1
|
Jung YH, Seo JH, Kim HY, Kwon JW, Kim BJ, Kim HB, Lee SY, Jang GC, Song DJ, Kim WK, Shim JY, Hong SJ. The relationship between asthma and bronchiolitis is modified by TLR4, CD14, and IL-13 polymorphisms. Pediatr Pulmonol 2015; 50:8-16. [PMID: 24376096 DOI: 10.1002/ppul.22978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 11/05/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Asthma is a complex genetic disorder that is associated with both genetic and environmental factors. The aim of study was to investigate the combined effect of toll-like receptor 4 (TLR4), cluster of differentiation 14 (CD14), and interleukin-13 (IL-13) polymorphisms and bronchiolitis in the development of childhood asthma. METHODS A modified International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was used to survey 1,341 elementary school children and 919 nursery children in Seoul, Korea. TLR4 (rs1927911), CD14 (rs2569190), and IL-13 (rs20541) polymorphisms were genotyped by the TaqMan assay. RESULTS In elementary school and nursery children, parental history of asthma (adjusted odds ratio [aOR] 2.56 [95% CI 1.16-5.63], aOR 3.60 [95% CI 1.66-7.76], respectively), and past history of bronchiolitis (aOR 3.11 [95% CI 1.84-5.24], aOR 3.94 [95% CI 2.27-6.84], respectively) were independent risk factors for asthma diagnosis. When compared to children with each CC of TLR4 polymorphism or TT of CD14 polymorphism or GG of IL13 polymorphism and no past history of bronchiolitis, children with CT or TT of TLR4 polymorphism and past history of bronchiolitis had 4.23 and 5.34 times higher risk to develop asthma, respectively; children with TT of CD14 polymorphism and past history of bronchiolitis had 3.57 and 7.22 times higher risk for asthma, respectively; children with GA or AA of IL-13 polymorphism and past history of bronchiolitis had 3.21 and 4.13 times higher risk for asthma, respectively. CONCLUSIONS Family history of asthma or allergic rhinitis and past history of bronchiolitis could be independent risk factors for the development of childhood asthma. The relationship between asthma and bronchiolitis is modified by the TLR4, CD14, and IL-13 polymorphisms in Korean children.
Collapse
Affiliation(s)
- Young-Ho Jung
- Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Dyer KD, Garcia-Crespo KE, Glineur S, Domachowske JB, Rosenberg HF. The Pneumonia Virus of Mice (PVM) model of acute respiratory infection. Viruses 2012; 4:3494-510. [PMID: 23342367 PMCID: PMC3528276 DOI: 10.3390/v4123494] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/16/2023] Open
Abstract
Pneumonia Virus of Mice (PVM) is related to the human and bovine respiratory syncytial virus (RSV) pathogens, and has been used to study respiratory virus replication and the ensuing inflammatory response as a component of a natural host—pathogen relationship. As such, PVM infection in mice reproduces many of the clinical and pathologic features of the more severe forms of RSV infection in human infants. Here we review some of the most recent findings on the basic biology of PVM infection and its use as a model of disease, most notably for explorations of virus infection and allergic airways disease, for vaccine evaluation, and for the development of immunomodulatory strategies for acute respiratory virus infection.
Collapse
Affiliation(s)
- Kimberly D. Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| | - Katia E. Garcia-Crespo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| | - Stephanie Glineur
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| | - Joseph B. Domachowske
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA; E-Mail:
| | - Helene F. Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; E-Mails: (K.E.G.-C.); (S.G.); (H.F.R.)
| |
Collapse
|
3
|
Gabryszewski SJ, Bachar O, Dyer KD, Percopo CM, Killoran KE, Domachowske JB, Rosenberg HF. Lactobacillus-mediated priming of the respiratory mucosa protects against lethal pneumovirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1151-61. [PMID: 21169550 PMCID: PMC3404433 DOI: 10.4049/jimmunol.1001751] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inflammatory response to respiratory virus infection can be complex and refractory to standard therapy. Lactobacilli, when targeted to the respiratory epithelium, are highly effective at suppressing virus-induced inflammation and protecting against lethal disease. Specifically, wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus plantarum or Lactobacillus reuteri were completely protected against lethal infection with the virulent rodent pathogen, pneumonia virus of mice; significant protection (60% survival) persisted for at least 13 wk. Protection was not unique to Lactobacillus species, and it was also observed in response to priming with nonpathogenic Gram-positive Listeria innocua. Priming with live lactobacilli resulted in diminished granulocyte recruitment, diminished expression of multiple proinflammatory cytokines (CXCL10, CXCL1, CCL2, and TNF), and reduced virus recovery, although we have demonstrated clearly that absolute virus titer does not predict clinical outcome. Lactobacillus priming also resulted in prolonged survival and protection against the lethal sequelae of pneumonia virus of mice infection in MyD88 gene-deleted (MyD88(-/-)) mice, suggesting that the protective mechanisms may be TLR-independent. Most intriguing, virus recovery and cytokine expression patterns in Lactobacillus-primed MyD88(-/-) mice were indistinguishable from those observed in control-primed MyD88(-/-) counterparts. In summary, we have identified and characterized an effective Lactobacillus-mediated innate immune shield, which may ultimately serve as critical and long-term protection against infection in the absence of specific antiviral vaccines.
