1
|
Montanari Borges B, Gama de Santana M, Willian Preite N, de Lima Kaminski V, Trentin G, Almeida F, Vieira Loures F. Extracellular vesicles from virulent P. brasiliensis induce TLR4 and dectin-1 expression in innate cells and promote enhanced Th1/Th17 response. Virulence 2024; 15:2329573. [PMID: 38511558 PMCID: PMC10962619 DOI: 10.1080/21505594.2024.2329573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that transport several biomolecules and are involved in important mechanisms and functions related to the pathophysiology of fungal diseases. EVs from Paracoccidioides brasiliensis, the main causative agent of Paracoccidioidomycosis (PCM), modulate the immune response of macrophages. In this study, we assessed the EVs proteome from a virulent P. brasiliensis isolated from granulomatous lesions and compared their immunomodulatory ability with EVs isolated from the fungus before the animal passage (control EVs) when challenging macrophages and dendritic cells (DCs). Proteome showed that virulent EVs have a higher abundance of virulence factors such as GP43, protein 14-3-3, GAPDH, as well as virulence factors never described in PCM, such as aspartyl aminopeptidase and a SidJ analogue compared with control EVs. Virulent extracellular vesicles induced higher expression of TLR4 and Dectin-1 than control EVs in macrophages and dendritic cells (DCs). In opposition, a lower TLR2 expression was induced by virulent EVs. Additionally, virulent EVs induced lower expression of CD80, CD86 and TNF-α, but promoted a higher expression of IL-6 and IL-10, suggesting that EVs isolated from virulent P. brasiliensis-yeast promote a milder DCs and macrophage maturation. Herein, we showed that EVs from virulent fungi stimulated a higher frequency of Th1/Tc1, Th17, and Treg cells, which gives new insights into fungal extracellular vesicles. Taken together, our results suggest that P. brasiliensis utilizes its EVs as virulence bags that manipulate the immune system in its favour, creating a milder immune response and helping with fungal evasion from the immune system.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Monique Gama de Santana
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
2
|
Santos LA, Castro Dutra J, Malaquias LCC, Andrade ND, Gomes BN, Burger E. Paracoccidioides spp.: Escape mechanisms and their implications for the development of this mycosis. Microb Pathog 2024; 196:106951. [PMID: 39299555 DOI: 10.1016/j.micpath.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis prevalent in individuals who carry out rural activities. Its etiological agent is a thermodimorphic fungus belonging to the genus; Paracoccidioides spp. Seven species of this fungus are known: Paracoccidioides brasiliensis, Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides restrepiensis, Paracoccidioides venezuelensis, Paracoccidioides loboi and Paracoccidioides ceti. For a long time, Paracoccidioides brasiliensis was attributed as the only causal agent of this mycosis. What is known about adhesins, virulence, escape mechanisms and fungal involvement with the host's immune system is correlated with the species Paracoccidioides brasiliensis. Interactions between Paracoccidioides spp. and the host are complex and dynamic. The fungus needs nutrients for its needs and must adapt to a hostile environment, evading the host's immune system, thus enabling the development of the infectious process. On the other hand, the host's immune system recognizes Paracoccidioides spp. and employs all protective mechanisms to prevent fungal growth and consequently tissue invasion. Knowing this, understanding how Paracoccidioides spp. escapes the host's immune system, can help to understand the pathogenic mechanisms related to the development of the disease and, therefore, in the design of new specific treatment strategies. In this review we discuss these mechanisms and what are the adhesion molecules of Paracoccidioides spp. uses to escape the hostile environment imposed by the host's defense mechanisms; finally, we suggest how to neutralize them with new antifungal therapies.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Julia Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Nayara Dias Andrade
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil.
