we identified 14 novel dynamic attachment-deficient (dad) mutants including four mutants specific to dynamic assay conditions (dad specific). Two of the dad-specific mutants contain insertions in genes involved in sensing and responding to external stimuli, implying a significant impact of external factors on the biofilm developmental pathway. Observations of initial attachment and long-term biofilm formation characterized our dad mutants into two distinct classes: biofilm delayed and biofilm impaired. Biofilm-delayed mutants form wild-type biofilms but are delayed at least 24 h compared with the wild type, whereas biofilm-impaired mutants never form wild-type biofilms in our assays. We propose a dynamic model for attachment and biofilm formation in P. aeruginosa including these two classes.
Collapse
Affiliation(s)
- Matthew M Ramsey
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|