Collapse
Affiliation(s)
| | - Ofir Bachar
- Eosinophil Biology Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly D. Dyer
- Eosinophil Biology Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline M. Percopo
- Eosinophil Biology Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin E. Killoran
- Lymphocyte Biology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Helene F. Rosenberg
- Eosinophil Biology Section, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
TLR4 Asp299Gly and Thr399Ile polymorphisms: no impact on human immune responsiveness to LPS or respiratory syncytial virus. PLoS One 2010; 5:e12087. [PMID: 20711470 PMCID: PMC2919413 DOI: 10.1371/journal.pone.0012087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/11/2010] [Indexed: 12/14/2022] Open
Abstract
Background A broad variety of natural environmental stimuli, genotypic influences and timing all contribute to expression of protective versus maladaptive immune responses and the resulting clinical outcomes in humans. The role of commonly co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms Asp299Gly and Thr399Ile in this process remains highly controversial. Moreover, what differential impact these polymorphisms might have in at risk populations with respiratory dysfunction, such as current asthma or a history of infantile bronchiolitis, has never been examined. Here we determine the importance of these polymorphisms in modulating LPS and respiratory syncytial virus (RSV) - driven cytokine responses. We focus on both healthy children and those with clinically relevant respiratory dysfunction. Methodology To elucidate the impact of TLR4 Asp299Gly and Thr399Ile on cytokine production, we assessed multiple immune parameters in over 200 pediatric subjects aged 7–9. Genotyping was followed by quantification of pro- and anti-inflammatory cytokine responses by fresh peripheral blood mononuclear cells upon acute exposure to LPS or RSV. Principal Findings In contrast to early reports, neither SNP influenced immune responses evoked by LPS exposure or RSV infection, as measured by the intermediate phenotype of pro- and anti-inflammatory cytokine responses to these ubiquitous agents. There is no evidence of altered sensitivity in populations with “at risk” clinical phenotypes. Conclusions/Significance Genomic medicine seeks to inform clinical practice. Determination of the TLR4 Asp299Gly/Thr399Ile haplotype is of no clinical benefit in predicting the nature or intensity of cytokine production in children whether currently healthy or among specific at-risk groups characterized by prior infantile broncholitis or current asthma.
Collapse
|
5
|
Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol 2008; 83:1492-500. [PMID: 19019963 DOI: 10.1128/jvi.00671-08] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of infection that is associated with a range of respiratory illnesses, from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children <1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected to contribute to RSV disease. Toll-like receptors (TLRs) activate innate and acquired immunity and are candidates for playing key roles in the host immune response to RSV. Leukocytes express TLRs, including TLR2, TLR6, TLR3, TLR4, and TLR7, that can interact with RSV and promote immune responses following infection. Using knockout mice, we have demonstrated that TLR2 and TLR6 signaling in leukocytes can activate innate immunity against RSV by promoting tumor necrosis factor alpha, interleukin-6, CCL2 (monocyte chemoattractant protein 1), and CCL5 (RANTES). As previously noted, TLR4 also contributes to cytokine activation (L. M. Haynes, D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, and R. A. Tripp, J. Virol. 75:10730-10737, 2001, and E. A. Kurt-Jones, L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg, Nat. Immunol. 1:398-401, 2000). Furthermore, we demonstrated that signals generated following TLR2 and TLR6 activation were important for controlling viral replication in vivo. Additionally, TLR2 interactions with RSV promoted neutrophil migration and dendritic cell activation within the lung. Collectively, these studies indicate that TLR2 is involved in RSV recognition and subsequent innate immune activation.