| |
Collapse
|
3
|
Mansano ESB, de Morais GR, Moratto EM, Sato F, Baesso ML, Medina AN, Svidzinski TIE, Hernandes L. Combination of Histopathology and FT-Raman Spectroscopy for the Study of Experimental Paracoccidioidomycosis in the Spleen. Photochem Photobiol 2017; 94:88-94. [DOI: 10.1111/php.12840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/01/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Francielle Sato
- Department of Physics; Universidade Estadual de Maringá; Maringá Paraná Brasil
| | | | - Antonio Neto Medina
- Department of Physics; Universidade Estadual de Maringá; Maringá Paraná Brasil
| | | | - Luzmarina Hernandes
- Department of Morphological Sciences; Universidade Estadual de Maringá; Maringá Paraná Brasil
| |
Collapse
|
4
|
Bonfim-Mendonça PDS, Capoci IRG, Tobaldini-Valerio FK, Negri M, Svidzinski TIE. Overview of β-Glucans from Laminaria spp.: Immunomodulation Properties and Applications on Biologic Models. Int J Mol Sci 2017; 18:E1629. [PMID: 28878139 PMCID: PMC5618472 DOI: 10.3390/ijms18091629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Glucans are a group of glucose polymers that are found in bacteria, algae, fungi, and plants. While their properties are well known, their biochemical and solubility characteristics vary considerably, and glucans obtained from different sources can have different applications. Research has described the bioactivity of β-glucans extracted from the algae of the Laminaria genus, including in vivo and in vitro studies assessing pro- and anti-inflammatory cytokines, vaccine production, inhibition of cell proliferation, and anti- and pro-oxidant activity. Thus, the objective of this article was to review the potential application of β-glucans from Laminaria spp. in terms of their immunomodulatory properties, microorganism host interaction, anti-cancer activity and vaccine development.
Collapse
Affiliation(s)
- Patrícia de Souza Bonfim-Mendonça
- Graduate Program in Health Sciences, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Isis Regina Grenier Capoci
- Graduate Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Flávia Kelly Tobaldini-Valerio
- Graduate Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Melyssa Negri
- Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | | |
Collapse
|
5
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
6
|
Siqueira IM, de Castro RJA, Leonhardt LCDM, Jerônimo MS, Soares AC, Raiol T, Nishibe C, Almeida N, Tavares AH, Hoffmann C, Bocca AL. Modulation of the immune response by Fonsecaea pedrosoi morphotypes in the course of experimental chromoblastomycosis and their role on inflammatory response chronicity. PLoS Negl Trop Dis 2017; 11:e0005461. [PMID: 28355277 PMCID: PMC5391973 DOI: 10.1371/journal.pntd.0005461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/14/2017] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
A common theme across multiple fungal pathogens is their ability to impair the establishment of a protective immune response. Although early inflammation is beneficial in containing the infection, an uncontrolled inflammatory response is detrimental and may eventually oppose disease eradication. Chromoblastomycosis (CBM), a cutaneous and subcutaneous mycosis, caused by dematiaceous fungi, is capable of inducing a chronic inflammatory response. Muriform cells, the parasitic form of Fonsecaea pedrosoi, are highly prevalent in infected tissues, especially in long-standing lesions. In this study we show that hyphae and muriform cells are able to establish a murine CBM with skin lesions and histopathological aspects similar to that found in humans, with muriform cells being the most persistent fungal form, whereas mice infected with conidia do not reach the chronic phase of the disease. Moreover, in injured tissue the presence of hyphae and especially muriform cells, but not conidia, is correlated with intense production of pro-inflammatory cytokines in vivo. High-throughput RNA sequencing analysis (RNA-Seq) performed at early time points showed a strong up-regulation of genes related to fungal recognition, cell migration, inflammation, apoptosis and phagocytosis in macrophages exposed in vitro to muriform cells, but not conidia. We also demonstrate that only muriform cells required FcγR and Dectin-1 recognition to be internalized in vitro, and this is the main fungal form responsible for the intense inflammatory pattern observed in CBM, clarifying the chronic inflammatory reaction observed in most patients. Furthermore, our findings reveal two different fungal-host interaction strategies according to fungal morphotype, highlighting fungal dimorphism as an important key in understanding the bipolar nature of inflammatory response in fungal infections.