Collapse
|
6
|
Miyairi I, DeVincenzo JP. Human genetic factors and respiratory syncytial virus disease severity. Clin Microbiol Rev 2008; 21:686-703. [PMID: 18854487 PMCID: PMC2570150 DOI: 10.1128/cmr.00017-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SUMMARY To explain the wide spectrum of disease severity caused by respiratory syncytial virus (RSV) and because of the limitations of animal models to fully parallel human RSV disease, study of genetic influences on human RSV disease severity has begun. Candidate gene approaches have demonstrated associations of severe RSV in healthy infants with genetic polymorphisms that may alter the innate ability of humans to control RSV (surfactants, Toll-like receptor 4, cell surface adhesion molecules, and others) and those that may control differences in proinflammatory responses or enhanced immunopathology (specific cytokines and their receptors). These studies are reviewed. They are valuable since an understanding of the direction of a polymorphism's effect can help construct a meaningful human RSV disease pathogenesis model. However, the direction, degree, and significance of the statistical association for any given gene are equivocal among studies, and the functional significance of specific polymorphisms is often not even known. Polymorphism frequency distribution differences associated with RSV infection arising from diversity in the genetic background of the population may be confounded further by multiple-hypothesis testing and publication bias, as well as the investigator's perceived importance of a particular pathogenic disease process. Such problems highlight the limitation of the candidate gene approach and the need for an unbiased large-scale genome-wide association study to evaluate this important disease.
Collapse
Affiliation(s)
- Isao Miyairi
- Department of Pediatrics, University of Tennessee, Memphis, Tennessee 38103, USA
| | | |
Collapse
|
7
|
Lukacs NW, Smit JJ, Schaller MA, Lindell DM. Regulation of immunity to respiratory syncytial virus by dendritic cells, toll-like receptors, and notch. Viral Immunol 2008; 21:115-22. [PMID: 18419253 DOI: 10.1089/vim.2007.0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The activation and maintenance of pulmonary viral disease is regulated at multiple levels and determined by the early innate response to the pathogenic stimuli. Subsequent activation events that rely directly and indirectly on the virus itself can alter the development and severity of the ensuing immunopathologic responses. In the present review we outline several interconnected mechanisms that rely on the early recognition of viral nucleic acid for the most appropriate anti-viral immune responses, including TLRs and Notch activation in DCs and T cells. Deviation or persistence of the immune response to respiratory viruses may impact significantly on the severity of the responses. While these mechanisms are likely similar in most respiratory viral infections, this review will focus on findings with respiratory syncytial virus (RSV) infections.
Collapse
Affiliation(s)
- Nicholas W Lukacs
- University of Michigan Medical School, Department of Pathology, Ann Arbor, Michigan 48109-200, USA
| | | | | | | |
Collapse
|
8
|
Rosenberg HF, Domachowske JB. Pneumonia virus of mice: severe respiratory infection in a natural host. Immunol Lett 2008; 118:6-12. [PMID: 18471897 DOI: 10.1016/j.imlet.2008.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/17/2008] [Accepted: 03/21/2008] [Indexed: 11/26/2022]
Abstract
Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a natural mouse pathogen that is closely related to human and bovine respiratory syncytial viruses. Among the prominent features of this infection, robust replication of PVM takes place in bronchial epithelial cells in response to a minimal virus inoculum. Virus replication in situ results in local production of proinflammatory cytokines (MIP-1alpha, MIP-2, MCP-1 and IFNgamma) and granulocyte recruitment to the lung. If left unchecked, PVM infection and the ensuing inflammatory response ultimately lead to pulmonary edema, respiratory compromise and death. In this review, we consider the recent studies using the PVM model that have provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. We also highlight several works that have elucidated acquired immune responses to this pathogen, including T cell responses and the development of humoral immunity. Finally, we consider several immunomodulatory strategies that have been used successfully to reduce morbidity and mortality when administered to PVM-infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe respiratory virus infections in human subjects.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
9
|
Hansbro NG, Horvat JC, Wark PA, Hansbro PM. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol Ther 2008; 117:313-53. [PMID: 18234348 PMCID: PMC7112677 DOI: 10.1016/j.pharmthera.2007.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 12/12/2022]
Abstract
Asthma is a common and debilitating disease that has substantially increased in prevalence in Western Societies in the last 2 decades. Respiratory tract infections by respiratory syncytial virus (RSV) and rhinovirus (RV) are widely implicated as common causes of the induction and exacerbation of asthma. These infections in early life are associated with the induction of wheeze that may progress to the development of asthma. Infections may also promote airway inflammation and enhance T helper type 2 lymphocyte (Th2 cell) responses that result in exacerbations of established asthma. The mechanisms of how RSV and RV induce and exacerbate asthma are currently being elucidated by clinical studies, in vitro work with human cells and animal models of disease. This research has led to many potential therapeutic strategies and, although none are yet part of clinical practise, they show much promise for the prevention and treatment of viral disease and subsequent asthma.