Collapse
Affiliation(s)
- Isaque Medeiros Siqueira
- Molecular Pathology Post-Graduate Program, School of Medicine; University of Brasília, Brasília, Brazil
| | | | | | - Márcio Sousa Jerônimo
- Department of Cell Biology, Institute of Biological Sciences; University of Brasília, Brasília, Brazil
| | | | - Tainá Raiol
- Institute Leônidas and Maria Deane, Oswaldo Cruz Foundation, Manaus, Brazil
| | - Christiane Nishibe
- School of Computing Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Nalvo Almeida
- School of Computing Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aldo Henrique Tavares
- Department of Cell Biology, Institute of Biological Sciences; University of Brasília, Brasília, Brazil
| | - Christian Hoffmann
- Department of Cell Biology, Institute of Biological Sciences; University of Brasília, Brasília, Brazil
- Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anamelia Lorenzetti Bocca
- Department of Cell Biology, Institute of Biological Sciences; University of Brasília, Brasília, Brazil
| |
Collapse
|
7
|
De Lacorte Singulani J, De Fátima Da Silva J, Gullo FP, Costa MC, Fusco-Almeida AM, Enguita FJ, Mendes-Giannini MJS. Preliminary evaluation of circulating microRNAs as potential biomarkers in paracoccidioidomycosis. Biomed Rep 2017; 6:353-357. [PMID: 28451399 DOI: 10.3892/br.2017.849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs (length, 19-24 nucleotides) that regulate gene expression by either mRNA degradation or translational inhibition of proteins. Circulating miRNAs, which are extremely stable and protected from RNAse-mediated degradation in body fluids, have appeared as candidate biomarkers for numerous diseases. However, little is known about circulating miRNAs in fungal infections. Paracoccidioidomycosis (PCM) is caused by the Paracoccidioides species, and is endemic in Central and South America, with predominance in adult male workers from rural areas. The current study aimed to identify a serum miRNA expression profile that could serve as a novel diagnostic biomarker for PCM. Total RNA was isolated and the levels of circulating miRNAs were compared between patients with PCM and healthy control subjects using reverse transcription-quantitative polymerase chain reaction. Bioinformatic analysis was used to evaluate the potential roles of these miRNAs in PCM. Eight miRNAs were differentially expressed in serum samples from patients with PCM. These miRNAs are associated with apoptosis and immune response. The identified miRNAs facilitate with understanding the regulatory mechanisms involved in the host-parasite interaction of PCM. Furthermore, considering that the diagnosis of PCM presents difficulties, these miRNAs may serve as novel biomarkers for this disease.
Collapse
Affiliation(s)
- Junya De Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-901, Brazil
| | - Julhiany De Fátima Da Silva
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-901, Brazil
| | - Fernanda Patricia Gullo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-901, Brazil
| | - Marina Célia Costa
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-901, Brazil
| | - Francisco Javier Enguita
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-901, Brazil
| |
Collapse
|
8
|
de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva ACA, Da Silva JDF, Singulani JDL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015; 6:1319. [PMID: 26635779 PMCID: PMC4658449 DOI: 10.3389/fmicb.2015.01319] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Patrícia A Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Caroline M Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana C A de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany De Fátima Da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Kaila M Alarcon
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
9
|
Morais EA, Martins EMDN, Boelone JN, Gomes DA, Goes AM. Immunization with Recombinant Pb27 Protein Reduces the Levels of Pulmonary Fibrosis Caused by the Inflammatory Response Against Paracoccidioides brasiliensis. Mycopathologia 2014; 179:31-43. [DOI: 10.1007/s11046-014-9815-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
10
|
Moreira AP, Dias-Melicio LA, Soares AMVC. Interleukin-10 but not Transforming Growth Factor beta inhibits murine activated macrophages Paracoccidioides brasiliensis killing: effect on H2O2 and NO production. Cell Immunol 2010; 263:196-203. [PMID: 20417928 DOI: 10.1016/j.cellimm.2010.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 01/27/2023]
Abstract
Paracoccidioidomycosis is caused by the thermally dimorphic fungus Paracoccidioides brasiliensis (P. brasiliensis). Most often, this mycosis runs as a chronic progressive course affecting preferentially the lungs. In vitro fungicidal activity against a high virulent strain of P. brasiliensis by murine peritoneal macrophages preactivated with IFN-gamma or TNF-alpha is high and correlates with increased NO and H2O2 production. Within this context, the purpose of this work was to study the role of suppressor cytokines, such as IL-10 and TGF-beta, in this process. Incubation of either IFN-gamma or TNF-alpha with IL-10 inhibits fungicidal activity of these cells. However, TGF-beta had no effect on fungicidal activity of IFN-gamma or TNF-alpha-activated macrophages. The suppression of fungicidal activity by IL-10 correlated with the inhibition of NO and H2O2 production supporting the involvement of these metabolites in P. brasiliensis killing. These results suggest that IL-10 production in vivo could represent an evasion mechanism of the fungus to avoid host immune response.