Collapse
Key Words
- aad, allergic airways disease
- ahr, airway hyperresponsiveness
- apc, antigen-presenting cell
- asm, airway smooth muscle
- balf, broncho-alveolar lavage fluid
- bec, bronchoepithelial cell
- bfgf, basic fibroblast growth factor
- cam, cellular adhesion molecules
- ccr, cc chemokine receptor
- cgrp, calcitonin gene-related peptide
- crp, c reactive protein
- dsrna, double stranded rna
- ecp, eosinophil cationic protein
- ena-78, epithelial neutrophil-activating peptide-78
- fev1, forced expiratory volume
- fi, formalin-inactivated
- g-csf and gm-csf, granulocyte and granulocyte-macrophage colony stimulating factor
- ics, inhaled corticosteroid
- ifn, interferon, ifn
- il, interleukin
- ip-10, ifn-γ inducible protein-10
- laba, long acting beta agonist
- ldh, lactate dehydrogenase
- ldlpr, low density lipoprotein receptor
- lrt, lower respiratory tract
- lt, leukotriene
- mab, monoclonal antibody
- mcp, monocyte chemoattractant proteins
- mdc, myeloid dendritic cell
- mhc, major histocompatibility
- mip, macrophage inhibitory proteins
- mpv, metapneumovirus
- nf-kb, nuclear factor (nf)-kb
- nk cells, natural killer cells
- nk1, neurogenic receptor 1
- or, odds ratio
- paf, platelet-activating factor
- pbmc, peripheral blood mononuclear cell
- pdc, plasmacytoid dendritic cell
- pef, peak expiratory flow
- penh, enhanced pause
- pfu, plaque forming units
- pg, prostaglandin
- pkr, protein kinase r
- pvm, pneumonia virus of mice
- rad, reactive airway disease
- rantes, regulated on activation normal t cell expressed and secreted
- rr, relative risk
- rsv, respiratory syncytial virus
- rv, rhinovirus (rv)
- ssrna, single stranded rna
- tgf, transforming growth factor
- th, t helper lymphocytes
- tlr, toll-like receptors
- tnf, tumor necrosis factor
- urt, upper respiratory tract
- vegf, vascular endothelial growth factor
- vs, versus
- wbc, white blood cell
- respiratory syncytial virus
- rhinovirus
- induction
- exacerbation
- asthma
- allergy
- treatment
- prevention
Collapse
Affiliation(s)
- Nicole G. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| | - Jay C. Horvat
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| | - Peter A. Wark
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
- Department of Respiratory & Sleep Medicine, John Hunter Hospital & Sleep Medicine, School of Medical Practice, University of Newcastle, Newcastle, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| |
Collapse
|
10
|
Johnson TR. Respiratory syncytial virus and innate immunity: a complex interplay of exploitation and subversion. Expert Rev Vaccines 2007; 5:371-80. [PMID: 16827621 DOI: 10.1586/14760584.5.3.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Respiratory syncytial virus causes significant disease in infants, the elderly and select groups of immunocompromised patients. Healthy individuals are also naturally infected with respiratory syncytial virus repeatedly throughout life. Therefore, safe and effective vaccines and therapies are needed. However, a number of factors have prevented development of such antiviral interventions to date. These include a failed vaccine trial, the very young age of the primary target population (neonates), the inability of natural infection to induce long-term protective immunity, and an incomplete understanding of virus-host interactions. The identification of pattern recognition receptors has led to significant increases in our understanding of induction and regulation of innate immune responses. This review will address the impact of these findings on respiratory syncytial virus research.