Collapse
Affiliation(s)
- Ana Paula Moreira
- UNESP-Univ Estadual Paulista, Instituto de Biociências-Campus Botucatu, Departamento de Microbiologia e Imunologia, CEP 18618-000, SP, Brazil
| | | | | |
Collapse
|
11
|
Del Vecchio A, Silva JDFD, Silva JLMD, Andreotti PF, Soares CP, Benard G, Giannini MJSM. Induction of apoptosis in A549 pulmonary cells by two Paracoccidioides brasiliensis samples. Mem Inst Oswaldo Cruz 2009; 104:749-54. [PMID: 19820837 DOI: 10.1590/s0074-02762009000500015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 06/04/2009] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis presents a variety of clinical manifestations and Paracoccidioides brasiliensis can reach many tissues, most importantly the lungs. The ability of the pathogen to interact with host surface structures is essential to its virulence. The interaction between P. brasiliensis and epithelial cells has been studied, with particular emphasis on the induction of apoptosis. To investigate the expression of different apoptosis-inducing pathways in human A549 cells, we infected these cells with P. brasiliensis Pb18SP (subcultured) and 18R (recently isolated from cell culture and showing a high adhesion pattern) samples in vitro. The expressions of Bcl-2, Bak and caspase 3 were analysed by flow cytometry and DNA fragmentation using the TUNEL technique. Apoptosis of human A549 cells was induced by P. brasiliensis in a sample and time-dependent manner. Using an in vitro model, our data demonstrates that caspase 3, Bak, Bcl-2 and DNA fragmentation mediate P. brasiliensis-induced apoptosis in A549 cells. The overall mechanism is a complex process, which may involve several signal transduction pathways. These findings could partially explain the efficient behaviour of this fungus in promoting tissue infection and/or blood dissemination.
Collapse
Affiliation(s)
- Adriana Del Vecchio
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Acorci MJ, Dias-Melicio LA, Golim MA, Bordon-Graciani AP, Peraçoli MTS, Soares AMVC. Inhibition of human neutrophil apoptosis by Paracoccidioides brasiliensis: role of interleukin-8. Scand J Immunol 2008; 69:73-9. [PMID: 19144080 DOI: 10.1111/j.1365-3083.2008.02199.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidiodes brasiliensis that presents a wide spectrum of clinical manifestations. Because of the great number of neutrophils polymorphonuclear neutrophils (PMN) found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. This fungus is found intracellularly in PMN and monocytes/macrophages, suggesting that it is capable of evading damage and surviving inside these cells. Thus, in the present study, we investigated whether P. brasiliensis can prolong the lifetime of PMN, and if this process would be related with IL-8 levels. PMN apoptosis and intracellular levels of IL-8 were analysed by flow cytometry and culture supernatants IL-8 levels were evaluated by enzyme-linked immunosorbent assay. We found that coincubation with P. brasiliensis yeast cells results in an inhibition of PMN apoptosis, which was associated with increase in IL-8 production by these cells. Cocultures treatment with monoclonal antibody anti-IL-8 reversed the inhibitory effect of P. brasiliensis on PMN apoptosis, besides to increase spontaneous apoptosis of these cells. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, P. brasiliensis can extend the lifetime of normal human PMN by inducing autocrine IL-8 production.
Collapse
Affiliation(s)
- M J Acorci
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Silva SS, Tavares AHFP, Passos-Silva DG, Fachin AL, Teixeira SMR, Soares CMA, Carvalho MJA, Bocca AL, Silva-Pereira I, Passos GAS, Felipe MSS. Transcriptional response of murine macrophages upon infection with opsonized Paracoccidioides brasiliensis yeast cells. Microbes Infect 2007; 10:12-20. [PMID: 18096424 DOI: 10.1016/j.micinf.2007.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 11/29/2022]
Abstract
Paracoccidioides brasiliensis is the etiologic agent of the Paracoccidioidomycosis the most common systemic mycosis in Latin America. Little is known about the regulation of genes involved in the innate immune host response to P. brasiliensis. We therefore examined the kinetic profile of gene expression of peritoneal macrophage infected with P. brasiliensis. Total RNA from macrophages at 6, 24 and 48h was extracted, hybridized onto nylon membranes and analyzed. An increase in the transcription of a number of pro-inflammatory molecules encoding membrane proteins, metalloproteases, involved in adhesion and phagocytosis, are described. We observed also the differential expression of genes whose products may cause apoptotic events induced at 24h. In addition, considering the simultaneous analyses of differential gene expression for the pathogen reported before by our group, at six hours post infection, we propose a model at molecular level for the P. brasiliensis-macrophage early interaction. In this regard, P. brasiliensis regulates genes specially related to stress and macrophages, at the same time point, up-regulate genes related to inflammation and phagocytosis, probably as an effort to counteract infection by the fungus.
Collapse
Affiliation(s)
- Simoneide S Silva
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|