Collapse
Affiliation(s)
- Teresa R Johnson
- Vaccine Research Center, NIAID, NIH, Building 40 Room 2614, 40 Convent Drive MSC3017, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol 2007; 82:2040-55. [PMID: 17928346 DOI: 10.1128/jvi.01625-07] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Dyer KD, Schellens IMM, Bonville CA, Martin BV, Domachowske JB, Rosenberg HF. Efficient replication of pneumonia virus of mice (PVM) in a mouse macrophage cell line. Virol J 2007; 4:48. [PMID: 17547763 PMCID: PMC1891281 DOI: 10.1186/1743-422x-4-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/04/2007] [Indexed: 01/04/2023] Open
Abstract
Pneumonia virus of mice (PVM; family Paramyxoviridae, subfamily Pneumovirinae) is a natural respiratory pathogen of rodent species and an important new model for the study of severe viral bronchiolitis and pneumonia. However, despite high virus titers typically detected in infected mouse lung tissue in vivo, cell lines used routinely for virus propagation in vitro are not highly susceptible to PVM infection. We have evaluated several rodent and primate cell lines for susceptibility to PVM infection, and detected highest virus titers from infection of the mouse monocyte-macrophage RAW 264.7 cell line. Additionally, virus replication in RAW 264.7 cells induces the synthesis and secretion of proinflammatory cytokines relevant to respiratory virus disease, including tumor necrosis factor-alpha (TNF-alpha), interferon-beta (IFN-beta), macrophage inflammatory proteins 1alpha and 1beta (MIP-1alpha and MIP-1beta) and the functional homolog of human IL-8, mouse macrophage inflammatory peptide-2 (MIP-2). Identification and characterization of a rodent cell line that supports the replication of PVM and induces the synthesis of disease-related proinflammatory mediators will facilitate studies of molecular mechanisms of viral pathogenesis that will complement and expand on findings from mouse model systems.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ingrid MM Schellens
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cynthia A Bonville
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Brittany V Martin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Joseph B Domachowske
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Building 10, Room 11C215, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, Foster PS, Matthaei KI. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 2007; 110:1578-86. [PMID: 17495130 DOI: 10.1182/blood-2007-01-071340] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are recruited to the lungs in response to respiratory syncytial virus (RSV) infection; however, their role in promoting antiviral host defense remains unclear. Here, we demonstrate that eosinophils express TLRs that recognize viral nucleic acids, are activated and degranulate after single-stranded RNA (ssRNA) stimulation of the TLR-7-MyD88 pathway, and provide host defense against RSV that is MyD88 dependent. In contrast to wild-type mice, virus clearance from lung tissue was more rapid in hypereosinophilic (interleukin-5 transgenic) mice. Transfer of wild-type but not MyD88-deficient eosinophils to the lungs of RSV-infected wild-type mice accelerated virus clearance and inhibited the development of airways hyperreactivity. Similar responses were observed when infected recipient mice were MyD88 deficient. Eosinophils isolated from infected hypereosinophilic MyD88-sufficient but not MyD88-deficient mice expressed greater amounts of IFN regulatory factor (IRF)-7 and eosinophil-associated ribonucleases EAR-1 and EAR-2. Hypereosinophilia in the airways of infected mice also correlated with increased expression of IRF-7, IFN-beta, and NOS-2, and inhibition of NO production with the NOS-2 inhibitor L-NMA partially reversed the accelerated virus clearance promoted by eosinophils. Collectively, our results demonstrate that eosinophils can protect against RSV in vivo, as they promote virus clearance and may thus limit virus-induced lung dysfunction.
Collapse
Affiliation(s)
- Simon Phipps
- Centre for Asthma and Respiratory Diseases (CARD), School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Paulus SC, Hirschfeld AF, Victor RE, Brunstein J, Thomas E, Turvey SE. Common human Toll-like receptor 4 polymorphisms--role in susceptibility to respiratory syncytial virus infection and functional immunological relevance. Clin Immunol 2007; 123:252-7. [PMID: 17449325 DOI: 10.1016/j.clim.2007.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Evidence suggests that Toll-like receptor 4 (TLR4) contributes to immune recognition of respiratory syncytial virus (RSV). The TLR4 gene harbours a polymorphism-Asp299Gly-previously associated with reduced TLR4 signalling. To understand of how host genetic variation influences the outcome of RSV infection in children, we examined the association between the TLR4 299Gly allele and severe RSV disease. By genotyping 236 children with RSV infection and 219 healthy controls we found no association between the risk of severe RSV infection and Asp299Gly polymorphisms (P>0.05), and we demonstrate that the TLR4 Asp299Gly genotype does not influence susceptibility to either RSV serotype A or B (P>0.05). Finally, examining the functional impact of the TLR4 Asp299Gly polymorphism (n=58), we demonstrate that proinflammatory cytokine production following TLR4 activation was indistinguishable between homozygous (Asp/Asp) and heterozygous (Asp/Gly) subjects. We conclude that the Asp299Gly TLR4 polymorphism does not alter receptor function and does not influence the risk of severe RSV infection.
Collapse
Affiliation(s)
- Stéphane C Paulus
- Department of Pediatrics, BC Children's Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|